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Abstract

We address the problem of building environment
maps from ultrasonic range data obtained from multi-
ple viewpoints. We present a novel environment mod-
elling technique called the ‘response grid’ that allows
us to build occupancy maps in highly specular envi-
ronments. We present two different approaches that
utilise this technique: a Bayesian probabilisitic ap-
proach and a Dempster-Shafer evidential reasoning ap-
proach. Both approaches can be implemented in real-
time with modest computational resources, and as such
are suitable for use in mobile robot navigation tasks.
We present and compare the experimental results ob-
tained by these methods in a highly specular indoor
environment.

1 Introduction

Building environment maps from sensory data is an im-
portant aspect of mobile robot navigation, particularly
for those applications in which robots must function in
unstructured environments. Ultrasonic range sensors
are, superficially, an attractive sensor modality to use
in building such maps, due mainly to their low cost,
high speed and simple output. Unfortunately, these
sensors have a number of properties that make map
building a non-trivial process. In particular, standard
sensors have very poor angular resolution and can gen-
erate misleading range values in specular environments.
The first of these problems can be largely overcome
by combining range measurements from multiple view-
points. Elfes [1] and Moravec [2] describe an approach
in which range measurements from multiple viewpoints
are combined in a two-dimensional ‘occupancy grid’.
Each cell in the grid is assigned a value indicating the
probability that the cell is occupied. Unfortunately,

the occupancy grid approach does not work well in
specular environments. Specular reflection may occur
whenever an ultrasonic pulse encounters a smooth ex-
tended surface [3]. In such cases the pulse may not
be reflected back to the ultrasonic sensor; in effect,
the surface may appear to be invisible. In ordinary
office environments which contain smooth walls and
glass doors specular reflection is common. In this pa-
per, we improve on earlier grid-based approaches by
introducing the concept of a ‘response grid’. The in-
tent of the response grid framework is to produce an
approach which has the advantages of the occupancy
grid framework, but also performs well in specular en-
vironments.

The response grid framework attempts to model the
behaviour of ultrasonic range sensors in a more physi-
cally realistic fashion. A number of other authors have
considered the physical behaviour of such sensors in
some detail [4, 5, 6]; in this paper, however, we are only
conerned with physical behaviour insofar as it allows us
to generate two dimensional occupancy maps in spec-
ular environments. The basic notion encapsulated by
the response grid is that a cell may generate a response
(i-e. appear to be occupied) when viewed from one di-
rection, but will not generate a response when viewed
from another. In the original occupancy map frame-
work, this would present a contradiction, since this ap-
proach assumes that an occupied cell should generate
responses in every direction.

In this paper, we present two different methods for
generating occupancy maps from ultrasonic range data
within the response grid framework. The difference be-
tween the two methods lies in the different techniques
they use to combine data obtained from multiple view-
points. We present and compare a Bayesian probabilis-
tic reasoning approach with a Dempster-Shafer eviden-
tial reasoning approach. The Bayesian approach can be
viewed, to some extent, as a generalisation of the ap-
proaches described by Elfes [1] and by Moravec [2]. In



Section 3 we compare the experimental results for each
method and consider their relative advantages. Note
that both methods can be implemented in real-time
with modest computational resources, which makes
them well suited to mobile robot navigation tasks.

2 Framework

2.1 The Response Grid

We model the environment as a set of cells arranged in
a regular two-dimensional grid. A given cell in the grid
may either be entirely empty, or else it may contain
one or more surfaces which reflect ultrasonic pulses. A
pulse entering a cell will do one of three things:

o If the cell is entirely empty, the pulse will pass
through the cell unaffected.

e If the cell contains one or more reflective surfaces,
the pulse may be reflected back to the ultrasonic
detector.

o If the cell contains one or more reflective surfaces,
the pulse may be reflected away from the ultra-
sonic detector.

