Robust Mobile Robot Localisation from Sparse and Noisy Proximity Readings

Axel Großmann and Riccardo Poli
School of Computer Science
The University of Birmingham
Birmingham, B15 2TT, UK

Abstract

Most existing localisation methods for mobile robots make simplifying assumptions about the properties of the sensors. These methods therefore work well only when the inherent assumptions hold for the particular robot, its behaviour, and its environment. Many methods, for example, assume a large number of evenly spaced sensors, which render them useless in robots with very few sensors. In this paper, we present a robust position tracking method for a mobile robot with seven sonar sensors. Our method integrates a feature-based detection method with a dense-sensor matching technique by using the Hough transform for feature detection and a grid-based approach to update a distribution of position probabilities. First, we compute a two-dimensional feature space by applying a straight-line Hough transform to the sonar readings. Second, we perform template matching in the feature space by using the world map as reference pattern. Third, we use the correlation counts obtained in the previous step to update a position probability grid. We demonstrate that our detection method can avoid the common problems of feature detection in sonar data such as erroneous lines through separate clusters, corner inference, and line artifacts through reflection. In addition, the method is robust and computationally efficient.

1 Introduction

We are interested in building mobile robots that accomplish useful tasks without human intervention in real-world environments. In most applications, a mobile robot must be able to determine its position and orientation in the environment using its sensors. The problem of position determination, referred to as localisation problem, can be seen as a constituent part of the more general navigation problem, in which the mobile robot has to find a path to a specified goal position.

In the last ten years, a large number of approaches to robot localisation have been proposed. We can distinguish between (1) behaviour-based [Arkin, 1990], (2) landmark or feature-based [Leonard and Durrant-Whyte, 1992], and (3) dense sensor matching techniques [Gutmann et al., 1998]. Behavioural approaches use history information about the robot’s interaction with the environment. Feature-based methods rely on the detection of landmark features, such as corners and wall-segments. Markov localisation and scan matching form the third category. The majority of existing localisation methods are passive, that is, independent of the robot control. Recently, also active approaches to localisation have been proposed [Burgard et al., 1997a]. Active localisation methods are able to change the robot motion and the orientation of the sensors in order to increase the efficiency and the robustness of localisation.

The robot’s position and orientation, also referred to as pose, have to be determined from sensor data. Unfortunately, robot sensors are generally imperfect and provide only uncertain information. For example, the sensor readings generally contain noise. In addition, the readings can be ambiguous. That is, the environment may contain places which cannot be distinguished. We believe that for a localisation method to be reliable, it must use a representation capable of handling uncertain and ambiguous information. Among the possible forms of representation, we can distinguish between geometric representations, such as hypotheses about landmark features [Drumheller, 1987], and grid-based representations, such as position probability grids [Burgard et al., 1997b]. Both representations have interesting and useful features.

The localisation problem can be divided into two subproblems: (1) the estimation of the absolute position in the environment, usually referred to as absolute localisation, and (2) the tracking of the robot’s position relative to a given starting point, commonly referred to as position tracking. The aim of position tracking is to correct the accumulated dead-reckoning errors caused by the inherent inaccuracy of the information provided by the wheel position encoders.

The work reported in this paper was motivated by the need to build a position tracking system for the Pio-
Figure 1: The Pioneer 1 mobile robot.

eer 1, a mobile robot platform manufactured by Real World Interface. The Pioneer 1 is equipped with seven sonar sensors, one on each side and five forward facing (see Figure 1). In comparison to mobile robots that have a ring of sonars, the sensing capabilities of the Pioneer 1 are rather limited. In our experimental setup, the robot had to collect objects in an office-like environment. The pose of the robot was required as input to a learning algorithm which controlled the robot motors and the gripper [Großmann and Poli, 1998]. At first, we tried to use a Markov localisation method [Burgard et al., 1997b]. However, this approach failed. The robot became lost when the sonar sensor readings were sparse and noisy, for example, when the robot was moving diagonally through a corridor. In this situation, the walls of the corridor reflect the sonar beams and hardly any distance readings from the front sonars are correct.

