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Abstract|The problem addressed in this paper is ob-

stacle detection in the context of mobile robot naviga-

tion using visual information. The goal is achieved by

analyzing successive pairs of time varying images ac-

quired with the TV camera mounted on the moving

robot. Assuming the robot is moving on a 
at ground,

any obstacle is identi�ed by any cluster of points not

coplanar with the largest number of points lying on the

ground plane.

We identify a planar surface by a set of points char-

acterized by the projective invariance of the cross ratio

of any �ve points.

Our method recovers a planar surface by clustering

high variance interest points characterized by invariance

of cross ratio measurements in two di�erently projected

images.

Once interest points are extracted from each im-

age, the clustering process requires grouping of corre-

sponding points preserving cross ratio measurements.

We solve this twofold problem of �nding correspondent

points and grouping the coplanar ones through a global

optimization approach based on classical nonlinear re-

laxation labeling technique imposing cross ratio invari-

ance as constraint.

I. Introduction

An essential ability of an autonomous robot moving

in an unknown environment on a ground plane is to

detect the presence of obstacles in order to determine

the free moving space.

A lot of existing systems accomplish this goal by

using range information obtained from active sensors

such as laser scanners, radars, and ultrasonics. Actu-

ally, vision-based solutions, although requiring much

computational power, can provide much higher resolu-

tion than sonars.

The problem addressed in this paper is vision-based

obstacle detection for an indoor mobile robot equipped

with a single camera.

Vision-based approaches detect the obstacles or the

free areas in the scene from a reconstructed model of

the 3D space in front of the vehicle. Building of 3D

structures can be performed through 3D Euclidean ap-

proaches, involving directly 3D primitives to recover

3D structures in 3D space, or 2D non-Euclidean ap-

proaches working on the projection in the image plane

of the 3D structures. Due to the di�culties of com-

puting reliable 3D primitives, the second class of ap-

proaches is more reliable. Classically, the problem

of 3D reconstruction from 2D projections has been

treated by computing the distance (depth) from the

camera optical center to points in the world from their

correspondences in a sequence of images using camera

parameters. Actually, individual depth estimates are

noisy and sparse, producing a few qualitative informa-

tion useful for scene analysis, moreover this class of

approaches require the vehicle motion or camera pa-

rameters to be known a priori, or the vehicle speed to

remain constant.

Instead, the system we propose exploits the geomet-

ric properties of the scene and does not depend on the

knowledge of camera parameters or vehicle motion.

Assuming that the ground 
oor is 
at, the camera

observes a planar surface in motion as the robot moves

in the workspace. Floor obstacles are detected as de-

viations from planarity of the ground plane.

The work reported here is based on the analysis of

pairs of successive images acquired by a TV camera

mounted on a mobile vehicle. By imposing to the opti-

cal axis of the TV camera to intersect the ground plane

while the vehicle is moving, the goal is to detect all ob-

stacles lying on the ground plane as the surfaces which

result not-coplanar with the largest observed planar

region, i.e. the ground plane.

Our navigational problem does not require the pre-

cise knowledge of the 3D position of points in the scene,

but only a qualitative and compact description of the

environment.

Recent work focuses on the extraction of information

from the images without using the calibration param-

eters, but only using results of projective geometry.

Our idea is to recognize 
oor-obstacles as the 3D

structures projected in image plane regions easily de-

tectable using some projective invariant constraints. In

particular our aim is to use projective invariants to re-

cover the planar structure of the ground plane, then

any region not satisfying the imposed constraints is

considered the image projection of 
oor-obstacles.

The simplest numerical property of a planar object

that is unchanged under projection to an image is

the cross ratio of �ve coplanar points. The geomet-

ric invariance of cross-ratio of �ve coplanar points has

been just used in literature as constraint in tracking

algorithms, planar region detection or object recogni-

tion but using probabilistic analysis [3], [13], [14], [4],

[5], [7], [10]. In order to overcome the problems de-
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rived from the use of probabilistic decision rules ([9],

[6]) we consider the projective invariance constraints

into a global optimization process performing at same

time matching and grouping of coplanar high interest

feature points extracted from the analyzing images.

