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Abstract. A structure from motion algorithm is described which recovers structure and camera position,
modulo a projective ambiguity. Camera calibration is not required, and camera parameters such as focal
length can be altered freely during motion. The structure is updated sequentially over an image sequence,
in contrast to schemes which employ a batch process. A specialisation of the algorithm to recover structure
and camera position modulo an affine transformation is described, together with a method to periodically
update the affine coordinate frame to prevent drift over time. We describe the constraint used to obtain
this specialisation.

Structure is recovered from image corners detected and matched automatically and reliably in real
image sequences. Results are shown for reference objects and indoor environments, and accuracy of
recovered structure is fully evaluated and compared for a number of reconstruction schemes. A specific
application of the work is demonstrated — affine structure is used to compute free space maps enabling
navigation through unstructured environments and avoidance of obstacles. The path planning involves
only affine constructions.

Keywords: Structure from motion, Projective structure, Affine structure, Path-planning, Navigation

1. Introduction that occur due to vibrations or focusing. Second,

The recovery of structure from motion is a suffi-
ciently mature field for working systems to have
been applied to the navigation of mobile vehicles
(Ayache 1991; Harris 1987; Harris & Pike 1987;
Zhang & Faugeras 1992). All of these systems
employ a calibrated camera and recover 3D Eu-
clidean structure. In more recent structure from
motion research, an emphasis has been on the use
of uncalibrated cameras and the recovery of pro-
jective structure, that is, structure modulo a pro-
jective transformation (Mohr et al. 1993; Szeliski
& Kang 1993; Hartley 1993).

There are a number of advantages in not requir-
ing camera calibration. First, structure recovery
will not be adversely affected by any errors in the
supposed calibration or sensitive to small changes
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intrinsic camera parameters can be altered freely
during motion, for example focal length can be
changed by zooming. Third, calibration may not
be available, at least initially. For example if the
source of the image sequence is an uncalibrated
video.

However, a drawback of the algorithms pro-
posed thusfar for projective structure recovery is
that they operate off-line in batch mode, em-
ploying all the images of a sequence in a single
computation to determine structure and camera
projection matrices. In this paper, in contrast,
we present and apply an algorithm which recov-
ers projective structure sequentially, updating the
structure as each successive image is captured.

Projective structure can be specialised to af-
fine structure, and further to Euclidean structure,
given suitable constraints on the camera, its mo-
tion, or the scene. We explore such specialisations,
and consider the cases listed below. In those cases
where camera motion is utilised, this is required



only at the initialisation stage (the first two im-

ages of a sequence) since it is at this stage that

the coordinate frame is fixed. Thereafter, cam-
era motion is not constrained or required by the
processing,

e unknown camera calibration and unknown
camera motion, recovering projective structure
(§3.2).

e approximately known camera calibration and
approximately known camera motion, recover-
ing Quasi-Euclidean projective structure (§3.3);

e unknown but fixed calibration and pure trans-
lation of the camera, recovering affine structure
(§7.1);

e approximately known fixed calibration and
pure translation of the camera, giving Quasi-
Euclidean affine structure (§7.1); and

o full calibration and known camera motion, giv-
ing strictly Euclidean structure (§6.1).

The concept of “Quasi-Euclidean” structure is
introduced to indicate structure which remains
strictly projective (or in §7.2 affine) but which
is “close” to being Euclidean in the sense that
there is only a small skew from the strictly Eu-
clidean structure. We compare the accuracy and
stability of the recovered structure for the different
cases, investigate the constraints needed to attain
a Quasi-Euclidean frame, and compare the qual-
ity of structure recovered in Quasi-Euclidean and
non-Quasi-Euclidean frames.

Affine structure provides an interesting inter-
mediate type between projective and Euclidean
structure. In computational terms, projective
structure is most straightforward to obtain, re-
quiring only image correspondences, while Euc-
lidean structure is more difficult, requiring strong
constraints such as fixed camera intrinsic paramet-
ers [9]. On the other hand, projective structure
contains the least geometrical information about
the physical scene, while Euclidean structure fully
encodes the physical geometry. Affine structure
offers a useful compromise between difficulty of
computation and information content.

Invariants available from affine structure in-
clude ratios of lengths on parallel line seg-
ments, ratios of areas on parallel planes, ratios
of volumes, and centroids. These are all useful
sources of information for tasks which involve in-
teraction with the environment: for instance, ra-

tios can be used for the computation of time-to-
contact, and the centroid of a set of data points
can be used for fixation [33] or grasping [19].
Another affine invariant is the mid-point locus
between a set of points, a basic mechanism in path
planning algorithms for navigation [22]. Thus al-
though it is traditional for path-planning to be de-
scribed in terms of Euclidean structure, many of
the techniques will work perfectly well when sup-
plied with affine structure. We demonstrate this
point, and the quality of recovered affine struc-
ture, by navigating a camera to a specified target
where the direct path is blocked by unmodelled
objects.

The visual primitives used in this work are
image corners, detected and matched in a se-
quence taken by a camera moving through a
static scene and used to generate 3D coordinates
for the corresponding points in the scene. The
value of corner features for navigation has been
demonstrated in the ‘DROID’ system which com-
puted Euclidean structure using calibrated cam-
eras (Harris 1987; Harris & Pike 1987). . Corner
features are well localised, stable and abundant in
imagery from a wide variety of indoor and out-
door scenes which avoid extremes of texture dens-
ity and regularity (such as smooth and untextured
objects where there are occluding contours but few
corners, or dense texture regions which give ex-
cessive numbers of similar corners). A further sig-
nificant advantage of image corners is their math-
ematical tractability, both for theoretical results
and numerical computation. The corner-based ap-
proach described here complements the methods
for computing free-space and navigating around
curved objects described in (Blake et al. 1991;
Blake et al. 1992).

