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Abstract

Exploration and localization are two of the capabilities necessary for mobile robots to nav-
igate robustly in unknown environments. A robot needs to explore in order to learn the structure
of the world, and a robot needs to know its own location in order to make use of its acquired spa-
tial information. However, a problem arises with the integration of exploration and localization.
A robot needs to know its own location in order to add new information to its map, but a robot
may also need amap to determine its own location. We have addressed this problem with ARIEL,
a mobile robot system that combines frontier-based exploration with continuous localization.
ARIEL iscapable of exploring and mapping an unknown environment while maintaining an accu-
rate estimate of its position at all times. In this paper, we describe frontier-based exploration and
continuous localization, and we explain how ARIEL integrates these techniques. Then we show
results from experiments performed in the exploration of areal-world office hallway environment.
These results demonstrate that maps learned using exploration without localization suffer from
substantial dead reckoning errors, while maps learned by ARIEL avoid these errors and can be

used for reliable exploration and navigation.



1.0 Introduction

Exploration and localization are two of the fundamental capabilities required for mobile
robots to navigate robustly in unknown environments. A mobile robot needs to explore in order to
learn the spatial structure of the world, and to incorporate this structure into some form of map. A
mobile robot needs to localize itself within the world in order to make use of this map.

However, a problem arises with the integration of exploration and localization. The robot
needs to know its own location in order to add new information to the map, but the robot may also
need a map to determine its own location. Robots often use dead reckoning to estimate their posi-
tion without a map, but wheels dlip and internal linkages may beimprecise. These errors accumu-
late over time, and the robot’s position estimate becomes increasingly inaccurate. An alternative
would be to explicitly provide the robot with its own position using GPS or radio beacons. How-
ever, GPS is unreliable in indoor environments, and the use of beacons would require modifying
the environment in advance.

Thus, for a robot exploring an unknown environment, a key question is how to build a map
while simultaneously using that map to self-localize. We have addressed this question with
ARIEL (Autonomous Robot for Integrated Exploration and Localization). ARIEL combines
frontier-based exploration [12] with continuous localization [10] in a mobile robot system that is
capable of exploring and mapping an unknown environment while maintaining an accurate esti-
mate of its position at all times.

Many researchers have built robots that can navigate from one place to another, but few have
built robots that can learn the spatial structure of their environment. Many mobile robots are
either purely reactive and have no internal model of the world, or they rely upon a predefined

model provided by a human who has mapped the world in advance. Purely reactive robots may be



robust in avariety of environments, but they lack the ability to navigate to particular destinations,
and such an ability is often necessary for performing useful tasks. Robots that use predefined
maps are often quite effective within their particular environments, but they lack the ability to
adapt to new environments.

Researchers have approached the problem of spatial learning with two different broad catego-
ries of approaches. One approach isto use a spatial representation that explicitly models the spa-
tial structure within the world. Representations of this type include occupancy grids, topological
maps, and vector fields, among others. Another approach is to use a form of internal state that
implicitly models the world through the dynamics of the robot. Such an internal state could take
the form of neural networks, production system rules, fuzzy logic rules, or any other control sys-
tem that lacks an explicit map of the world.

We choose to have our robot explicitly model the world using occupancy grids. While a num-
ber of learning robots have been devel oped that do not use maps, these robots have been limited to
very simple environments, and often to alimited subset of possible destinations within those envi-
ronments. With an explicit map, a path planning algorithm, and a good low-level capability for
reactive obstacle avoidance, arobot can navigate to any accessible region represented by an occu-
pancy grid map. In addition, humans can look at the map and understand the representation. This
is useful to determine whether the robot has learned a good map of the world, and also to specify
destinations within the robot’s learned map.

Considerable work has been done in simulated exploration, but these simulations often view
the world as a set of floorplans. The blueprint view of atypical office building presents a structure
that seems simple and straightforward—rectangular offices, square conference rooms, straight

hallways, and right angles everywhere—but the reality is often quite different. A real mobile



robot may have to navigate through rooms cluttered with furniture, where walls may be hidden
behind desks and bookshelves.