In further investigations, we developed the new localisation method described in this paper that works reliably in our setup. The approach consists of three steps. First, we compute a two-dimensional feature space by applying a straight-line Hough transform [Leavers, 1992] to the sonar readings. Second, we perform template matching in the feature space by using the world map as reference pattern. Third, we use the correlation counts obtained in the previous step to update a position probability grid. This novel approach to localisation is unique in that it combines the detection of landmark features with a grid-based matching technique for sets of features.

The paper is organised as follows. In Section 2, we critically examine related localisation methods and discuss their strengths and weaknesses for the given application. In Section 3, we introduce the Hough transform and describe the problems occurring when it is used alone to detect walls, corners, and edges from sonar data. In Section 4, we explain how these problems can be avoided by matching features in the Hough space. The algorithm is summarised in Section 5. An experimental evaluation of the approach is given in Section 6. Finally, we draw some conclusions in Section 7.

2 Localisation using ultrasonic sensors

2.1 The problems of sonar sensing

In order to estimate the robot’s position reliably, we want a localisation method which exploits as many features of the environment as possible. Since only those features can be exploited that are visible to the robot’s sensors, the effectiveness of the position estimation depends very much on the interaction between sensors and environment.

In this paper, we are interested in using proximity information. The problem is that ultrasonic sensors do not measure proximity. Instead, they measure the time elapsed between emitting and receiving a focused sound impulse. For smooth objects, the reception of the sonar echo depends on the angle between the main sonar cone and the reflecting object. The sound waves that hit an object frontally are very likely to reflect back in the direction of the sonar sensor, whereas waves that hit an object at a small angle are likely to be reflected away in a direction where they cannot be detected. This situation is called total reflection. In other cases, the sound waves are not reflected directly back to the sensor, but will undergo multiple reflections before they are received. Those are usually referred to as specular reflections. Due to the effects above, only some of the sonar readings represent proximity. In addition, there is uncertainty on which part of the beam was actually reflected.

To overcome the effects of reflections and specularities, it is very common to use redundant readings. The most important sources of redundancy are alignment and mobility [Crowley, 1989]. The former refers to the fact that the readings which are due to specular reflection rarely align. We can therefore use points that are aligned for the detection of object surfaces. The latter refers to the possibility of taking sonar readings from different observation points. As the viewpoint changes, incorrect distance readings due to specular reflection project onto widely varying surfaces, while correct readings corresponding to an object surface project onto that surface. Therefore, if objects have smooth surfaces, in theory it is possible to identify incorrect distance readings. In practice, this is a very difficult task.

Ideally, we want to obtain distance information in all possible directions. This is possible if the robot is equipped with a ring of sonars or a single rotating sensor. In this respect, the capabilities of the Pioneer 1 mobile robot are rather limited. Its seven sonars are mounted at positions of $0, \pm 15, \pm 30$ and ± 90 degrees with respect to the pointing direction of the robot, each sensor having a beam width of about 25 degrees. The sonar readings are accumulated in three buffers, the front and two side buffers (left and right). The front buffer accumulates one reading each time one of the front sonars is fired, regardless of whether an echo is received or whether the robot has changed its position. The two side buffers accumulate sonar readings only when a side sonar actually receives an echo and the robot moves. The size of front buffer is 20 readings. The two side buffers contain 40 readings each.

As the view of the robot is restricted to the front and sides, visibility and appearance of features in the environment change with the orientation of the robot. Figure 2 demonstrates how the robot’s behaviour affects the visibility of walls. If the robot travels through a corridor along a straight line keeping a constant distance from
both sides, then the walls of the corridor are clearly visible in the sonar data. However, if the direction of movement is changed repeatedly, for example, when the robot is trying to pick up an object, then the perception of the walls degrades to a set of non-connected line segments. Considering this observation, there seem to be two alternatives: (1) the localisation method should not rely on the detection of individual landmark features, or (2) the localisation method should be able to deal with the uncertainty inherent in the detection of landmarks.