The rest of the paper is arranged as follows.
Section 2 introduces the theory and notation used
in the paper. Sections 3 and 4 cover the com-
putation of projective structure from two images,
and the updating of projective structure through
an image sequence. Section 5 details the match-
ing process and how it integrates with the struc-
ture recovery and Section 6 gives experimental as-
sessments of recovered projective structure. Sec-
tion 7 describes the specialization of the algorithm
required to compute affine structure and gives
associated experimental results, while Section 8



demonstrates the use of affine structure in path
planning for navigation. The final section, Section
9, draws overall conclusions and summarises the
important practical issues arising from the work.

2. Camera models and projective repres-
entations

We now introduce the camera models and nota-
tion used in the rest of the paper. The nota-
tion and mathematical framework draw heavily
on those found in (Faugeras 1992; Hartley 1992;
Mundy & Zisserman 1992).

Perspective projection from 3D projective
space P3 to the image plane P? is modelled by
a 3 x 4 matrix P

x = PX (1)

where x = (z,y,1)T and X = (X,Y, Z,1)7 are the
homogeneous coordinates of an image point and
3D point respectively. For homogeneous quantit-
ies ‘=’ indicates equality up to a non-zero scale
factor.

The camera optical centre Q = (t7,1)T pro-
jects as PQQ = 0, and it is convenient to partition

the projection matrix P as

P =[N — Nt] 2)

This partitioning is valid provided the left 3 x 3
matrix M is not singular, which requires the op-
tical centre not to lie on the plane at infinity. In a
Euclidean coordinate frame, P can be decomposed
as

P = C[R| — Rt] (3)

where R and t are the rotation and translation of
the camera in the Euclidean frame. Ci1s a 3 x 3
matrix encoding the camera intrinsic parameters

C= 0 a, vo 4)
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where ay, a, give the focal length in pixels along
the z and y axes respectively, and (ug,vg) is the
principal point.

For two cameras with x; = P; X and x3 = P3X,
corresponding points in the two images satisfy the
epipolar constraint

x4 Fx; = 0 (5)

where F is the 3 x 3 fundamental matriz, with
maximum rank 2. The epipolar line in image 2
corresponding to x3 is 1 = Fx3, and similarly in
image 1 corresponding to x3 is 1} = F'x5, where
1; are homogeneous line vectors. Partitioning P
and Py as in equation (2) facilitates a number of
equivalent representations of F

F o= My [t; — to]uM]*
[Ma(t) — t2)]x MM !
= My M] [My(t1 — t2)]x (6)

where [v]x denotes the vector product matrix

0 —v, wy
[v]x = v, 0 —wvg
—Uy Vg 0

such that [v]xx = v x x. Consider a 3D pro-
jective transformation of the world coordinates,
X’ = HX, where H is a non-singular 4 x 4 mat-
rix. Image measurements are unaffected by this
transformation, and this can be used to obtain
the transformation of the perspective projection
matrix:

x =PX =PH 'X' = P'X’ . (7)

Thus, the perspective projection matrix P is trans-
formed to P’ = PH™! under the transformation H.
This freedom of projective world frame allows us
to choose a canonical camera matrix P; = [I]0],
where I is the 3 x 3 identity matrix. Given some
arbitrary coordinate frame in which P; has the
form Py = [My]| — My t1], the canonical form can al-
ways be reached by setting H=! in equation (7) to
be the affine transformation

o [wt 6y
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Fig. 1. Backprojected rays may be skew due to noise in the
image measurements. In a Euclidean frame the midpoint
of the perpendicular between the rays can then be used to
give an estimate of the 3D point, but in a projective frame
the concept of midpoint is invalid.

The canonical form for Py implies that in posi-
tion 1 the world coordinate origin is at the camera
optical centre and the camera and world coordin-
ate frames are aligned.

3. Projective stereo

The first aim of the processing is to use corres-
pondences between corners x in a sequence of im-
ages to recover the structure X of the scene, mod-
ulo a projective transformation. That is, if the
Euclidean structure of the scene is Xpg, the re-
covered structure is

X =HXEg

where His a non-singular 4 x 4 matrix which is the
same for all points, but undetermined.

This section examines the initialisation of pro-
jective structure from just two images (typically
the first pair in the sequence), a process called
projective stereo.

3.1.  Initialising the projective coordinate frame
and structure

To establish a projective coordinate frame some
previous methods for projective reconstruction
from two or more images have selected a five point

basis from the 3D points (Faugeras 1992; Mohr et
al. 1993). The problem with this procedure is
that if even one of the basis points is poorly loc-
alised in an image, the accuracy of the entire re-
construction degrades. Furthermore, care has to
be exercised to ensure that the basis points are
not collinear or coplanar. We follow more closely
the approach of Hartley et al. (1992) (see also

[24]) and utilise all corner matches in determining

the projective frame, by specifying the perspective

projection matrices Py and Py for two images.

A simple geometric argument demonstrates
that this serves to fix the frame: once P; has been
set, each 3D point is constrained to lie on a ray
backprojected from optical centre 1; fixing Ps then
constrains each 3D point to lie at the intersec-
tion point of a pair of backprojected rays, i.e. the
coordinates of the 3D points are fixed uniquely
(Faugeras 1992; Hartley et al. 1992).

