To appear in Proc. of the 6th Int. IFAC Symposium on Robot
Control (SYROCQO’00), Vienna, Austria, September 2000.

BUILDING GLOBALLY
CONSISTENT GRIDMAPS
FROM TOPOLOGIES

Tom Duckett * Alessandro Saffiotti*

* Center for Applied Autonomous Sensor Systems
Department of Technology
University of Orebro
SE-70182 Orebro, Sweden
http://www.aass.oru.se
{Tom.Duckett,Alessandro.Saffiotti}@aass.oru.se

Abstract: This paper addresses the problem of recovering metric consistency in
a global gridmap for mobile robot navigation. Gridmaps can only be updated
consistently using exact estimates of the robot position, a requirement which is very
hard to fulfil in real world environments because the same sensor data must be used for
both map building and self-localisation. To overcome this problem, we use a hierarchy
of robot maps which integrates topological and grid-based representations at different
levels of abstraction. The consistency problem is solved at the topological level, by
applying a relaxation technique to generate coordinates for the places in the robot’s
map. Consequently, the robot is able to recover a globally consistent gridmap without
requiring accurate sensors or high computational costs. Experiments on a Nomad 200
robot in a large, real world environment are presented which demonstrate the efficacy
of the approach.
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1. INTRODUCTION

Maps are essential for mobile robot control in
unstructured environments, being needed for self-
localisation, path planning and human-robot in-
teraction. A popular representation paradigm for
robot maps is the occupancy grid model, see
e.g., (Moravec and Elfes, 1985; Hughes and Mur-
phy, 1992; Oriolo et al., 1998). In this approach,
the map consists of a matrix of cells, each con-
taining some measure of the certainty that the
corresponding area of the environment is occupied
by an object.

If a robot is to function autonomously, it needs the
ability to build its own maps. This requirement
imposes some severe practical problems for a
robot attempting to construct a global grid model
in real-time:

e Dependence on accurate position informa-
tion. Large-scale gridmaps can only be up-
dated consistently using exact estimates of
the robot position. Under realistic operating
conditions it is often very difficult to main-
tain the required level of accuracy. For exam-
ple, some systems require a priori position
information from an external agent (Fabrizi
et al., 2000). Others depend critically on ac-
curate sensing, e.g., using laser-range finders
(Yamauchi et al., 1998) and stereo vision
(Thrun et al., 1998a), to reduce positioning
€errors.

e High computational cost. When accurate
global position information is not available,
the same sensor data must be used both to
build the map and to update the robot’s
position. Most current approaches do so by
applying some optimisation technique over
the space of possible maps, e.g., (Thrun et
al., 1998¢; Thrun et al., 1998b). These solu-
tions tend to require large amounts of mem-
ory and processing power. For example, the
technique proposed in (Thrun et al., 1998¢)
requires up to two hours of computation to
generate a gridmap with a spatial resolution
of 1 meter in a large environment (90 x 90
meters).

An alternative paradigm is provided by topologi-
cal maps, where the environment is represented as
a graph of connected places. In this approach, the
problem of self-localisation becomes that of place
recognition (Kortenkamp and Weymouth, 1994),
and the robot does not need to know its precise
Cartesian coordinate for map building. The com-
pactness of topological representations also means
that computational costs are much lower than for
gridmaps. However, these maps do not provide
a detailed geometric interpretation of the target
environment.

-

Fig. 1. Hierarchy of Maps.

In this paper, we integrate topological and grid-
based representations for the purpose of con-
structing globally consistent metric models of
large, real world environments. The core of the
integration is the ability to obtain precise posi-
tion information from a topological map with-
out requiring accurate sensors and without incur-
ring high computational costs. This information
is then used to build a global gridmap. Using this
approach, a sonar-equipped mobile robot is able to
construct detailed models of large environments.

Our method relies on the combination of three
existing mechanisms for robot map building;:

e a topological map building strategy (Duckett
and Nehmzow, 1999a),

e a relaxation technique for maintaining geo-
metric consistency in a graph (Duckett et
al., 2000), and

e an off-line algorithm for constructing a global
gridmap (Oriolo et al., 1998).