2.2 Dense sensor matching techniques

Recently, dense sensor methods have been proposed that do not rely on the recognition of landmarks. Instead, they attempt to use whatever sensor information is available. Examples of dense sensor methods are Markov localisation [Burgard et al., 1997b], which uses a probability distribution across a grid of robot poses, and scan matching [Gutmann et al., 1998], which uses Kalman filtering techniques based on matching sensor scans. In the following paragraph, we describe the method in [Burgard et al., 1997b] in more detail, both to illustrate the importance of each method’s assumptions in determining its reliability and to provide some background for our extension of this method presented in Section 4.3.

Burgard and colleagues [Burgard et al., 1997b] proposed a Markov localisation method that has been applied successfully in several real-world environments. The method is based on a probabilistic representation that can handle ambiguities and represent degree-of-belief. In particular, they use a position probability grid \(P \) to accumulate in each cell of the grid the probability \(p(L) \) that this cell refers to the current pose, \(L \), of the robot. The grid \(P \) is updated according to Bayes’ formula. Suppose \(p(L) \) is the prior probability that \(L \) is the current pose of the robot. Then the (posterior) probability of \(L \) referring to the current pose given the new sensor reading, \(s \), is defined as:

\[
p(L|s) = \frac{p(s|L) \ p(L)}{\sum_{L' \in P} p(s|L') \ p(L')}
\]

This equation is used as an update rule when only an individual sensor reading is available. However, the robot receives a set of readings, \((s_1, \ldots, s_n) \), each time step. That is:

\[
p(L|s_1 \ldots s_n) = \frac{p(s_1 \ldots s_n|L) \ p(L)}{\sum_{L' \in P} p(s_1 \ldots s_n|L') \ p(L')}
\]

Assuming that the readings \((s_1, \ldots, s_n) \) are statistically independent, the total probability of a set of measurements can be computed as:

\[
p(s_1 \ldots s_n|L) = \prod_{i=1}^{n} p(s_i|L)
\]

and we can write the update formula as:

\[
p(L|s_1 \ldots s_n) = \frac{p(s_1|L) \ldots p(s_n|L) \ p(L)}{\sum_{L' \in P} p(s_1|L') \ldots p(s_n|L') \ p(L')}
\]

The independence assumption above is probably justified for a mobile robot equipped with a ring of 24 sonars as the one used by Burgard and colleagues. For such a robot, we can assume that the measurements provided by the front sonars are statistically independent of the ones from the backward-pointing sonars. However, this assumption is incorrect for the Pioneer 1 robot. Indeed,
we re-implemented the position tracking approach by Burgard and colleagues [Burgard et al., 1997b] and found that the robot was likely to lose track of its position in situations similar to the one in Figure 2(b), when the sonar readings were sparse and noisy.

2.3 Feature-based localisation techniques

In our application, we do not want to rely on active control to overcome the problems caused by the limited sensing abilities of the robot. Neither we want to use target tracking methods, which rely on complex, prior information about the environment such as the surface reflectance and geometry of the objects. Instead, we focus on landmark-based localisation techniques that correlate simply-shaped objects such as walls, corners, and edges in the sonar data against a given map of the environment. In this section, we briefly review previous research in this area.

Drumheller [Drumheller, 1987] proposed a feature-based localisation algorithm for mobile robots equipped with a sonar range-finder. He introduced the idea of sonar segments, which are straight-line segments extracted from the measurements obtained in a 360-degree sweep of the sonar range-finder. Moreover, he used a sonar barrier test, which eliminates implausible robot positions by exploiting the physical constraint that sonar beams do not penetrate solid objects. However, the algorithm is not able to exploit readings from different positions. Crowley [Crowley, 1989] and others proposed to use this redundant information to identify erroneous distance readings. In Crowley’s approach, a sonar segment is not formed unless three consecutive distance readings align with a certain tolerance.

To our knowledge, previously to our work no feature-based localisation algorithm that avoids the problem that a single wall is perceived only as set of non-contiguous segments has been reported in the literature.

3 Detecting walls and corners with the Hough transform

The Hough Transform (HT) is well known in computer vision as a shape detection method [Ballard, 1981; Leavers, 1992]. In general, its purpose is to detect parametric curves in sets of primitive feature points. It has the advantage of being relatively unaffected by gaps in curves and by noise. So it would appear that the Hough transform has the right features to be used for the detection of straight line-segments in sonar data.