By considering a large number of intersecting sub-

sets of �ve points, obtained as combinations of avail-

able sparse features, the clustering problem is solved

by searching for a solution in the space of all poten-

tial matches by imposing to satisfy the �ve-order con-

straint of cross ratio. Imposing the cross ratio invari-

ance to be globally satis�ed spares us to deciding about

local measurements of cross-ratio, giving rise to a more

robust approach.

Using graph theory, our clustering problem is equiva-

lent to �nd the maximum clique (i.e. the largest subset

of nodes mutually compatible) of an association graph

whose nodes represent the potential feature matches

and the 5-order links are weighted by cross ratio simi-

larity. In literature maximum clique �nding algorithms

are essentially implemented as recursive graph search

methods which are known to be NP-complete prob-

lems and of an exponential growth in computing time

as the number of association graph nodes increases.

On the other hand optimization techniques (hop�eld

neural networks [8], relaxation labeling [15]) have been

resulted more reliable converging in polynomial times

to an optimal solution. Actually, it has been shown

([2]) as an optimal solution to the general problem of

maximum clique �nding (i.e. �nding the largest max-

imal clique) can be achieved through a simple version

of the original relaxation labeling model of Rosenfeld,

Hummel, Zucker.

We extend the classical relaxation labeling approach

(based on binary compatibility matrices) to treat with

compatibility matrices of order �ve (with coe�cients

determined through cross ratio similarity measure-

ments) and apply it to our context of planarity de-

tection by clustering of coplanar features. Since in our

context we are not interested to an exact 3D recon-

struction but only to a raw approximation of the sur-

rounding environment with large planar surfaces, an

optimization approach, as the non-linear relaxation la-

beling, is su�cient.

Summarizing, in our method, the high interest fea-

tures, extracted using the Moravec's interest operator

[11] from each frame of the sequence, are organized

into appropriate relational graphs as nodes connected

by 5-order links weighted by cross-ratio measurements

(section 2). A planar region is represented by a set of

totally connected nodes of the corresponding associa-

tion graph and is determined through an optimization

approach based on a non-linear relaxation labeling pro-

cess (section 3). All feature points which results not

coplanar with the largest recovered cluster (represent-

ing the ground plane) are considered as obstacles. The

method performs at same time matching of features

and clustering (section 4) based on coplanarity. In our

experimental tests (section 5), we found our method to

be very fast in converging to a correct solution, showing

as despite common assumptions, higher order interac-

tions help to speed-up the process.

II. Cross-Ratio Invariance

Clustering of coplanar features proposed in this pa-

per is based on projective invariance of cross ratio of

�ve arbitrary coplanar points. Our aim is to propose

a global optimization approach to grouping coplanar

features into clusters representing di�erent planes pre-

sented in the scene without any a priori knowledge

about the scene.

The cross-ratio is the simplest numerical property of

an object that is unchanged under projection to an

image. In the plane it is de�ned on four coplanar

lines (u1; u2; u3; u4), incident at a single point (pen-

cil of lines), in terms of the angles between them and

is given by:

cr(�13; �24; �23; �14) =
sin(�13) � sin(�24)

sin(�23) � sin(�14)
(1)

where �ij is the angle formed by the incident lines ui
and uj.

Any �ve coplanar point set X = (x1; x2; x3; x4; x5)

(not three of which collinear) will be characterized by

the invariance of cross-ratio cross(X) of the pencil of

coplanar lines generated by joining a point of X with

the other four.

Projective invariance of cross ratio imposes for each

subset of �ve coplanar points X in the �rst image the

corresponding points in the second image Y to have

the same cross ratio.

Actually in our context we are dealing with features

extracted from di�erent unknown planes: given �ve

arbitrary features, if the cross ratio is not preserved

we cannot decide if the features are on di�erent planes

or they have been mismatched. In fact, in most pre-

vious works, using cross ratio invariance, assumptions

about coplanarity or correctness of some matches are

a priori made.