A few researchers have implemented exploration systems using real robots. These robots
have performed well, but only within environments that satisfy certain restrictive assumptions.
For example, some systems are limited to environments that can be explored using wall-following
[8], while othersrequire that all wallsintersect at right angles and that these walls be unobstructed
and visible to the robot [11]. Some indoor environments meet these requirements, but many do
not.

We have developed an exploration strategy for the complex environments typically found in
real office buildings. Our approach is based on the detection of frontiers, regions on the border
between space known to be open and unexplored space. In this paper, we describe how to detect
frontiers in occupancy grids and how to use frontiers to guide exploration. We also describe a
method for continuously localizing the robot’s position by matching the robot’s recent perceptions
within the learned occupancy grids. Then we show how we integrated frontier-based exploration
with continuous localization in ARIEL. Next we provide results from experiments using a real
robot to explore a real-world office hallway environment. Finally, we explain how our work

relates to previous research in this area, and we summarize the results of our research.

2.0 Frontier-Based Exploration

The central question in exploration is. Given what you know about the world, where should
you move to gain as much new information as possible? Initially, you know nothing except what
you can see from where you're standing. You want to build a map that describes as much of the

world as possible, and you want to build this map as quickly as possible.



The central idea behind frontier-based exploration is: To gain the most new information about
the world, move to the boundary between open space and uncharted territory.

Frontiers are regions on the boundary between open space and unexplored space. When a
robot movesto afrontier, it can see into unexplored space and add the new information to its map.
As aresult, the mapped territory expands, pushing back the boundary between the known and the
unknown. By moving to successive frontiers, the robot can constantly increase its knowledge of
theworld. We call this strategy frontier-based exploration.

If arobot with a perfect map could navigate to a particular point in space, that point is consid-
ered accessible. All accessible space is contiguous, since a path must exist from the robot’s initial
position to every accessible point. Every such path will be at least partialy in mapped territory,
since the space around the robot’s initial location is mapped at the start. Every path that is par-
tially in unknown territory will cross afrontier. When the robot navigates to that frontier, it will
incorporate more of the space covered by the path into mapped territory. |If the robot does not
incorporate the entire path at one time, then anew frontier will always exist further along the path,
separating the known and unknown segments and providing a new destination for exploration.

In this way, arobot using frontier-based exploration will eventually explore all of the accessi-
ble space in the world, assuming perfect sensors and perfect motor control. The rea question is
how well frontier-based exploration will work using the noisy sensors and imperfect motor con-
trol of areal robot in the real world. Thisis one of the questions that this research is intended to

address.

2.1 Evidence Gridsand Laser-Limited Sonar

We use evidence grids [9] as our spatial representation. Evidence grids are Cartesian grids

containing cells, and each cell stores the probability that the corresponding region in space is



occupied. Initialy all of the cells are set to the prior probability of occupancy, which is a rough
estimate of the overall probability that any given location will be occupied. Evidence grids have
the advantage of being able to fuse information from different types of sensors.

We use sonar range sensors in combination with a planar laser rangefinder to build our robot’s
evidence grid maps. Sonar sensors are cheap and widely available, but specular reflections often
significantly degrade their accuracy. When a sonar pulse hits a flat surface at an oblique angle, it
may reflect away from the sensor. As a result, either the sensor detects nothing, or it senses
objects that, like reflections in amirror, appear to be much farther away than the nearest surface.

These reflections could cause difficulties for frontier-based exploration, not only due to inac-
curacies in the map, but also because specular reflections often appear as large open areas sur-
rounded by unknown territory. As a result, the robot could waste a great deal of time trying to
reach non-existent frontiers.

In order to reduce the effect of specular reflections, we have developed a technique we call
laser-limited sonar. This technique combines the advantages of sonar and laser range sensors.
Sonar sensors are effective at determining that large volumes of space are clear of obstacles, but
they suffer from specular reflections. Laser range sensors are effective at accurately determining
the positions of obstacles. However, the inexpensive, triangulation-based laser rangefinders com-
monly found on mobile robots are limited to detecting obstacles within a plane.