3.1 The Hough transform

We consider the straight-line Hough transform. This maps straight lines in the input data to points in the HT space. Each point in the HT space has a strength measure associated with it. The strength of a point in the HT space is proportional to the length and width of the corresponding line in the input space.

A straight line in the two-dimensional x-y coordinate plane (input space) can be described by the equation

$$\rho = x \cos \theta + y \sin \theta$$

where ρ is the shortest distance between the origin and the line, and θ is the angle between the line normal and the positive x-axis (see Figure 3).

We assume the origin of the x-y coordinate system to be in the centre of the input space. We can limit the line angle θ to $0 \leq \theta < \pi$, if we allow negative values of ρ. In the (θ, ρ) parameter plane (HT space), the line is mapped to a single point. Given a particular point in the input space, there are infinitely many lines passing through this point. The parameters of all lines going through a point, (x_i, y_i), in the input space constitute a sinusoidal curve in the (θ, ρ) HT space, given by

$$x_i \cos \theta + y_i \sin \theta = \rho.$$

The implementation of the Hough transform is based on parameter discretisation. If the values of θ and ρ are discrete, we can form an accumulator array, $A(\theta, \rho)$, whose elements are initially zero. The parameter θ is quantised in values θ_k with $k = 1, \ldots, n$ such that $\theta_k - \theta_{k-1} = \Delta \theta$. The Hough transform of a feature point, (x_i, y_i) is performed by computing ρ from the equation above for all n values of θ_k. The values of ρ are then quantised in m discrete values ρ_k with $k = 1, \ldots, m$ such that $\rho_k - \rho_{k-1} = \Delta \rho$, and the corresponding cells $A(\theta_k, \rho_k)$ are incremented. This procedure is repeated for all feature points. Collinear feature points now show up as peaks in the accumulator array $A(\theta, \rho)$.

The Hough transform as described above can be applied to sonar sensing by using the two-dimensional distance readings as feature points. Recently, Yun and colleagues [Yun et al., 1998] found that one can use such a straightforward implementation to recognise wall-like features from noisy sonar data. However, the accuracy of detected features depends very much on the quantisation parameters $\Delta \theta$ and $\Delta \rho$. Yun and colleagues used a robot equipped with a ring of 16 sonars. In our experience, a similar approach does not work reliably on a robot with very few sensors.
3.2 Compensating the error caused by parameter quantisation

In contrast to Yun and colleagues [Yun et al., 1998], we believe that the errors due to the parameter quantisation need to be considered and corrected. The quantisation resolutions, $\Delta \theta$ and $\Delta \rho$, determine the mapping of input points to accumulator cells. This can be illustrated as follows. By quantising the values of ρ, the input space is divided completely into bar-shaped windows for constant values of θ (see Figure 3). The smaller $\Delta \rho$, which is the width of the windows, the fewer points are included in a line estimation. The quantisation resolutions specify the spread of the points which are allowed in forming a line. If the Hough transform is to be applied to sonar data, we cannot make the quantisation resolution arbitrarily small, since the input data is very noisy. Clearly, there is a trade-off between the accuracy in the position estimate and the reliability of the detection process.

The effect of the parameter quantisation on the Hough transform has been thoroughly studied in computer vision [Veen and Groen, 1981]. Straight-line features are identified by searching for local maxima in the accumulator array. The shape of the peaks is influenced by several factors, which include (1) the quantisation of the input space, (2) the θ-ρ parameterisation, and (3) the width of the line segments. Hence, those factors need to be considered in a method that locates the peaks in the HT space.

The input space is formed by the two-dimensional distance readings stored in the sonar buffers. As the sonar buffers keep track of previous readings, the distribution of the input points depends not only on the position of the sensors but also on the movements of the robot. There are situations in which the sonar readings form dense clusters. We need to ensure that the feature points are sampled at a suitable mutual distance on the line segment. Multiple readings obtained from the same sensor and same position would bias the detection process. Therefore, we quantise the input space by superimposing a squared grid on the x-y coordinate plane. If there is more than one sonar reading per grid field, only the first one is used as feature point for the Hough transform. The size of the cells, h, in this grid, is chosen so that $h \leq \Delta \rho$.