The latter algorithm requires exact position in-
formation, which is obtained here by applying the
relaxation technique to a self-acquired topological
map.

Our method assumes four sources of perceptual
information; (i) a place recognition system, (ii) a
global orientation, (iii) local distance information,
and (iv) range information used to build the
gridmap. In this paper, we present experiments
conducted on a Nomad 200 robot, in which we
used the Bayesian self-localisation algorithm de-
scribed in (Duckett and Nehmzow, 1999b) for (i),
a compass for (ii), odometry for (iii), and sonar
sensors for (iv). In the experiments, no a priori
position information or map were provided to the
robot.



2. METHOD

We integrate topological and grid-based represen-
tations at different levels of abstraction in a hier-
archy of robot maps. The basic idea is summarised
in Fig. 1.

At the lowest level, the environment is represented
by a set of local grid models. Each of these grids
constitutes a perceptual signature for one particu-
lar place in the environment; there is no require-
ment of consistency between the local grids. These
local grids are used on-line by the robot for self-
localisation.

At the intermediate level, the places are connected
by a set of links to create a topological map.
Each link is also labelled with metric information
describing the relative distance and absolute angle
between the two places it connects. Using this in-
formation, we then apply the relaxation technique
described below to assign a geometrically consis-
tent set of Cartesian coordinates to the places in
the topological map.

Finally, the globally consistent metric information
derived from the topological level is combined
with recorded ultrasonic range data to generate
a global gridmap.

These representations are manipulated by apply-
ing the following techniques. Detailed descriptions
of these algorithms may be found in the papers
available online (see References).

2.1 Topological Map Building

To obtain the topological map, an incremental
map building strategy was applied (Duckett and
Nehmzow, 1999a), in which the robot continu-
ously tries to expand the territory which has al-
ready been charted. The basic idea is that the
robot travels to the edge of the existing map, and
then uses its range-finder sensors to detect more
unexplored places. The new places are added to
the map, then the process is repeated until the
whole environment has been covered.

A particular feature of the approach is that an
artificial neural network is trained to predict the
presence of unexplored places in a given direc-
tion, fusing together information from the robot’s
range-finder sensors, see (Duckett and Nehmzow,
19994) for details. The new “predicted” places are
added to the map, then subsequent movement by
the robot is used to verify whether the predicted
places actually exist or not.

During on-line operation, the robot maintains a
temporary local grid model in working memory
corresponding to its most recent sensory percep-
tions; this is used for collision avoidance, place

recognition (by matching with the stored place
signatures) and initialising the perceptual signa-
tures of new places.

2.2 Relazation Algorithm

A major problem for robot map building is that
odometry-based dead reckoning cannot be used
for accurate position estimation because of cu-
mulative drift errors. To overcome this problem,
we applied the iterative relaxation algorithm de-
scribed in (Duckett et al., 2000) to assign geo-
metrically consistent position information to the
places in the topological map. In this algorithm,
the coordinates of the places are treated as free
variables, and the relaxation method finds a glob-
ally consistent set of coordinates using only the
local metric relations between places.

In this approach, each link in the topological map
can be modelled as a spring which connects two
adjacent places ¢ and j, where each link is labelled
with the relative distance d;; and absolute heading
0;; between places ¢ and j. Each “spring” reaches
minimum energy when the relative displacement
between the coordinates of 4 and j is equal to the
vector (d;;, 6;;) measured by the robot. Thus,
global consistency is maintained in the map by
minimising the following energy function:
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where E; refers to the sum over the neighbours
of a given node 1.

The basic principle behind the relaxation algo-
rithm can be explained as follows. The idea is
to pick each node in turn, and then move it “to
where its neighbours think it should be” — see
(Duckett et al., 2000) for full details. By repeated
application of this rule, the coordinates in the map
converge towards a global minimum in the energy
function. Furthermore, it has been proven that the
algorithm converges to the maximum likelihood
solution.