The behaviour of a pulse reflecting off a surface con-
tained in the cell will depend upon the orientation of
the surface and the direction of the incoming pulse. If
a pulse which is propagating in some given direction is
reflected back to the detector, the cell is said to have
a response in that direction. In this paper, we deter-
mine the occupancy of each cell by assuming that any
cell that generates a response in one or more directions
must contain at least one surface and is therefore oc-
cupied.

The model described above can be expressed math-
ematically as follows. The occupancy of a cell at loca-
tion (z,y) is measured by the state variable Occ which
can have one of two values:

1)

The response of a cell in some direction ¢ is measured
by the state variable Res:

Occ(z, y) = [occupied, unoccupied).

2)

The direction ¢ is allowed to take discrete values be-
tween 1 and n. The two state variables are bound
together by a logical implication. In order to express
this clearly, we define a set of propositions:

Res(z,y, ¢) = [response, no response].

O : Occ(z,y) = occupied

Ry 3)

Res(z,y, ¢) = response.

That is, the proposition O states that the cell at (x,y)
is occupied and the proposition Ry states that the cell
at (z,y) generates a response in direction ¢. We can
therefore write the implication:

O<RiVRy---VR,_1VR,. (4)
In this paper we present two methods for using ultra-
sonic range data to determine the response properties
of each cell, and thence to determine occupancy.

2.2 Method 1: Bayesian

The objective of the Bayesian method is to determine,
for each cell, the probability that the cell is occupied.
That is, for a cell at (z,y) we wish to determine the
probability that the proposition O is true. Rather than
attempting to calculate this probability directly from
range data, we compute it indirectly. Since O is re-
lated to the cell responses by the logical implication
expressed in Equation 4, the probability that the cell
is occupied must be given by:

p(O) = p(Rl VRy---VR, 1V Rn) (5)
To expand the right hand side of this equation, we
make use of the observation that for two independent
propositions A and B, the probability of either A or B
being true is given by [7]

p(AV B) = p(A) + p(B) — p(A)p(B). (6)

Applying this to the above equation, one obtains after
a little algebra:

p(0) =111 = p(Ryp))- (M)

This expression can be used to compute the probabil-
ity that a cell is occupied once we have determined
the cell response probabilities. Note that this involves
the determination of n separate probabilities, since
{Ry--- Ry} is a set of independent propositions.

Consider now just one proposition Ry corresponding
to the response in direction ¢. We can apply Bayes’
rule to determine the probability that R4 is true, given
a range measurement r:

p(r | Ry)p(Rs)

p(Ry | 1) = o)

- (8)
In this expression p(Rg) is the prior probability of ob-
taining a response. In Bayesian approaches it is very
common to set the prior probability to 0.5 to indicate
no opinion. In this case we demand that p(O) = 0.5,
which implies that the prior probabilities for p(Ry) are
given by: )
P(Rg) =1 - (0.5)%. (9)



The other important term in Equation 8 is the sen-
sor model p(r | Ry). The sensor model indicates the
probability of obtaining the measurement r, given that
the proposition Ry is true. Let s be the distance be-
tween the cell and the sensor; the sensor model we use
is:

005 ifs<r
p(r|Ry) =< 05 ifs>r (10)
afr ifs=r

The first two parts of this model are self-explanatory,
but the third requires some explanation. When the
sensor records a range r we know that something at
this range has generated a response. Due to the finite
angular resolution of the detector, however, there may
be a number of cells that could have generated this
response. In general, the number of such cells will be
proportional to the measured range, so the probability
that any individual cell generated the response is in-
versely proportional to the measured range. In effect,
we give more weight to short range measurements than
to long range measurements. This rule is both phys-
ically plausible and intuitively appealing. The « that
appears in the above rule is a normalisation constant:
summing over the probabilities assigned to each cell at
range r should yield a total probability of 1. The value
of a is determined by the spatial dimensions of the cells
making up the map and by the angular resolution of
the ultrasonic sensor.

The model we use ignores statistical errors associ-
ated with the range value itself; that is, our model
is ideal. We justify this simplification by noting that
for common types of ultrasonic sensors such errors are
of the order of one or two centimetres. In practi-
cal applications, such as mobile robotics, these errors
are insignificant compared to errors arising from other
sources, such as robot (mis)localisation.