Unfortunately, localisation error (“noise”) in
the feature positions perturbs the back projected
rays, and they will almost certainly not meet at
a point, as sketched in Figure 1. A number of
ways to allow for noise have been proposed (a com-
parison of different methods is given in (Rothwell
1995)). Possible approaches include
1. Given the image point x; in image 1, compute

the epipolar line 1, = Fx; in image 2. Com-

pute Xap, the orthogonal projection of x5 onto

I;. Use x; and x3, to obtain the backprojected

rays, which are guaranteed to be coincident at

a point in 3D space since they are in the same

epipolar plane.

2. Use the method in (Hartley & Sturm 1995) to
compute corrected image points which are (a)
at minimum squared distance from the actual
points and (b) exactly agree with the epipolar
geometry. This is computationally more ex-
pensive than (1) because it involves solving a
polynomial of degree 6.

3. Instead of working on the image plane as in (1)
and (2), work in 3D space. Compute the 3D
point which minimises the sum of the square
distances of the 3D point to each backprojected
ray. This is the midpoint of the perpendicular
between the two rays.

A disadvantage of method (1) is that all the error

is assumed to be in the second image, while the

disadvantage of (2) is that it involves an expensive



non-linear computation. Method (3) is in contrast
a simple linear computation which allows for error
in each image.

Although (3) is the most attractive option, such
an approach is strictly valid only in a Euclidean
coordinate frame where distance and perpendic-
ularity are measurable, and it cannot be applied
meaningfully in an arbitrary projective frame. In
order to make use of method (3) while working
with projective structure, we employ a Quasi-
Fuclidean projective frame. This frame is strictly
projective but is “close” to Euclidean in the sense
that the projective structure is within a small skew
of the true Euclidean structure.

3.2, Setting a projective coordinate frame

We first describe a method for determining an ar-
bitrary projective coordinate frame, and in the
following section address the modifications which
produce a Quasi-Euclidean frame. The algorithm
has three principal steps.

Setting a Projective Frame

Step 1: Set the first projection matrix to the ca-
nonical form P; = [I|0].

Step 2: Determine the fundamental matrix

F. Find the epipole in the second image using
Fle, = 0. Compute My = [ey] «F.

Step 3: Set the second projection matrix
P2 = [M2 + e2bT| Cez]

where b and ¢ are an arbitrary 3-vector and scalar
respectively.

The freedom in Step 1 to set P; to its canon-
ical form has been explained in §2. The practical
issues involved in determining the fundamental
matrix from a set of image correspondences will
be elaborated on in §5.2, and the decomposition
of F is given in Appendix A.

Lemma 1 and its accompanying proof in Ap-
pendix A show that Ps has four degrees of free-
dom. Different choices for b correspond to differ-
ent choices of projective coordinate frame, intro-
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ducing different amounts of projective skew away
from the Euclidean frame. To minimise skew as
much as possible by using the calibration informa-
tion to hand we now consider recovering a Quasi-
Euclidean frame.

3.3.  Setting a Quasi-Euclidean frame

In a strictly Euclidean frame, valid choices for
the projection matrices of a camera with intrinsic
parameters C in successive positions related by ro-
tation matrix R and translation vector t are, from
equation (3), P¥ = ¢[1]0] and PY = C[R| — Rt]. To
establish a Quasi-Euclidean frame, P; and Py are
set “close” to the form of P¥ and P¥, using ap-
proximate values of the camera intrinsics C* and
rotation R*.

The algorithm has three steps, which are modi-
fications of the ones already described above.

Setting a Quasi-Euclidean Frame

Step 1: Normalize the image coordinates x
(c*)~!x in both images. Set P, = [I|0].

Step 2: Determine the fundamental matrix
F. Find the epipole in the second image using

Fle, = 0. Compute My = [es] «F.

Step 3: Using the form
P2 = [M2 + esz| 682]

choose ¢ arbitrarily, but choose the value of b so
that the term Ma+e2b T most closely approximates
the estimated rotation R*.

The trivial normalization in Step 1 associates
the effect of the camera intrinsics with the im-
age coordinates, not with the camera matrices.
The first camera matrix can then be assigned the
canonical form while still being consistent with
the goal of attaining a Quasi-Euclidean frame. In
practice, the normalisation involves setting the ho-
mogeneous vector for an image point to be

u—uy v— vy T
X:( 0, 0,1) (8)

* *
Qy, ay




where (u,v) is the pixel position of the image
point, and «}, etc are elements of C* whose form
was given in equation (4).

Step 2 is unchanged, but Step 3 is modified.
We seek a matrix in the four dimensional sub-
space AMs 4+ esb T of P8 which is as close as pos-
sible to R* (where A is a scalar which is used
here to make explicit the presence of the homo-
geneous scale factor). The subspace is spanned
by the basis matrices My, ea(b1,0,0), e2(0, by, 0),
and e3(0,0,b3). The matrix R; in this subspace
which is closest to R* is determined by the stand-
ard method of orthogonal projection of R* onto
the subspace. Then Py is set equal to [Ry| ces].

Note that the scalar ¢ in the final column of
P, can be chosen arbitrarily as it merely determ-
ines the overall scale of the structure computed
in the Quasi-Euclidean frame. More interesting
is that although the approximate camera rotation
R* is used, the approximate camera translation t*
is not: the epipole es provides all the informa-
tion about the direction of translation needed for
setting Ps.