The standard evidence grid formulation assumes that each sensor reading is independent of
every other sensor reading. In reality, thisis not the case, and we take advantage of this. We use
a laser rangefinder in combination with the sonar sensors, and if the laser returns a range reading
less than the sonar reading, we update the evidence grid as if the sonar had returned the range

indicated by the laser, in addition to marking the cells actually returned by the laser as occupied.



As aresult, evidence grids constructed using laser-limited sonar have far fewer errors due to
specular reflections, but are still able to incorporate obstacles detected by the sonar below (or
above) the plane of the laser. It is possible that obstacles undetected by the laser may cause sonar
specular reflections which will be added to the map. However, in practice, we have found that
laser-limited sonar drastically reduces the number of uncorrected specular reflections from walls
and other large obstacles, which tend to be the major sources of errors in evidence grids built

using sonar.
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Figure 1: Comparison of evidence grids built using (a) raw sonar and (b) laser-limited sonar

Figure 1 compares the evidence grids constructed using raw sonar (Figure 1a) and laser-lim-
ited sonar (Figure 1b). Cells representing open space are represented by whitespace. Cellsrepre-
senting occupied space are represented by black circles. Cells representing unknown territory are

represented by small dots.



Both of these grids were built by arobot positioned in an alcove at one corner of alarge open
area. Thisopen areaisvisiblein thelower right portion of both grids. The grid constructed using
raw sonar includes three specular reflections from the adjacent walls. Using laser-limited sonar,
these reflections are eliminated.

With anarrow field-of-view laser rangefinder, such as the one currently mounted on our robot,
it is necessary to sweep the robot’s sensors to obtain a complete picture of the robot’s surround-
ings. With wide field-of-view laser rangefinders, such as the ones we plan to install on our robot
in the near future, the robot does not need to stop and sweep its sensors. Instead, laser-limited

sonar can be used to build evidence grids while the robot remains in motion.

2.2 Frontier Detection

After an evidence grid has been constructed, each cell inthe grid is classified by comparing its
occupancy probability to the initial (prior) probability assigned to all cells. Thisagorithm is not
particularly sensitive to the specific value of this prior probability. (A value of 0.5 wasused in all
of the experiments described in this paper.)

Each cell is placed into one of three classes:

open: occupancy probability < prior probability
unknown: occupancy probability = prior probability
occupied: occupancy probability > prior probability

A process anal ogous to edge detection and region extraction in computer vision is used to find
the boundaries between open space and unknown space. Any open cell adjacent to an unknown
cell islabeled a frontier edge cell. Adjacent edge cells are grouped into frontier regions. Any
frontier region above a certain minimum size (roughly the size of the robot) is considered a fron-

tier.
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Figure2: Frontier detection: (a) evidencegrid, (b) frontier edge
segments, (c) frontier regions
Figure 2a shows an evidence grid built by areal robot in ahallway adjacent to two open doors.
Figure 2b shows the frontier edge segments detected in the grid. Figure 2c shows the regions that
are larger than the minimum frontier size. The centroid of each region is marked by crosshairs.

Frontier 0 and frontier 1 correspond to open doorways, while frontier 2 is the unexplored hallway.

2.3 Navigating to Frontiers

Once frontiers have been detected within a particular evidence grid, the robot attempts to nav-
igate to the nearest accessible, unvisited frontier. The path planner uses a depth-first search on the
grid, starting at the robot's current cell and attempting to take the shortest obstacle-free path to the

cell containing the goal location.



While the robot moves toward its destination, reactive obstacle avoidance behaviors prevent
collisions with any obstacles not present while the evidence grid was constructed. These behav-
iors alow the robot to steer around these obstacles and, as long as the world has not changed too
drastically, return to follow its path to the destination.

When the robot reaches its destination, that location is added to the list of previously visited
frontiers. The robot performs a 360 degree sensor sweep using laser-limited sonar and adds the
new information to the evidence grid. Then the robot detects frontiers present in the updated grid
and attempts to navigate to the nearest accessible, unvisited frontier.

If the robot is unable to make progress toward its destination for a certain amount of time, then
the robot will determine that the destination in inaccessible, and its location will be added to the
list of inaccessible frontiers. The robot will then conduct another sensor sweep, update the evi-

dence grid, and attempt to navigate to the closest remaining accessible, unvisited frontier.