2.3 Method 2: Dempster-Shafer

The Dempster-Shafer Theory of Evidence [8] can be ap-
plied to our problem in a straight-forward fashion. The
objective is to determine the support for the proposition
O. From the logical implication expressed in Equation
4, we can write the following:

Sup(O) = Sup(R; VRy---V R,_1 V Ry). (11)

To expand the right hand side of this equation, we use
the Dempster-Shafer analogue of Equation 7 . Given
two independent propositions A and B, the support for
the combined proposition A V B is given by [9]:

Sup(AVB) = Sup(A)+Sup(B)—Sup(A4)Sup(B). (12)
Applying this to the expression above, one obtains:

Sup(0) =1 —-1I4(1 — Sup(Ry)), (13)

which allows us to calculate the support for the propo-
sition that a cell is occupied, once we have determined
the support for each of the propositions {R;y - -- R, }.

Consider now just one possible response direction.
In order to determine the support for the proposition
that the cell responds in this direction, the Dempster-
Shafer approach requires that we construct a relevant
frame of discernment, which is a set which contains all
the propositions of interest. In our case, the frame of
discernment contains just two propositions: that the
cell responds, or that it does not:

0 = {Ry, "Ry} (14)
In general, support for these propositions cannot be de-
termined directly from the available evidence. Instead,
support is computed indirectly via the mass distribu-
tion. The mass distribution allows us to allocate a
‘weight’ to any element in the frame of discernment,
or to any proper subset of the frame of discernment.
Thus in our application, the mass distribution can as-
sign weight to any element in the set:
20 = {R¢, —|R¢, R¢ \Y —|R¢}. (15)
The weight assigned to an element in this set indicates
the amount of evidence that supports that element di-
rectly. Support for propositions in the frame of dis-
cernment can be calculated according to the rule:

Sup(4) = > m(B).

ACB

(16)

Thus the support for the proposition Ry is trivially
equal to m(Rg4). The mass distribution is somewhat
similar to a probability distribution in that it must
be non-negative and must sum to one. Consider the
following mass distribution:

m(Rg) = 0
m(—|R¢,) = 0
m(RyV-Ry) = L (1

For brevity we write this as (0,0,1). This distribu-
tion corresponds to complete ignorance, since it will
yield no support for either Ry or its negation. Con-
trast this with the distribution (1,0, 0), which indicates
complete support for R4 and no support for its nega-
tion; and with (0.5,0.5,0), which indicates a contradic-
tion - there is equal support for Ry and its negation.
One of the attractive features of the Dempster-Shafer
approach is the way in which the ignorance and con-
tradiction are clearly distinguished; this is not true of
the Bayesian approach.

In our problem, every new measurement arriving
from the ultrasonic sensor is treated as a new piece
of evidence for which we must generate a mass dis-
tribution. These separate distributions must then be



combined to generate a collective opinion. If m(- | rq)
and m(- | r2) represent mass distributions arising from
independent measurements, the combined mass distri-
bution m(- | r1,r2) is given by Dempster’s rule [8]:

1
m(C | r1,m2) = 1-x Z m(A | r1)m(B | r3),
ANB=C
(18)
where « is defined as
k=3 mAlr)mB|r),  19)

ANB=0

and A, B and C are elements of the set {Ry, " Rg, Ry V
—Ry}. Inspecting the above equation, one can see that
when a contradiction exists (for example when there
is support for both a proposition and its negation), &
will be non-zero. As a result & is usually interpreted as
indicating the degree of contradiction between the two
mass distributions. Dempster’s rule can be thought of
as Dempster-Shafer equivalent of Bayes’ rule.

The rule we use for generating mass distributions
from range measurements is analogous to the sensor
model used in the Bayesian case. Let m(- | r) be the
mass distribution resulting from the measurement r;
let s be the distance between the cell and the sensor;
the sensor model we use is:

(0,0.95,0.05)  ifs<r
m(-|r)=< (0,0,1) ifs>r (20)
(afr,0,1—afr) ifs=r

The reasoning used to arrive at this model is identi-
cal to that used in the Bayesian case. We note only
that the initial, or prior, mass distribution we use cor-
responds to complete ignorance — (0,0, 1).