Our idea is to solve this twofold problem by imposing

the cross ratio invariance constraint to be satis�ed on

a lot of combinations of available features. The goal

is to recovering large subsets of features all mutually

compatible (i.e. correctly matched and coplanar) by

imposing cross ratio invariance to be globally satis�ed.

Our problem is then reduced to a global constraint sat-

isfaction problem to be solved through an optimization

approach selecting sets of matches mutually compati-

ble, i.e. pairs of features correctly matched and copla-

nar.

III. High-Order Relaxation Labeling

Optimization

Relaxation labeling processes provide an e�cient op-

timization tool to solve di�cult constrained satisfac-

tion problems, making use of contextual information
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to solve local ambiguities and achieve global consis-

tency [2].

A general labeling problem involves a set of objects

to be labeled through a set of labels, using local mea-

surements of objects and contextual information re-

covered from knowledge of relations between objects.

This is quantitatively expressed by a compatibility co-

e�cient matrix.

In our context, the two frames of the sequence

to be matched are represented by two relational

graphs, characterized by nodes (fn1ig; fn2jg) repre-

senting the feature points extracted (fpig,fqjg) us-

ing the Moravec's interest operator and �ve-order

links (fL1i1i2i3i4i5g, fL2j1j2j3j4j5g) weighted by the

cross-ratio (CR1i1i2i3i4i5 = cross(pi1 ; pi2; pi3; pi4 ; pi5),

CR2j1j2j3j4j5 = cross(qj1 ; qj2; qj3; qj4; qj5)) evaluated

on the features associated to the �ve connecting nodes.

Optimal matches should be recovered through a

search on the association graph G = ffnhg; flhklmngg

consisting of nodes fnhg representing candidate

matches and �ve-order links flhklmngweighted by cross

ratio similarity (2).

Chklmn = e
�(jCR1h

i
k
i
l
i
m
i
n
i
�CR2h

j
k
j
l
j
m
j
n
j
j
2)

(2)

The goal is to select all matches mutually compatible

according to compatibility matrix C.

Theoretically, the association graph G should con-

sists of N � M nodes fnhg, representing candidate

matches f(phi ; qhj )g and
�
N�M

5

�
links weighted by

compatibility matrix values fChklmng. Actually, in

oder to reduce the number of links involved in the pro-

cess, we generate a node nh only if the corresponding

features phi and qhj have an high radiometric similar-

ity. The correct set of matches is found by an iterative

nonlinear relaxation labeling process. A relaxation la-

beling process takes as input an initial labeling (match-

ing) assignment and iteratively updates it considering

the compatibility model. In our problem, to each node

nh is assigned the initial labeling �h representing the

degree of con�dence of the hypothesis phi is matched

with qhj . The relaxation algorithm updates the label-

ing f�hg in accordance with the compatibility model,

by using a support function 
 (3) quantifying the de-

gree of agreement of the h-th match with the context.


h =
X

klmn

Chklmn�k�l�m�n (3)

The rule of adjustment of the labeling f�hg should

increases �h when 
h is high and decreases it when 
h
is low. This leads to the following updating rule:

�h = �h
h=
X

k

�k
k (4)

Iteratively all labeling of fnkg nodes are updated un-

til a stable state is reached. In the stable state all

fnhg nodes with non-null labeling �h will represent

optimal matches between coplanar features. In [2] it

has been shown that this algorithm posses a Liapunov

function. This amounts to stating that each relaxation

labeling iteration actually increases the labeling con-

sistency, and the algorithm eventually approaches the

nearest consistent solution. The solution is the largest

set of nodes mutually compatible according to com-

patibility matrix fChklmng, i.e. the maximum clique

identifying the largest planar face. In order to recover

all planar faces in which the available features can be

organized, we should repeat the relaxation process it-

eratively, as described in the next section.

IV. Clustering

In our context, each plane is characterized by a set of

assignment nodes totally connected as speci�ed by the

imposed projective invariant constraint of cross-ratio.

The goal is to determine all clusters of nodes mutually

compatible. In graph theory a set of nodes mutually

compatible is known as clique. A clique is called max-

imal if no strict superset of it is a clique. A maximum

clique is a clique having largest cardinality.