In general, a straight-line segment will not have a direction exactly identical to one of the values θ_k. That is, the line segment will cross several parallel windows with a direction θ_k. Hence, the peak in the HT space will be extended over several accumulator cells in the ρ-direction corresponding to those windows. To minimise the spread of the peak in ρ-direction, $\Delta \rho$ is chosen so that

$$\Delta \rho \geq l \sin \left(\frac{\Delta \theta}{2} \right)$$

for a given $\Delta \theta$ and a maximum length l of the line segments [Veen and Groen, 1981].

Up to this point, we have assumed that feature points lie exactly on line segments. However, this does not hold for sonar sensing because of the noise inherent in the sensors. We model the imprecision of the sonar measurements using the line width b. That is, we assume that the feature points lie exactly on a thick line rather than assuming that the line segment is infinitesimally thin.

A solution to the problems mentioned above is to filter the uncompensated accumulator values using a function of the values in a neighbourhood of each point. In the work described in this paper, we have used the error correction method proposed by van Veen and Groen [Veen and Groen, 1981]. All points of a line segment are taken into account in the peak searching step by summing the values in n_ρ cells in the ρ-direction for each θ_k value (moving average filtering) and looking for a maximum of this sum. Given the assumptions mentioned above, the maximum number of cells, n_ρ, of the peak in the ρ-direction is:

$$n_\rho = \left\lceil \frac{\sqrt{b^2 + l^2} \sin \left(\frac{\Delta \theta}{2} \arctan \frac{l}{b} \right)}{\Delta \rho} \right\rceil + 2$$

in which $\lceil \cdot \rceil$ means the largest integer smaller than \cdot.

3.3 Other sources of errors

In this section, we discuss problems that remain when the Hough transform is used to detect straight-line segments in sonar readings. In contrast to the effects of parameter quantisation discussed before, these problems are specific to the domain of sonar sensing.

Because of the noise inherent in the sonar data, sharp peaks rarely occur, rather all peaks are distorted and diffused. Therefore, we encounter situations in which there is uncertainty in the detection process. Instead of a single line segment, the Hough transform can identify a set of lines, each line having slightly different parameters.
An example is given in Figure 4(a). Although the error compensation method mentioned above can ease the problem by smoothing the accumulator array, multiple local maxima can still occur.

The Hough transform has the tendency to identify line segments with a maximum number of points, since the accumulator count is just the number of points in the line. Therefore, two dense clusters of feature points can give rise to a single erroneous line. As shown in Figure 4(b), a line is detected between any two clusters if these clusters combined contain more points than any other line in the neighbourhood.

Also, the line parameters obtained in the Hough transform can be biased. For example, corners tend to interfere with the parameter estimation. As shown in Figure 4(c), the points belonging to the perpendicular segment after the slope of the estimated line by pulling it to one side. This problem is particularly severe if we aim to detect small but straight line-segments.

As discussed in Section 2, sonar sensing is subject to reflections and specularities. Feature points due to multiple reflections can give rise to line segments for which there is no corresponding world segment (see Figure 4(d)). There is no straightforward way to detect these false peaks since the Hough transform ignores the relative position of lines. Peaks can be due to line segments in the input space that do not touch each other and that do not even lie near each other.

Considering these detection errors, in particular the occurrence of line artifacts due to reflection, we conclude that a localisation method based solely on the detection of single features such as wall-like segments cannot provide the reliability required. We overcome this problem by taking constraints about the position of the world segments into account. As described in the next section, this can done directly in the Hough space.