3 Implementation and Experi-
mental Results

The implementation of the two methods described in
the preceeding sections is remarkably similar. The map
is represented by a two-dimensional array, with each
cell corresponding to a region of the environment. Each
cell has associated with it a value which represents the
cell’s occupancy, and an array of values representing
the cell’s responses. The meaning of these values will
depend upon the method being used. When a mea-
surement is taken, the first step is to determine which
of the cells in the array should be updated to reflect
this measurement. If we imagine that the pulse emitted
by the ultrasonic sensor propagates outward through a
conical region of space, then only the cells correspond-
ing to this region of space should be updated. For the
Polaroid sensors used in our experiments, this will be

all cells within about +10° of the center line of the sen-
sor. Furthermore, for each of the candidate cells, only
one of the responses needs to be updated — that corre-
sponding to the direction of the emitted pulse. Once
this determination has been made, the appropriate cell
response can be updated and the overall cell occupancy
recomputed.

The results presented in this section where obtained
using a small mobile robot with a single Texas Instra-
ments/Polaroid ultrasonic range-finder attached to a
pivoting head. The sensor has an unobstructed view
and can rotate through 360° in 7.5° increments. Con-
sequently, 48 range readings are generated by each
‘sweep’ of the pivoting sensor head. The experiments
where conducted in a relatively complex environment
containing a number of boxes, a hatstand and a chair.
The robot travels in a more-or-less straight line be-
tween the obstacles, taking range readings as it goes.
The results shown in this section include readings from
about 30 complete sweeps of the sensor head, about
1440 individual readings. The robot’s location is de-
termined by simple odometry. The robot has an on-
board 486 processor which is fast enought to generate
maps in real time (i.e. it can incorporate new range
measurements at the rate at which they are acquired).

Figure 1 shows the maps produced for varying val-
ues of n (i.e. varying numbers of response directions).
Each cell represents a region 4 centimetres square. In
these maps, cells which are probably occupied (or for
which we have strong support) appear darker than cells
which are probably unoccupied. The dotted line shows
the path of the robot.

Consider first the n = 8 result. The Bayesian
and Dempster-Shafer maps are quite similar (not-
withstanding the fact that in the Bayesian map, ‘un-
known’ cells appear as gray, whereas in the Dempster-
Shafer map they appear white). These maps clearly
show the various boxes, the hatstand and the chair in
the test environment. A surprising feature of these
maps is that multiple reflections have not manifested
themselves as spurious features. Looking next at the
n = 4 and n = 1 results, it can be seen that there is
a sharp decrease in the quality of the maps as n be-
comes small. Note particularly the n = 1 case, where
we are effectively ignoring the response behaviour and
attempting to compute cell occupancy directly (the
Bayesian n = 1 case corresponds to the method de-
scribed by Elfes [1]). The reason for this fall off is
simple — the evidence obtained from multiple measure-
ments may be contradictory when n is small. In the
extreme case, n = 1, the entire approach collapses.
At the other extreme, increasing the value of n much
beyond 8 leads to a decrease in the quality of the re-
sults. When n becomes large, the chances that two
measurements will fall into the same response ‘bin’ be-
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Figure 1: Occupancy maps.
n=1,48.

comes very small. Consequently, there is no combina-
tion of evidence occuring at this level. For our particu-
lar experimental configuration, the optimal value of n
is about 8.

4 Conclusion

The remarkable thing about the two methods pre-
sented in this paper is the similarity of the results they
produce, with the Bayesian method appearing some-
what faster and slightly more efficient in its use of
memory. The experimental results clearly demonstrate
the advantage of the response grid framework in highly
specular environments. We are also exploring some dy-
namic extensions which will make the response grid ap-
proach more suitable for use in changing environments.
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