With the projection matrices set we compute
3D structure in the Quasi-Euclidean frame in a
further step as follows.

Quasi-Euclidean ctd.

Step 4: For all corresponding image points
(x1,x32), backproject the two rays and determine
the 3D structure as the midpoint X s of their mu-
tual perpendicular.

Consider a point X which projects in two im-
ages ¢t = 1,2 as

x; =P;X = [le — Miti]X . (9)

Each backprojected ray is defined by two 3D
points, the optical centre Q; and the ray’s inter-
section with the plane at infinity X$°. The op-
tical centre is given by Q; = (t,/,1)T, while X%°
is found from equation (9) by

o [ M7'x;
()

Since X lies on both backprojected rays
_ ([t X7
= (1) (0)
to X5°
(5)+=(0)

where A; 5 are unknown scalars. This is an over-
constrained system of three equations in two un-
knowns which, because the backprojected rays will
be skew due to noise, will not have a consistent
solution. We obtain the midpoint Xy of the per-
pendicular between the rays by solving

-1

Xy =|> [1-D;D/]

i=1,2

> ti— > (t/D;)D;

i=1,2 i=1,2

)

where X is a 3-vector, and D; =
(X2, X%, X%)T is normalised to unit mag-
nitude. (Note that the formula extends to the
intersection of n rays by summing over i = 1..n.)

3.4. Projective skew in the Quasi-Euclidean
frame

If the approximate camera calibration C* and ap-
proximate camera rotation R* are perfect, the
resulting Quasi-Euclidean coordinate frame is
strictly Euclidean; otherwise the frame is subject
to a projective skew. To obtain quantitative in-
formation about the extent of projective skew, it
is possible to develop an expression for the trans-
formation H between a Quasi-Euclidean project-
ive frame obtained by the method in §3.3 and a
strictly Euclidean frame. The transformation is
a function of the true and approximated camera
intrinsics, and the true and approximated rota-
tion matrix, as described in Appendix B. Here we
provide some typical numerical examples of actual
and approximated camera information, and com-
pute the resulting projective skew.

(a) Example 1. The true camera paramet-
ers and motion are a, = 660 pixel, aspect ra-
tio ay/ay, = 1.5, and (ug, vg) = (260, 263) for a
512x512 image, a rotation of 2° to the left around
the vertical axis, and a translation t of 1 unit



with direction along the optical axis. The as-
sumed parameters are o = 500 pixels, o /o’ =
1.4, (ug,vy) = (256,256) and R* = I. Using
equation (B1) in Appendix B, the transformation
between the Quasi-Euclidean frame and a strictly
Euclidean frame is

1 0 —=0.010
0 097 =0.01 0
0 0 1.3 0
—-0.02 0 0 1

H =

(a) Example 2. True camera parameters and
motion are as in example 1. The assumed para-
meters are o = 1 pixel, af/ak =1, (uf,vf) =
(0,0), and R* = I. In this case, the transforma-
tion between the initialised frame and a strictly
Euclidean frame is

1.00 0 —260.42 0
0 065 —171.05 0
0 0 641.0 0

—-0.02 0 2036 1

Note that H; is much closer to an identity mat-
rix than Hs, with the top-left 3 x 3 matrix close
to the identity matrix, and the elements of the
bottom-left 1 x 3 row having small size relative to
unity, indicating less projective distortion. Thus,
making very approximate but sensible guesses can
result in the transformation H approaching I i.e. a
Quasi-Euclidean frame which is nearly Euclidean.
In practice, we have obtained approximate
camera calibration using both naive calibration
methods (such as imaging a fronto-parallel ruler
and using similar triangle constructions to obtain
estimates of focal length and aspect ratio), and
self-calibration (Armstrong et al. 1994; Faugeras
et al. 1992; Hartley 1994) . To obtain approxim-
ate camera motion, we have used odometry from
the robot arm or mobile vehicle carrying the cam-
era, or assumed zero rotation and set R* = 1I.
Any combination of the above has proved suffi-
cient to obtain a reasonable Quasi-Euclidean co-
ordinate frame. Later, we show that using the
Quasi-Euclidean frame makes a significant contri-
bution to accurate reconstruction, especially when
the quantization error in features is appreciable.
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4. Sequential updating of projective struc-
ture

Whilst Section 3 dealt with projective stereo, the

computation of projective structure from just a

pair of images, this section discusses the updating

of structure throughout an image sequence. The

algorithm is described in four parts:

e the computation of the perspective projection
matrix for the latest image;

e the updating of structure based on the latest
image;

e the refinement of the estimate of the projection
matrix; and

e the initialisation of new structure.

4.1.  Computing P

The first two images in a sequence are processed
as in Section 3. Now consider the general case
when structure is known for image (i — 1) and
processing is about to begin on image i. Match-
ing of corners between images (i—1) and ¢ provides
a correspondence between existing 3D points and
the new observations in image ¢. These corres-
pondences are used to compute the perspective
projection matrix P; for image ¢. The process is
fully described in Section 5.3 where details of the
matching are also given.

4.2.  Updating structure

Structure updating is achieved using an Iterated
Extended Kalman Filter (IEKF) with a separate
filter operating on each 3D point. This approach is
well-tried in Euclidean structure from motion al-
gorithms [11], but here we are applying it within
a projective framework.

We adopt the notation ¢; to indicate a quantity
q at timestep i, and ¢(;;) to denote an estimate
of ¢ at timestep ¢ conditioned on observations up
to and including timestep j. At image ¢ for ex-
ample, the estimate of a point’s 3D position X
18 X(i“_l) and X(ih’) before and after the update
respectively.