3.0 Continuous L ocalization

Without some way to correct for accumulated odometry error, the maps constructed during
exploration would become increasingly inaccurate. ARIEL uses continuous localization to com-
pensate for odometry error and maintain an accurate position estimate at all times.

Previous techniques for localization have looked at |earning and recognizing landmarks in the
environment, either as geometric representations or as a representation of sensor readings. Our
localization technique does not rely on the presence of specific landmarks, but instead uses the
entire local environment of the robot to determine its location.

An important issue in localization is how often to relocalize the robot in its environment.
Many existing techniques only relocalize when either an error in position is detected or after an

unacceptable amount of error has accumulated. In continuous localization, ARIEL continuously
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relocalizes by making regular small corrections instead of occasional large corrections. The ben-
efit isthat the error is known to be small, and fast correction techniques can be used.

Continuous localization builds short-term perception maps of its local environment. These
maps are of a short duration, and typically contain only very small amounts of positional or rota-
tional error. These short term maps are then used to position the robot within the global map viaa
registration process, the offset of which is used to correct the robot’s current odometry.

In the experiments described in this paper, continuous localization updates the robot’s position
estimate whenever the robot moves move than 24 inches from the position of its last update. In

addition, each degree of (cumulative) rotation istreated as equivalent to 0.03 inches of trandlation.
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Figure 3: Continuous localization

Figure 3 shows the process of continuous localization. The robot builds a series of short-term

perception maps of its immediate environment, each of which is of brief duration and typically
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contains only a small amount of dead reckoning error. After several time intervals, the oldest
(most “mature”) short-term map is used to position the robot within the long-term map viaareg-
istration process.

The registration process consists of sampling the possible poses within asmall area around the
robot’s current pose. For each tested pose, the mature short-term map is adjusted by the differ-
ence in pose (the offset) and a match score calculated based on agreement between the cell values
of the short-term map and the long-term map, summed across al cells. The match scores for all
tested poses are then treated as masses and the offsets as distances, and a center of mass calcula-
tion is performed to determine the offset that is likely to have the highest match score. This offset
is applied to the robot’s odometry, placing it at the pose which causes its local perceptions to best
match the long-term map. All subsequent robot processes use this new odometry. After theregis-
tration takes place the most mature map is discarded.

In this previous research with a fixed map [10], we have shown that continuous localization is
capable of eliminating accumulated odometry errors with a resulting constant translational error
on the order of five inches, or approximately the size of an evidence grid cell. Recent research has
also shown that by updating the global map using information from more recent short-term maps,
continuous localization can adapt to changing environments [4].

However, in our previous work, continuous localization relied upon an a priori map built by
manually positioning the robot at |ocations throughout the environment and sweeping the sensors.
In contrast, ARIEL uses frontier-based exploration to construct the long-term maps used by con-

tinuous localization.
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4.0 ARIEL: Autonomous Robot for Integrated Exploration and L ocalization

4.1 System Overview

Frontier-based exploration provides a way to explore and map an unknown environment,
given that arobot knowsits own location at all times. Continuous localization provides away for
arobot to maintain an accurate estimate of its own position, aslong as the environment is mapped
in advance. The question of how to combine exploration with localization raises a * chicken-and-
egg” problem: the robot needs to know its position in order to build a map, and the robot needs a
map in order to determine its position.

ARIEL is designed to address this problem. We assume that the robot starts with an accurate
initial position estimate, so localization only needs to correct for dead reckoning errors that accu-
mul ate while the robot moves through the world. However, these errors can accumulate quickly,
so it would not be feasible to map a large environment using dead reckoning alone.

The solution is to use the partial maps constructed by frontier-based exploration These maps
are incrementally extended whenever the robot arrives at a new frontier and sweeps its sensors.
Even though these maps are incompl ete, they describe the spatial structure of the robot’s immedi-
ate environment, including all of the territory between the robot’s current location and all of the
detected frontiers. These maps are passed to continuous localization to be used as long-term
maps.

Astherobot navigates to the next frontier, continuous localization constructs short-term maps
that represent the robot’s recent perceptions. If dead reckoning error starts to accumulate, these
short-term maps will deviate from the long-term map. The registration process will then correct

for this error by adjusting the robot’s position estimate.