4 Matching in the Hough space

In the following, we assume that a map of the robot's environment is available and that this world map can be represented as a list of straight-line segments, \(W = \{ w_0, w_1, \ldots, w_n \} \). For each world segment \(w_i \), the start and end point is known. So, we can compute the corresponding set, \(\mathcal{R} \), of angle-radius parameters \((\theta, \rho)\) of all world segments. The idea is to match the sonar readings and the world map directly in the Hough space. As pointed out by Krishnapuram and Casasent [Krishnapuram and Casasent, 1987], similar objects have similar Hough transforms and different objects have different Hough transforms. So we can use \(\mathcal{R} \), the polar coordinates of the world map, as reference pattern and by trying several rotated and translated versions (templates) of this pattern, we can find the position where the reference pattern matches best the Hough transform of the current sonar readings. The templates can be computed from the reference pattern \(\mathcal{R} \) as follows.

4.1 Rotation and translation in the Hough space

Let \((\theta, \rho)\) be a point in the HT space corresponding to a line segment in the input space. If all the points in the input space are rotated by an angle \(\theta_0 \), it can be shown that the line segment would now map to a different point \((\theta', \rho')\) in the Hough space given by

\[
\rho' = \rho + d_\theta \quad \text{if} \quad 0 \leq \theta + \theta_0 \leq \pi
\]

\[
\rho' = -\rho + d_\theta \quad \text{if} \quad \theta + \theta_0 > \pi
\]

\[
\rho' = -\rho - \rho_\theta \quad \text{if} \quad \theta + \theta_0 < \pi
\]

It can also be shown that if all the points in the input space are translated by \((d_x, d_y)\), the point \((\theta, \rho)\) will now map to the point \((\theta', \rho')\) given by

\[
\rho' = \rho + t \cos(\theta - \alpha) \quad \text{and} \quad \theta' = \theta
\]

where \(t = \sqrt{d_x^2 + d_y^2} \) and \(\alpha = \arctan \frac{d_y}{d_x} \). These transformations are adapted from [Krishnapuram and Casasent, 1987].

4.2 Template matching

To apply template matching, we need to specify (1) the search space, (2) a set of reference patterns, and (3) a correlation measure.

Let \(A \) be the accumulator array for performing the Hough transform on a set of sonar sensor readings obtained using the estimate \((p_x, p_y, p_z)\) of the robot's pose. The HT space is quantised using the resolutions \(\Delta \theta \) and \(\Delta \rho \). The last step of the Hough transform is an error compensation with \(n_p \). A point \((\theta_k, \rho_k)\) in the HT space corresponds to the accumulator cell \(A_{ij} \) with the index functions \(i = [\theta_k / \Delta \theta] \) and \(j = [(\rho_k - \rho_{\min}) / \Delta \rho] \).

For efficiency reasons, the matching should be performed directly in the Hough space by selecting the appropriate cells in \(A \). Since the Hough transform is concerned with lines, not line segments, this straightforward approach fails in environments where parallel world segments are close to each other, or the angle between neighbouring world segments is small. In these cases, we have to take into account the individual points that contributed to a particular element of \(A \). So we divide the line segments in \(W \) into conflicting and non-conflicting world segments. A line segment \(a \) is said to conflict with a line segment \(b \) if \(|\theta_a - \theta_b| < \theta_0 \) and \(|\rho_a - \rho_b| < \rho_0 \). We have used \(\theta_0 = 10 \) deg and \(\rho_0 = 300 \) mm. In addition, we do not consider world segments shorter than 500 mm.

The Hough transform, \(A \), of the sonar readings is matched with several rotated and translated versions of \(\mathcal{R} \). This search is performed for rotations \(\theta_0 \) quantised in \(\Delta \theta \) intervals and for translations \(d_x \) and \(d_y \) quantised in \(\Delta \rho \) intervals to the degree required for the given situation. For each template, there is a corresponding displacement \((d_x, d_y, d_\theta)\). For each \(r \in \mathcal{R} \), we compute a correlation value, \(c \), given by

\[
c(r) = \begin{cases}
A_r(\theta', \rho') & \text{if } r \text{ are the coordinates of a conflicting world segment} \\
A(\theta', \rho') & \text{otherwise.}
\end{cases}
\]
with \((i', j')\) being the image of \(r = (i, j)\) under the displacement transformation \((d_x, d_y, d_0)\). \(A_r(i, j)\) is the number of points that contributed to \(A(i, j)\) and that lie between the begin and end points of the segment that corresponds to \(r\). Consequently, the correlation value for a template \((d_x, d_y, d_0)\) is

\[
c_R = \sum_{r \in R} c(r)
\]