Because the structure is assumed static, the
state transition equation is simply

Xi=Xu-n=X.
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The observation equation is

100) pX
0 10)'___”+Wi (10)

X; = h(X) + w; = < PZ[?)]X

where x; = (z,y)" is a corner in image i (here,
note, a 2-vector), X = (X,Y, Z,1)7 is the corres-
ponding 3D point, and w; is temporally uncorrel-
ated zero-mean Gaussian noise. P;[3] is a 4-vector

for the third row of P; taken from

P;[1] Pi1 Piis Pz Pia
P, = | Pi[2] | = | P21 Piaz Piaz Pisa
P;[3] Piz1 Pizz Pizs Piza

The prediction equations for the estimated
state and covariance are (Bar-Shalom & Fortmann

1988)

~ ~

Xli-1) = X@-1fi—1)

Agli—1y = Ag-1)i-1)
and the update equations for the state vector and
covariance matrix are

Xy = Xz + Wy (11)

Ay = Aglict) —WSiWT (12)
where the Kalman gain matrix, innovation vector,
and innovation covariance are

W = A(“i_l)Vh;{Si‘l

vi = x; —h(Xgjion)

Si = thﬂ(i|i—1)Vh>T< +R;

respectively, and R is the covariance matrix for the
observed image points x.

The Jacobian Vhyx of the non-linear observa-
tion equation (10) is evaluated at X(i“_l)

Ohge h h

_( ax 2y 2
Vhx = ( 5k, Sk, i )
X oY 07

Q@
&l
@

&l

N

I
Qx
I

whose jk-th element is

<3hj ) _ Pyr PikPij]X
0Xy)  PB]X  (Pi[3]X)?

Within an IEKF, the update cycle in equations
(11,12) is repeated for a number of iterations with

Vhx evaluated at the current value of X(i|i) on
each iteration. (In our work three iterations have
proved sufficient.)

4.3. Refining P and computing camera position

Once structure has been updated, P; is recom-
puted, but this time using the updated 3D points
with the observations in image ¢. The optical
centre Q; is then computed from the linear sys-
tem P;Q; = 0.

4.4. Initialising new structure

The processing in this section has dealt with up-
dating the position of existing 3D points. Of
course during a sequence new feature points will
appear. Once the second observation of a new
point is obtained, the projection matrices for the
two images can be used to recover its 3D position
using the projective stereo method of Section 3.3.

5. Integration of matching and structure
recovery

Thusfar we have presented the theory required to
establish a projective frame and to compute 3D
structure within it assuming the availability of a
set of corner matches between successive images
in a sequence. This section addresses the issue of
how to obtain corner matches. Correspondence
matching is carried out automatically in a three
stage process, and no knowledge of camera calib-
ration or camera motion (apart from a threshold
on maximum disparity) is assumed.

Image corners are extracted to sub-pixel accur-
acy using the corner detector of Harris & Stephens
(1988). In stage 1, each corner in the first image is
matched against potential matches in the second
image, subject only to a threshold on maximum
disparity i.e. each corner has a search area which is
a circle as shown in Figure 2(a). The match with
strongest cross-correlation is accepted (an implicit
assumption in using cross-correlation for matching
is that cyclorotation around the principal axis is
small). The radius of the search area can be up to
50 pixels, so there is a relatively large chance of
obtaining a mismatch. Matches from stage 1 are



passed into stage 2, which begins with the com-
putation of the fundamental matrix (which en-
codes the epipolar geometry) by a robust method.
The effects are twofold - firstly mismatches can be
identified and removed, because they do not agree
with the epipolar geometry; secondly matching
can be resumed on all unmatched corners, but the
search area is reduced to an epipolar line as shown
in Figure 2(b). Matches from stage 2 are passed
into stage 3, which is employed when matching
images k to (k+ 1) of a sequence for k > 2. These
matches provide a correspondence between exist-
ing 3D structure and the corners in image (k+ 1),
enabling the computation of the camera matrix
P(r41) for image (k + 1). Once P(x41) has been
found, matching can be carried out on unmatched
3D points, with a search area around the projec-
ted 3D point as shown in Figure 2(c).

Parameters such as cross-correlation and out-
lier thresholds which are used in the matching are
supplied at the start of a sequence but are updated
at the end of processing each image according to
the current matching statistics.

Each of the matching stages is now described
in more detail.

5.1. Stage 1: unguided matching

This initial, unguided matching stage is used to
obtain a small number of highly reliable seed
matches to be passed onto stage 2 and the com-
putation of the fundamental matrix F.

As sketched in Figure 2(a), potential matches
for an image feature at x; in image 1 are sought
within a radius of 30-40 pixels (for 256x256 im-
age) of x; in image 2. The matching strength for
each is determined by measuring cross-correlation
of image intensity over a 7 x 7 pixel patch, and
the best match is accepted subject to a threshold,
which is set deliberately high to minimise in-
correct matches at this stage. Typically this
stage will yield some 100-120 matches for 250-300
corner features in image 1.

Deriving initial matches
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For each corner ¢ in image 1:

1: Generate a list of of potential matches with
corners j such that |x1; — x2;| < r, where r ~ 30~
40 pixels.

2: For each corner j in the list:

2.1: Derive a matching strength S;; using
cross-correlation.

2.2: If S;; > threshold A S;; > Sij+, set j to be
the best match 7% « j.