13



When the robot arrives at the new frontier, its position estimate will be accurate. When fron-
tier-based exploration performs the next sensor sweep, the new information will be integrated at

the correct location within the map.
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Figure4: ARIEL system architecture

Figure 4 shows the system architecture for ARIEL. Frontier-based exploration and continu-
ouslocalization runin paralel. Both processes make use of information from the robot’s sensors,
but only frontier-based exploration sends commands to the robot’s motor control system. Fron-
tier-based exploration passes a new map to continuous localization every time the robot arrives at
a new frontier. Continuous localization corrects the robot’s dead reckoning transparently, so no
direct communication is necessary from localization to exploration.

Frontier-based exploration actively directs the robot’s sensing while continuous localization
passively collects sensor information that the robot acquires. Reactive obstacle avoidance (within

frontier-based exploration) makes use of all sixteen sonar and infrared sensors. The actual map-
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ping process makes use of only the single, laser-limited sonar sensor that is swept at frontiers to
obtain a complete picture.

Continuous localization uses data from the laser-limited sonar to build its short-term maps,
but only when this sensor is not being swept at frontiers. The reason for thisisthat the sensor data
collected at the frontier will immediately be introduced into the long-term map that is passed to
continuous localization. If identical data were also placed in the short-term map, it would cause

localization to undercorrect for future errors in dead reckoning.

4.2 Implementation

ARIEL is implemented on a Nomad 200 mobile robot is equipped with a planar laser
rangefinder, sixteen sonar sensors, and sixteen infrared sensors. Frontier-based exploration and
continuous localization run on separate Sparcstation 20s that communicate with each other over
an ethernet and with the robot over aradio ethernet. A Pentium processor onboard the robot han-
dles low-level sensor processing and motor control.

When using a narrow field-of-view laser rangefinder, such as the one on the Nomad 200, we
have found it useful to aim the sensor backwards as the robot navigates to the next frontier. This
allows continuous localization to observe previously-visited territory with the laser-limited sonar.
The advantage is that this territory is within the space already mapped by frontier-based explora-
tion in the long-term map. As a result, the short-term maps constructed by continuous localiza-
tion will have a large degree of overlap with the long-term map, and will provide more accurate
registration. If the laser-limited sonar is aimed forward, then as the robot moves to the new fron-
tier, this sensor will return information about space that has not been visited. Then the short-term
map will have less overlap with the long-term map, and the quality of the registration will be

reduced.
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Figure 5: Nomad 200 mobile robot

5.0 Experiments

5.1 Overview

In previous work [12], we have demonstrated that frontier-based exploration can successfully
map real-world office environments cluttered with a variety of obstacles: chairs, desks, tables,
bookcases, filing cabinets, sofas, water coolers, and boxes of varying size and shape. Inrelatively
small environments, such as a single office or laboratory, frontier-based exploration was capable
of mapping accurately without continuous localization. However, for larger environments, such
as those containing long hallways, large amounts of position error can accumulate within dead

reckoning, and localization is necessary for building accurate maps.
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For this reason, we have conducted a set of experiments in a hallway environment (70 feet
long). This hallway, like many of those in office buildings, is cluttered with obstacles. These
obstacles include a printer table that blocks half the width of the hallway, a set of open cabinets
containing electrical wiring, switchboxes mounted on the walls, various cardboard boxes, a water
fountain, and awater cooler.

In order to measure ARIEL's performance, we initially constructed a ground truth grid by
manually positioning the robot at viewpoints throughout the hallway and sweeping the robot’s
sensors. This ground truth grid is only used to score the grids learned by ARIEL. The ground

truth grid is not used by ARIEL for exploration or localization.