4.3 Position probabilities

After determining the template \((d_x, d_y, d_0)\) that yields the maximum correlation value, we want to compute a new estimate of the robot’s pose. If it is based solely on the current best match, such an estimate is still subject to ambiguity. For example, in situations where the sonar readings are sparse, it might not be possible to identify any world segment with confidence. It is also possible that the detected world segments have the same orientation. To remove these ambiguities, we decided to use the correlation values obtained by template matching to compute position probabilities. That is, we use a position probability grid on top of a feature-based localisation approach.

The crucial component in the update equation of the Markov localisation method discussed in Section 2.2 is \(p(s|L)\), the likelihood of observing the sensor reading \(s\) at the position \(L\), which can be computed from the world map and a model of the sonar sensors [Burgard et al., 1997b]. Instead of the individual sonar readings, we propose to use the likelihood that a particular correlation count is observed at the location. We obtain the following update formula:

\[
p(L|c) = \frac{p(c|L) \cdot p(L)}{\sum_{L' \in P} p(c|L') \cdot p(L')}
\]

We assume that \(p(c|L)\) is proportional to the value of \(c\).

The values \(p(L|c)\) are stored in a position probability grid \(P\). At the beginning, the probability grid is initialised using the a priori probability that the location that corresponds to the particular grid cell refers to the start position of the robot. An update is performed by multiplying the value in each grid field by the correlation count, \(c\), obtained at the corresponding position, \(L\). Then, we normalise \(P\).

5 The algorithm

The position of the robot is only updated if there is sufficient evidence. We require that at least one sonar segment is detected per update step. If the pose cannot be corrected for a long time due to a lack of consistent sonar readings, we consider the odometry errors. In each time step where no position update is available, the position probability grid is updated using an error model of the odometry sensors. The method can be summarised as follows:

1. Initialise the probability grid \(P\) for the given start position \(p = (x, y, \theta)\).

2. **Pre-processing of sensor data.**
 - Get current estimate of the robot pose, \(p\).
 - Get current sonar sensor readings and map them into the global coordinate system used for localisation.
 - Keep track of sensor readings in the front and side sonar buffers.

3. **Detection of sonar segments.**
 - Compute accumulator array \(A\) using the readings in the sonar buffers and perform error compensation on \(A\).
 - Obtain a set of sonar segments the accumulator count (number of feature points) of which is greater than \(A_{\text{min}}\).
 - If any such segments were found go to (4). Otherwise, continue with (3).

4. **Probability grid update.**
 - Update the position probabilities in \(P\) using an error model of the odometry sensors.
 - Go to (1).

5. **Template matching in Hough space.**
 - Perform template matching in \(A\) at neighbouring positions of \(p\).
 - Update the position probabilities in \(P\) using the correlation values obtained during template matching.
 - Determine the displacement \((d_x, d_y, d_0)\) that corresponds to the maximum value in \(P\).
 - Update the estimate of the robot pose, \(p\), at time step \(t\), such that \(p(t) = p(t-1) + (d_x, d_y, d_0)\).
 - Match the detected sonar segments to segments in the world map. (This step is optional.)
 - Go to (1).

6 Experiments

The experimental evaluation of localisation methods is difficult. The performance usually depends on the environment, the behaviour of the robot and the hardware [Gutmann et al., 1998]. We have tested our position tracking system in two laboratory environments. As shown in Figure 5, both environments consist of straight wall segments. In particular, the second environment is difficult to navigate using sonar sensors due to the existence of many corners and edges. Position tracking experiments were performed using the Pioneer 1 mobile robot in two scenarios: (1) a navigation task in which the robot had to reach goal positions randomly chosen within the environment, and (2) a can collection task in which the robot had to pick up soda cans from the floor and take them to a collection point.