If multiple corners in image 1 match the same
corner in image 2, the match of highest strength
is taken.

5.2.  Stage 2: using epipolar geometry

The stage 1 matches are passed here. These
matches are used to compute the fundamental
matrix F [23] using a random sampling algorithm
to mitigate the effects of outlying mismatches.
Use of random sampling for this computation has
been described in (Torr et al. 1994), (Deriche et
al. 1994), (Zhang 1995), and a survey of robust
methods is given in (Torr 1995).

F is computed using an iterative linear al-
gorithm. This is satisfactory when F is being used
to guide matching but for the most accurate re-
quirements, such as the use of F in frame initial-
ization, a non-linear technique is also employed in
the computation as discussed later in Section 5.4.
The non-linear technique also enables the applic-
ation of the constraint that F has rank 2.

Once F is computed, correspondence matching
is resumed for unmatched corners.
correlation threshold used in §5.1 for acceptance
of a match x; to x3; is made more lenient, while
the search area for x,; is restricted to a band
about the epipolar line generated using Fxi;. Us-
ing corners computed to sub-pixel accuracy, the
typical distance of a point from its epipolar line is
~0.2pixels. (If point positions are found only to
pixel accuracy, this figure increases to ~0.8pixels,
whereas if positions are found by intersecting lines,
as they are when using the reference object of Sec-
tion 6, the figure falls to ~ 0.02 pixels.) After
this stage, there are typically 150-180 matches for
250-300 corners.

The algorithm in detail is as follows:

The cross-
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Fig. 2. Successive refinement of the search area during
correspondence matching. (a) During unguided matching,
the search area is limited only by maximum disparity. (b)
Search area along an epipolar line. (c) Search area around
a projected 3D point.

Deriving F to guide matching

Step 1: Select a random sample of 8 matches
from the initial set.

Step 2: For each match xy; ¢ x3; use X;qu to
generate a homogeneous equation in the unknown
elements £ = (f1,... fo) of F. Each equation gives
arow in the 8 x9 matrix B such that Bf = 0, where
each row of B is normalised to unit magnitude.
Solve for f using SVD, and assemble f into F.

Step 3: For each match in the full set, determine
dy = di (Fx1,%x3) and dy = dy (F'x3,%1), where
d; () returns the perpendicular distance between
a point and the epipolar line. If d; and ds are
below an outlier threshold (typically 1.25 pixels),
mark the match as accepted.

Step 4: If the accepted matches form less than
some percentage of the total (typically 75%), re-
turn to step 1. Otherwise, use all n accepted
matches to construct a nx9 matrix B’ such that
B'f = 0, where each row of B/ is normalised to unit
magnitude.

Step 5: From B’f = 0, compute f by SVD and
assemble f into F.

Step 6: For every match being utilised in B/,
determine the rms distance \/((d} + d3)/2), and

weight the corresponding equation in the matrix B/

by its inverse. The weighting is truncated to zero
if the distance is greater than the outlier threshold
used in Step 3.

Step T7: Repeat steps 5 and 6 until there is
neglible change in the residuals computed from
the current value of F, or a maximum iteration
count (typically 6) is reached. On the final itera-
tion, mark corner features which are further away
from their epipolar line than the outlier threshold
as unmatched.

5.8. Stage 3: use of 3D projective structure

The stage 2 matches are passed here. This stage is
employed when matching images k to (k+ 1) of a
sequence for k > 2. For clarity, we put (k+1) = &'

Corners xg; in image k which have associated
3D coordinates X; and which are matched to
corners Xg:; in image k' provide a correspondence
between X; and x/;. Each correspondence obeys
the relationship xg/; = Pg:X;. The processing to
compute Py from these correspondences is closely
analogous to that in the previous section.

Once Py has been computed, correspondence
matching is continued for unmatched corners xg;
which have associated 3D coordinates X;. As
sketched in Figure 2(c), the search area in image &’
is determined by projecting the uncertainty ellips-
oid of the 3D point. The r.m.s. distance between
projected 3D points and their corresponding im-
age points is some 0.3 pixels for corners obtained
by corner detection (and 0.02 pixels for points
found by line intersection on the reference ob-
ject). After this stage, there are typically 180-190
matches for 250-300 corners.

In detail, the algorithm is as follows:

Deriving P to guide matching

Step 1: Identify the set of stage 2 matches which
provide a correspondence between 3D points X;
and corners xj/; as described above.

Step 2: Take a random sample of 6 correspond-
ences from the identified correspondences.

Step 3: For each correspondence X; ¢ Xj/; in
the sample, use the relationship xj/; = Pp:X; to



generate two homogeneous equations in the un-
known elements p = (p1, . ..p12) of Pxs. (Each cor-
respondence gives three linear homogeneous equa-
tions in the unknown elements of P and in the
unknown homogeneous scale factor; eliminating
the scale factor leaves two linear homogeneous
equations.) These two homogeneous equations
contribute two rows to a 12x12 matrix D such that
Dp = 0 where each row of D is normalised to unit
magnitude. Solve for p using SVD and assemble
p into Py/.

Step 4: For every correspondence in the full set,
use P to project the uncertainty ellipsoid of X;
onto the image plane, and if xg/; lies within the
95% confidence limit (see [39]) mark the corres-
pondence as accepted.

Step 5: If the percentage of accepted correspond-
ences in the full set is less than a threshold (typ-
ically 75%), return to step 2. Otherwise, use all
n accepted correspondences to construct a 2nx12
matrix D’ such that D’p = 0, where each row of D’
is normalised to unit magnitude.