Figure 6: Ground truth evidence grid for hallway

Figure 6 shows the ground truth evidence grid for the hallway environment. Cells represent-
ing open space are represented by whitespace. Cells representing occupied space are represented
by black circles. Cells representing unknown territory (beyond the hallway walls) are represented
by small dots. The five Xs correspond to the robot’s starting locations for ARIEL’s exploration

trials.
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The four crosshairs on the map indicate reference points at the corners of the ends of the hall-
ways. Since dead reckoning error accumulates as the robot moves through the world, the points
explored last are likely to have the greatest amount of positional error. And since ARIEL always
moves to the closest unexplored frontier, one of the ends of the hallways is generally the last place
explored. By measuring the difference between the actual position of these hallway corners and
the position of these corners in ARIEL’s learned maps, the amount of positional error incorpo-
rated into the map can be estimated. 1n these experiments, the maximum error between a refer-
ence point and the corresponding feature on the learned grid is used as a bound on the positional
error introduced into the map. We refer to this metric as the reference point error for an evidence

grid.

5.2 Exploration Without L ocalization

Figure 7: Evidence grid learned without localization

Our first set of trials measured the performance of frontier-based exploration without continu-

ous localization. Five exploration trials were conducted, one from each of the starting locations
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marked on Figure 6. In three of these trials, frontier-based exploration directed the robot to
explore the hallway and build a map, but substantial amounts of position error accumulated during
each trial. Asaresult, sensor information was incorporated into the map at the wrong locations,
and the magnitude of this error increased over time.

Figure 7 shows a map learned by frontier-based exploration without localization. The robot
started at the position marked with the X. Initially, the robot explored the territory on the left side
of themap. Then it navigated back to explore the remaining frontiers on the right side of the map.
As the robot explored, position error constantly accumulated. As a result, the right half of the
map is considerably more distorted than the left. This grid has areference point error of 7.0 feet.

In two of the trials, the position error was sufficiently large to prevent further exploration. In
both of these cases, the robot started in the middle of the hallway, and explored one side of the
hallway first, while remembering the frontier location corresponding to the other side of the hall.
When the robot went back to explore the other side, the robot’s position error was so large that the
relative location of the frontier corresponded to a position behind the (real) hallway walls.

Frontier-based exploration without localization was successful at mapping the entire hallway
in 60% of thetrials. Inthe successful trials, the average reference point error for the learned maps

was 7.9 feet, and the average amount of time required to explore the hallway was 18.4 minutes.

5.3 Exploration With L ocalization

Our second set of trials measured ARIEL’s performance using frontier-based exploration in
combination with continuous localization. We used the same hallway environment, the same
starting points for the robot, and the same ground truth evidence grid. Frontier-based exploration
again directed the robot to explore the environment, but continuous localization also regularly

updated the robot’s position estimate as the robot explored. Starting from the same five initia
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positions shown in Figure 6, ARIEL was able to build a complete map of the environment in all

fivetrials.

Figure 8. Evidence grid learned using exploration with localization

Figure 8 shows the evidence grid learned using localization starting from the position marked
with the X (the same initial position asin Figure 7). Inthistrial, the robot first explored territory
on the right side of the map. Then it navigated back to explore the remaining frontiers on the left
side of the map. As the robot explored, continuous localization maintained an accurate position
estimate, so the entire environment is mapped correctly. This grid has a reference point error of
only 0.4 feet, which is equal to the width of asingle grid cell.

ARIEL was successful at mapping the entire hallway in all of thetrials. The average reference
point error for the learned maps was 2.1 feet, or roughly one quarter of the error in the maps
learned without localization. ARIEL’s 100% success rate indicates that this accuracy is sufficient
to navigate robustly through this cluttered hallway environment. Reactive obstacle avoidance

allows the robot to deal with small errorsin the map.
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In contrast, exploration without localization had a 40% failure rate, despite having the same
capability for reactive obstacle avoidance. This indicates that the accuracy of the maps generated
without localization (7.9 foot average reference point error) was not sufficient for robust naviga-
tion in this environment.

The average amount of time required to explore the entire hallway was 20.7 minutes. Thisis
dlightly longer than the average time (18.4 minutes) required without localization, due to the time
required for frontier-based exploration to send its learned evidence grids to continuous localiza-
tion. However, since the localization process runs on a different processor than the exploration

system, the computation required for localization does not slow down the exploration process.

6.0 Related Work

Considerabl e research has been done in robot map-building, but most of this research has been
conducted in ssimulation [6] or with robots that passively observe the world as they are moved by
ahuman controller [3] [5]. However, afew systems for autonomous expl oration have been imple-
mented on real robots.