In [15] it is shown how the relaxation model of Rosen-

feld, Hummel and Zucker [1] above described is capable

of approximately solving the maximum clique problem.

Our problem is solved by recovering all maximal

cliques identifying all di�erent planes. The relaxation

labeling approach gives us an approximation of the

maximum clique: i.e. the largest set of features cor-

rectly matched and coplanar, this amounts to esti-

mate the planar surface for which a greatest number

of features have been extracted. Actually our goal is

to recovering as many subsets of mutually compatible

nodes as the large planar surfaces are observed in the

scene. This can be accomplished by applying itera-

tively the relaxation algorithm until all features have

been clustered. At each iteration, the current largest

subset of feature matches mutually compatible under

the cross ratio invariant constraint is identi�ed as the

maximum clique and it is pruned from the association

graph. When all maximal cliques have been identi�ed

the remaining graph nodes will represent mismatched

features or sparse isolated features.

We point out that the method, while �nding the

maximal cliques, recovers at same time all correct

matches.

Finally, in order to reduce the computational com-

plexity (of order
�
N
5

�
, if N is the number of involved

match nodes), for each cluster to be determined, in-

stead to apply the relaxation process for maximum

clique �nding to the whole set M of the N involved

matches, we consider m smallest subsets fM1; :::Mmg -

each of nmatches randomly selected fromM (n� N )-

so that Mi \Mj 6= ; and Mi � M (for i; j = 1; ::m)

and m
�
n

5

�
�
�
N

5

�
. The maximum clique of the whole

set M is generated by merging all maximum cliques

estimated from all smallest subsets fM1; :::Mmg.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. A synthetic time varying image sequence. The sim-
ulated scene is constituted of three orthogonal planes (one
horizontal (�), and two vertical (�,�) ). The simulated cam-
era motion is a forward translation along a direction par-
allel to � while the camera axis is rotated of an angle of
45deg with respect to the moving direction. (a)(b) are the
two analyzed consecutive images with superimposed the ex-
tracted features. (c) is the map of feature correspondences
as estimated by the radiometric similarity. (d)(e)(f) are the
recovered planes: �, � and �, respectively

The so clustered mutually compatible features are

pruned from M and the process is repeated on the

remaining.

V. Experimental Results

The �rst experiment reported in �gure (1) is about

the results obtained while testing our method in di�er-

ent complex contexts generated synthetically. The goal

was to measure the ability to cluster coplanar features

of planes apparently indistinguishable because of their

similar texture and approximatively similar distance

from the optical center of the TV camera. In fact, our

aim was to test our method in contexts where most

of common 
oor obstacle detection approaches (often

based on 
oor recognition or computation of depth dif-

ferences) fail.

In particular most of previous approaches detecting

obstacles by analyzing maps of feature correspondences

are based on the estimation of the Time To Collision

(TTC) from the estimated 2D or 3D velocities. Such

methods, assuming the linear approximation of the mo-

tion �eld, fail when the obstacle is tilted, or the dis-

tance from the camera optical center is large with re-

spect the focal length, or the obstacle is located in a

small portion of the acquired images.

In the experiments reported in �g.(2-3), we can ob-

serve as our method is able to detect the obstacles,

even in these di�cult contexts. Figures (2-3) report

some results obtained on real time-varying image se-

quences acquired in our laboratory by a TV camera

(6mm focal length) mounted on a Nomadic Scout mo-

bile vehicle. The vehicle was constrained to move

forward by following rectilinear paths along which dif-

ferent obstacles were located on the 
oor. The TV

camera was inclined so the optical axis intersects the


oor at a distance from the vehicle of approximatively

50cm. The two experiments here reported di�er each

other by the distance and orientation of the obstacle

with respect the optical axis. In �g.(2) the obstacle is

nearest the camera and the normal to its visible sur-

face is parallel to the direction of translation of the

vehicle. In this context the features on the obstacle

appear most near to the vehicle than the features on

the 
oor, as evidenced by their vector modules. On

the contrary, in �g.(3) the obstacle is farthest and its

surface is tilted, then no signi�cative di�erences can be

observed among the velocity vectors of the features of

the di�erent planar surfaces.