Step 6: From D'p = 0, compute p by SVD and
assemble p into Pg:.

Step T: For every correspondence being util-
ised in Pg/, determine the image plane distance
|| xki — PreX; ||, and weight the two associated
equations in the matrix D’ by its inverse. The
weighting is truncated to zero if xg/; lies outside
the confidence region used in Step 4.

Step 8: Repeat steps 6 and 7 until there is
neglible change in the residuals computed from
the current value of Pgs, or a maximum iteration
count (typically 6) is reached. On the final iter-
ation, corners which lie outside their associated
projected confidence region are judged to be in-
correct matches, and are marked as unmatched.

5.4. Non-linear refinement of F and P

The linear estimate of the fundamental mat-
rix proves sufficient for processing arising in the
course of an image sequence when F is being used
only to guide correspondence matching. For frame
initialisation however it is worth the computa-
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tional expense of refining the estimate using non-
linear optimisation methods: we used the Powell
method [32]. The error measure minimised to ob-
tain F is the sum of the squares of the perpen-
dicular distances of each matched point from its
epipolar line [9]

e = Z [d1(xj, Fxi)* + do (%, Fx;)7]

matches ij

thus minimising an image plane distance rather
than an algebraic error as in the linear compu-
tation. The improvement obtained in the aver-
age corner-epipolar line distance is typically small,
about 0.01 pixels, but this may result in a move-
ment of many tens of pixels in the position of the
epipoles obtained from F.

The non-linear optimisation also serves a
second purpose: unlike linear processing it per-
mits enforcement of the constraint that Rank(F) =
2 [23], by making the third row of F a linear com-
bination of the first two rows [8].

Turning to P, because of its use in computing
and updating the 3D structure, the highest accur-
acy estimate is required and therefore non-linear
refinement is always used. The error measure min-
imised is the sum of the squares of the image dis-
tances between corners on the image plane and
the projection PX of the 3D structure,

e=Y "l x—PX |

6. Results for projective SFM

The primary questions addressed in the experi-

mental work are:

e How does the quality of recovered structure in
a projective system with uncalibrated cameras
compare with that from a Euclidean system
which utilises full and accurate camera calib-
ration and estimates of camera motion?

e How much skew is there between the Quasi-
Euclidean frame of Section 3.3 and a Euclidean
frame, when utilising approximate camera cal-
ibration and motion to initialise the Quasi-
Euclidean frame?

e How does the quality of structure compare in
a Quasi-Euclidean frame with that in a frame
with a large projective skew?
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Fig. 4. Structure of the reference object in a Quasi-Euclidean coordinate frame (connectivity has been added to the point
structure for illustration). Although Euclidean relationships such as perpendicularity are not preserved exactly in a Quasi-
Fuclidean frame, it is evident that they are approximately true. The right-hand figure is viewed with one of its planes

edge-on to show coplanarity in the recovered structure.

Experiments have been carried out in two types
of environment, the first a camera mounted on
a robot arm viewing a reference object made of
two perpendicular Tsai calibration grids, and the
second a camera mounted on a robot arm or a
mobile vehicle viewing an indoor laboratory scene.
The first environment allows us to make quantit-
ative assessments of the recovered structure, and
we do so in two ways: by measuring projective in-
variants directly from the recovered structure, and
by transforming to a strictly Euclidean coordin-
ate frame (using the known FEuclidean structure
of the reference object) and measuring Euclidean
invariants. The reference object provides a com-
mon reference coordinate frame, allowing proper
comparison between the quality of the projective
structure with that obtained from conventional
Euclidean algorithms. For the indoor laboratory
environment, results are presented in the Quasi-
Euclidean frame allowing qualitative assessment.

The intrinsic parameters of the camera used in
the experiments are given in example 1 in §3.4.
The approximate camera parameters used to set
up the Quasi-Euclidean frame in §6.1 and §6.4 are

also given in example 1 in §3.4. The approximate
camera parameters used to set up the non Quasi-
Euclidean frame in §6.2 are given in example 2 in
§3.4.

For the sequence in Figure 3, the camera is
moving in a horizontal circular arc while fixat-
ing on the reference object some 80cm away. The
translation between each image is about 2cm and
the rotation is about 2° around a vertical axis. For
the sequence in Figure 10, each motion is a trans-
lation in the horizontal plane of about 50cm and a
rotation of about 3° around a vertical axis. Part of
a sequence from the navigation experiments which
are described in §8 appears in Figure 6. Typ-
ical motions during navigation are a translation
of about 3cm and a rotation of 2°-3°.

6.1. Reference object in the Quasi-Euclidean
frame

The first and last images from a sequence of fif-
teen of the reference object are shown in Figure
3. To obtain the “best feasible” structure for

the reference object, point positions on the grid
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Fig. 5. The mean values and standard deviations determined for the 32 cross ratios computed from the recovered projective
structure updated during an image sequence. The expected ratio of 4/3 is shown as a solid line.

Table 1. A comparison with expected geometric values of results obtained using the present projective algorithm, the DROID
Euclidean algorithm, and the affine specialisation (discussed in Section 7). Coplanarity is a mean value for the two faces of
the reference object. Distance ratio is the ratio of two equal lengths on the reference object. For the projective structure
the cross-ratio measurement was made before transformation to the Fuclidean frame, and the remaining measures after.
For the affine structure, the cross-ratio and distance ratio measurements were made before transformation to the Euclidean
frame, and the remaining measures after. 128 points were used to compute the transformation to the Euclidean frame. The
point error is the average distance between a transformed point and the veridical Euclidean point, in the Euclidean frame.