We previously developed a reactive/topological exploration system for ELDEN (Exploration
and Learning in Dynamic ENvironments) [14]. This system had the advantage of being able to
adapt its topological map to changes encountered in the environment. However, it also suffered
the limitations of a purely reactive exploration strategy, in terms of the size and complexity of the
environments that it could explore efficiently.

We also developed a system for place recognition and localization using evidence grids asso-
ciated with nodes in a topological/metric map [13]. This system had the advantage of being able
to localize from a completely unknown initial position. However, the localization process had the

disadvantage of being time-consuming. Using a Decstation 5100, this system required approxi-
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mately 45 seconds to localize within a map containing 20 different places (scaling linearly with
the number of places in the map), making this approach unsuitable for continuous localization.

Mataric [8] has developed Toto, arobot that combines reactive exploration, using wall-follow-
ing and obstacle-avoidance, with a simple topological path planner. The reactive nature of Toto’'s
exploration limits its ability to map environments where wall-following is insufficient to explore
the complex structure of the world.

Connell [1] has developed a simple exploration system to demonstrate his SSS architecture.
This system was limited to mapping hallways where doors and corridors intersect at 90 degree
angles.

Lee [7] has implemented Kuipers Spatial Semantic Hierarchy [6] on areal robot. However,
this approach also assumes that all walls are parallel or perpendicular to each other, and this sys-
tem has only been tested in a simple environment consisting of athree corridors constructed from
cardboard barriers.

Thrun and Blicken [11] have developed an exploration system that builds a spatial representa-
tion that combines evidence grids with a topological map. This system has been able to explore
the network of hallways within alarge building. While this approach works well within the hall-
way domain, it assumes that al walls are either parallel or perpendicular to each other, and that
they do not deviate more than 15 degrees from these orientations. An implicit assumption is that
walls are observable and not obstructed by obstacles. These assumptions make this approach
unsuitable for rooms cluttered with obstacles that may be in arbitrary orientations.

Duckett and Nehmzow [2] have developed a maobile robot system that combines exploration
and localization. This system uses a simple reactive wall-following strategy for exploration. For

localization, this system uses a self-organizing neural network trained using ART. This network
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learns to classify regions in space based on input from infrared range sensors. Each of these
regions is associated with the corresponding robot position as determined by dead reckoning. By
looking at sensor inputs and motor commands over time, this system can reduce the amount of
perceptual aliasing that occurs. Since this system relies upon dead reckoning to determine the
robot’s position during exploration, any drift in dead reckoning during exploration will be incor-
porated into the map. This robot has only been tested in a small enclosed area (6 meters by 4
meters), so it is unclear whether this approach will scale to larger, more complex, environments.
ARIEL has a number of advantages over previous exploration systems. ARIEL can explore
efficiently by moving to the locations that are most likely to add new information to the map.
ARIEL can explore environments containing both open and cluttered space, where walls and
obstacles are in arbitrary orientations. Finally, ARIEL can maintain an accurate estimate of the

robot’s position even as it moves into unknown territory.

7.0 Conclusion

We have introduced ARIEL, a mobile robot system that combines frontier-based exploration
with continuous localization. ARIEL answers the question of how to learn a new map while
simultaneously using that map to self-localize.

Frontier-based exploration is based on the idea of navigating to frontiers, regions on the
boundary between space that is known to be open and unknown space. At each frontier, the robot
has a clear view into unknown territory. Frontier-based exploration incrementally extends the
map as it navigates to each successive frontier. Since this map always includes the territory
between the robot and the frontier, continuous localization is able to match the robot’s recent per-
ceptions against thismap. This match process all ows continuous localization to maintain an accu-

rate position estimate as the robot explores the world.
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We have conducted experiments in a cluttered hallway from a real-world office environment.
These experiments have demonstrated the problems with using dead reckoning for position esti-
mation during exploration. Maps generated using dead reckoning alone tend to contain substan-
tial errors, making them unsuitable for navigation. These experiments have also shown that by
integrating frontier-based exploration with continuous localization, ARIEL can explore an

unknown environment and build accurate maps that can be used for robust navigation.
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