2.3 Gridmap Construction

The sonar data recorded at each place, together
with the coordinates of that place after relax-
ation, are used to build a global occupancy grid
by standard techniques. In our experiments, we
have used the technique proposed by (Oriolo et
al., 1998), which is based on fuzzy logic. We had
two main motivations in choosing this technique:
(1) it maintains distinct maps for the occupied



and the empty space, thus allowing us to distin-
guish between unexplored cells and cells on which
there are contradicting measurements; and (2) it
produces fuzzy gridmaps that can be processed
by the technique proposed in (Fabrizi and Saf-
fiotti, 2000) to extract higher level information,
which can be used to further expand the map
hierarchy. However, it should be noted that the
approach proposed in this paper to obtain globally
consistent gridmaps can be applied to any occu-
pancy grid construction technique, e.g., (Moravec
and Elfes, 1985; Hughes and Murphy, 1992).

3. EXPERIMENTS

Fig. 2. The Nomad 200 mobile robot Milow.

We have tested the above method in experiments
performed using a Nomad 200 robot equipped
with a compass and a ring of 16 Polaroid sonar
sensors (Fig. 2). The experiments were conducted
in the indoor environment shown in Fig. 3, which
is a relatively large office area of size 46 x 12
meters.

Fig. 4 shows the topological map acquired by the
robot in one experiment. The picture shows the
position of the places in global coordinates before
and after relaxation. The derived global gridmap
is shown in Fig. 5. The map has a resolution of
0.10 meters, and should be accurate enough for
safe navigation and planning.

The entire process requires minimal computa-
tional resources. Acquisition of the topological
map was done on-line. Relaxation was performed
as part of the acquisition algorithm. One iteration
of relaxation on the full map of 137 places required
20 msec. Since the map was relaxed every time
a new place was added to it, only one step was

needed each time. The gridmap was generated off-
line in these experiments, taking 36 sec to process
6600 sonar readings on a grid of 350 x 450 cells.
All times are relative to a 200 MHz Pentium II
processor.

4. CONCLUSIONS

Building a global gridmap requires exact posi-
tion information. In on-line map building systems,
this information is usually obtained by correct-
ing the robot’s odometry, e.g., using a Kalman
filter (Gelb, 1974). However, the Kalman filter is
based on assumptions which can be very hard to
fulfil under realistic operating conditions.

By contrast, we have presented an application of a
relaxation technique for building global gridmaps
which is based on an underlying topological rep-
resentation of the environment. Topological maps
have the advantage that they can represent much
larger areas using the same computational re-
sources, and have a much lower dependency on
accurate positioning and accurate sensing for map
building.

The work presented in this paper belongs to a
growing family of techniques that integrate map
representations at different levels of abstraction
and granularity. In many of these, the space is rep-
resented as a patchwork of locally consistent met-
ric spaces connected to form a global topological
map, e.g., (Duckett and Nehmzow, 1999b; Gasds
and Saffiotti, 1999; Kuipers, 2000; Simhon and
Dudek, 1998; Zimmer, 2000). Our work extends
this type of approach by exploiting the informa-
tion in the topological map to recover global met-
ric consistency. In this respect, the closest relative
of our method is the expectation maximisation
(EM) technique proposed in (Thrun et al., 1998b).
While EM-based mapping techniques have pro-
duced impressive results, they suffer from a high
computational complexity; moreover, EM is not
guaranteed to converge to a global optimum. By
contrast, in the case of the method described in
this paper: (i) relaxation always finds a global
optimum, and (ii) computational cost is low.

This work is part of our effort to develop an
integrated hierarchy of robot maps. The different
levels of the hierarchy may comprise representa-
tions with different semantics, abstractions and
granularity. A key advantage of this approach is
that it allows us to apply individual techniques
appropriate to a particular level of the hierarchy,
and thus to integrate disparate techniques for
mobile robot navigation. One next step will be to
use the generated global gridmap to derive higher
level information, e.g., by applying the techniques
for extracting morphological and semantic infor-



mation concerning the structure of the space in-
troduced in (Fabrizi and Saffiotti, 2000). So far,
we have concentrated on integrating the layers in
the hierarchy from the “bottom up”; future work
will also investigate techniques for enhancing the
functionality of the lower level navigation algo-
rithms using higher level information.
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Fig. 3. The environment.
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Fig. 4. The self-acquired topological map, showing coordinates before and after relaxation.

Fig. 5. The global gridmap.