The position tracking method described in this paper has only very few parameters that depend on the application. These are (1) the maximum length \(l\) of the
world segments, (2) the desired angular resolution, $\Delta \theta$, and (3) the minimum number of sonar readings, A_{min}, required for a straight-line segment to be detected. We have chosen $l = 700$ mm, $\Delta \theta = 8$ deg, and $A_{\text{min}} = 22$. Clearly, the choice of l depends on the environment the robot operates in. But this setting is not critical as it influences mainly the effectiveness of the error compensation in the Hough transform. The choice of A_{min} depends on the number of sonar sensors and the size of the sonar buffers. If A_{min} is too small then many false line segments will be detected. If A_{min} is too large then short world segments will not be detected. We had no difficulties in finding an appropriate setting for A_{min}.

The remaining parameters can be computed from l and $\Delta \theta$. We have used $\Delta \rho = 30$ mm, $h = \Delta \rho$, and $n_\rho = 5$.

In the experiments, we found that the proposed method is able to keep track of the robot’s position reliably. In the two scenarios, no catastrophic localisation failure was experienced at any time. The system behaved robustly even in situations when the quality of information received from the sensors was degraded over long periods of time.

Figure 6 shows two situations of one of the position tracking experiments. The left-hand side panels show the sonar sensor readings and the detected sonar segments with respect to the current estimate of the robot’s pose, p. The right-hand side of the figure shows a representation of the position probability grid, P. P is a function of three variables: the position in the x-y plane and the robot’s orientation, θ. We represent the four dimensions using directed line segments. For each cell in P there is one directed line segment. The base of the line segment represents the position (x, y), its direction represents θ, and its length corresponds to the value of the grid cell. The probability grid is centred at p. In our case, P consists of 30 cells in x direction, 30 cells in y direction and 22 cells in θ direction. The resolution of the grid in x-y direction is $\Delta \rho$, the resolution in θ direction is $\Delta \theta$. Many of the probability values are negligible. In Figure 6(a), the robot is situated in a corridor. Because the walls of the corridor are in y direction, the robot’s pose in this direction is uncertain. In Figure 6(b), P has several local maxima. That is, several positions are considered as current pose at the same time.

We have tested our position tracking system also in simulations using the Pioneer 1 simulator developed by Konolige [Konolige, 1997]. The performance was very similar to the results obtained on the robot platform. As the sonar sensor model implemented in the simulator is sufficiently realistic, we take this as further evidence that our method is robust.

We do not know whether the proposed approach will work in highly cluttered environments. However, the experimental evidence suggests that it may be applied to typical office environments in which the walls are cluttered by various small objects. The method will still be able to detect wall-like features present in the environment. Likewise, the presence of people will not cause severe problems, provided that the robot’s sensors are not obstructed for long periods of time. The proposed method could be also applied to large environments by using a dynamic window approach, in which only a small area of the world map is considered during localisation.

In terms of computation, the approach proposed in this paper is more efficient than the re-implemented Markov localisation method [Burgard et al., 1997b]. This is mainly due to the fact that the Hough transform and the subsequent matching in the Hough space is less computationally expensive than determining the likelihoods $p(s|L)$. In our approach, we can easily compute a full update on the basis of 80 sonar readings in less than one second on a 200 MHz Pentium PC.

7 Conclusions

We have presented a novel position tracking approach that works reliably also when the information available from the sensors is sparse and noisy. We have demonstrated that the method can be used with a simple mobile robot equipped with seven sonar sensors. The
(a) Uncertainty in y direction.

(b) Several local maxima.

Figure 6: Typical situations in a position tracking experiment.
method is robust and computationally efficient. The main contribution of this paper is to understand why this approach to localisation is more robust than other techniques. From our point of view, the main reasons are as follows. This approach is less dependent on individual sonar sensor readings than a traditional Markov localisation approach. Rather than using the product of the likelihoods, \(p(s|L) \), we use the correlation count (a combined feature) for the computation of position probabilities. In addition, we use the detection of wall-like segments in the sonar data to detect situations in which the current sensor information is insufficient for localisation. In those situations, the sensor information is not used to update the position probabilities. Our method integrates a feature-based detection method with a dense-sensor matching technique by using the Hough transform for feature detection and a grid-based approach to update a distribution of position probabilities.

References