Though in the �rst case (�g.(2)) one can think to

solve the problem by means of simple calculations

based on 2D velocity measures, in the second case

(�g.(3)) such approach will fail.

Moreover, it is well known as the 3D velocities es-

timated on small regions far from the singular points

(i.e. the points where the motion �eld vanishes, then in

this context the point where the optical axis intersect

the image plane) cannot provide robust information

to perform a correct classi�cation of the 3D motion

of the vehicle. Consequently considering 3D velocity

to estimate (even qualitatively) the TTC of the vehi-

cle with respect to di�erent portions of the observed

scene is not an e�cient approach. This can be veri�ed

by observing the values of the 3D translational motion

parameters (TX ,TY ,TZ) (�g.(2.i)-(3.i)) of the vehicle

estimated (using the approach of [16]) along the three

orthogonal axis (X;Y; Z) by analyzing the feature cor-

respondence maps relative to the whole image (before

the optimization and after) and the di�erent recovered

planar surfaces. The motion of the vehicle is a forward

translation, however, because the camera is inclined so

its optical axis intersects the the 
oor, the 3D motion

should be described by only TY and TZ .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Tx Ty Tz

(c) -0.0142 0.0816 -0.0503

(d) -0.0147 0.0810 -0.0577

(g) -0.0243 0.1528 -0.0399

(h) -0.0073 0.0442 -0.0351
(i)

Fig. 2. (a)(b) two analyzed consecutive real images with su-
perimposed the extracted features. (c) the map of feature
correspondences as estimated by the radiometric similarity.
(d) the �nal map of optimal feature correspondences. (e)(f)
the two distinct clusters of features points representing re-
spectively the detected obstacle and the 
oor. (g)(h) the
two recovered clusters of feature correspondences. (i) the
estimated 3D velocities.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Tx Ty Tz

(c) -0.0048 0.0485 -0.0254

(d) -0.0048 0.0480 -0.0245

(g) -0.0140 0.0649 -0.0146

(h) -0.0045 0.0413 -0.0269
(i)

Fig. 3. (a)(b) two analyzed consecutive real images with su-
perimposed the extracted features. (c) the map of feature
correspondences as estimated by the radiometric similarity.
(d) the �nal map of optimal feature correspondences. (e)(f)
the two distinct clusters of features points representing re-
spectively the detected obstacle and the 
oor. (g)(h) the
two recovered clusters of feature correspondences. (i) the
estimated 3D velocities.
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VI. Conclusions

In this paper, an obstacle detection approach using

only some correspondences estimated among features

extracted from two successive time varying images ac-

quired while an autonomous vehicle is moving on a 
at

ground has been developed. If the camera optical axis

intersect the ground plane all obstacles are easily de-

tectable as the points non coplanar with the largest

set of coplanar feature points extracted on the ground

plane. The method don't require a priori knowledge

about vehicle motion and structure environment, or

coordinate transformations. Through an optimization

process the free space on the ground plane is detected

as the largest cluster of points which result coplanar

under the constraint of projective invariance of cross

ratio of �ve coplanar points.

As veri�ed through the above experimental tests,

with respect to classical obstacle detection approaches

based on TTC, our method provides most useful and

robust informations about the the location of the ob-

stacle, even at a largest distance where signi�cant

depth di�erences are not appreciated.

The required computational time still depends on

the number of extracted features and the cardinality

of subsets considered to estimate a maximum clique.

In our experiments, we �nd the minimum cardinality of

such small subsets fM1; :::Mmg is 15, and a maximum

of 30 iterations are necessary to relax (i.e. to reach

a stable state the relaxation algorithm) requiring 0.2-

0.3 seconds. Since in real contexts the number of large

surfaces to be recovered are no more than two or three,

the required computational time to perform the whole

process is of the order of 3-4 seconds at maximum.

We should observe that this time can be additionally

optimized since a lot of process are independent and

can be performed in parallel.

Moreover, if the goal is to obtain only the free space

on the ground plane, the process can be stopped when

the �rst largest cluster (i.e. the �rst maximum clique)

is detected, so allowing to performs all calculations in

real time.
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