Point in Measure Expected Projective Affine DROID

Sequence value

After 2 Point error (cm) 0.0 0.2 0.3 0.3

images Collinearity 0.0 0.003 0.005 0.006
Coplanarity 0.0 0.004 0.006 0.007
Cross-ratio 4/3 1.332 + 0.006 1.333 £ 0.003 1.332 + 0.005
Distance ratio 1.0 0.999 £+ 0.012 1.002 4+ 0.009 1.000 £ 0.013

After 20  Point error (cm) 0.0 0.1 0.2 0.2

images Collinearity 0.0 0.002 0.002 0.004
Coplanarity 0.0 0.002 0.003 0.004
Cross-ratio 4/3 1.333 &+ 0.002 1.333 £ 0.001  1.333 £ 0.002
Distance ratio 1.0 1.000 4+ 0.004 1.000 £ 0.006 0.999 + 0.007

are determined not from the corner detector, but
by intersecting lines. Figure 4 shows the struc-
ture of the reference object recovered in a Quasi-
Although Euclidean relation-

ships such as perpendicularity are not preserved,

Euclidean frame.

it is evident that the violation is small.

The cross-ratio is a projective invariant, and
can be measured directly from the recovered struc-
ture. Four equally spaced collinear points have a
cross-ratio of 4/3. Thirty-two such cross-ratios
are computed for each image of a sequence, and
the results plotted in Figure 5. The measured
cross-ratio improves with the sequential update,

and converges to the predicted value.

Because the reference grid has known structure,
it is possible to transform the recovered structure
The

transformation can be determined using the co-

to a strictly Euclidean coordinate frame.

ordinates of five or more points in the Quasi-
Euclidean and Euclidean frames [35] (we employ
all 128 points on the reference object in a least-
squares computation), where direct physical meas-
urement on the reference object provides the Eu-
clidean coordinates.

Comparison between the expected and meas-
ured values in columns 3 and 4 of Table 1 provides
an overall assessment of the quality of the re-
covered projective structure, by showing cross-
ratios computed before transformation to the Eu-
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Fig. 6. (a) The large white blocks mark two example corners. (b) Uncertainty ellipsoids for the recovered 3D points, pro-
jected to ellipses on the image plane, after one update in the sequential update scheme. (c) The ellipses after four updates.
The ellipses have shrunk rapidly as the uncertainty in the 3D points is reduced by successive observations, and the major
and minor axes are about 6 pixels and about 1 pixel (approximately 0.4° and 0.1°), respectively.

clidean coordinate frame and other measurements
like collinearity and coplanarity made after the
transformation to ensure that all such measure-
ments are in a single reference coordinate frame.
The collinearity measure L = (07 + c?)1?/o; and
the coplanarity measure P = o1 /(02 + (7?-)1/2 of a
set of points are obtained by using SVD to obtain
the principal axes i, j, k together with the variance
o;, 0, o} of point positions along each principal
axis. A straight line is thus expected to have L = 0
and a plane to have P = (. Note that all measures
converge as more images are considered.

Column 6 of Table 1 also provides a comparison
with a local implementation of the DROID system
(Harris 1987; Harris & Pike 1987) which computes
Euclidean structure directly, requiring, of course,
exact camera calibration and approximate camera
motion. Evidently there is no significant difference
between the quality of our projective algorithm
and the DROID Euclidean algorithm, though we
note again that no camera calibration is required
in the projective case.

As we discussed in Section 3.4, varying the ap-
proximate values of camera intrinsic parameters
and camera rotation used to set up the Quasi-
Euclidean frame produces different amounts of
projective skew. To test for the effects of skew,
values for the camera intrinsics used in setting up
the Quasi-Euclidean frame were varied up to 20%
from their true values, and the camera rotation
was approximated by setting the rotation to zero.
It was found that this level of variation had no
effect on the assessments listed in Table 1.

Finally, Figure 6 shows some examples of the
uncertainty ellipsoids for recovered 3D points, pro-

jected onto the image plane. Each example is
computed by taking the uncertainty ellipsoid for a
3D point at image ¢ and projecting it onto image
i+ 1, finding the ellipse which has a 95% likeli-
hood of containing the new observation of the 3D
point[39]; such ellipses are used to define search
areas for correspondence matching (Section 5.3).

6.2. Reference object in a non Quasi-Euclidean
frame

Section 6.1 dealt with structure recovered in a
Quasi-Euclidean frame. In this sub-section, struc-
ture and camera position are computed in a co-
ordinate frame which has a large projective skew
away from being Euclidean. An example trans-
formation Hp between such a frame and a Euc-
lidean frame was given earlier in Section 3.4. Fig-
ure 7 shows structure recovered for the reference
object in such a frame. The transformation away
from the true Euclidean form is evident in the pro-
jective skew of the grid itself, and also in the cam-
era positions relative to the reference object. Fig-
ure 8 shows the structure and camera positions
from Figure 7 after transformation to a Euclidean
frame.

6.3. Comparison of structure n the Quasi-
Fuclidean and non Quasi-Fuclidean frames

A comparison between measurements on 3D struc-
ture in a Quasi-Euclidean frame and in a frame
with a large projective skew is given in Table 2,
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Fig. 7. (a) Structure of the reference object in a coordinate frame with a large projective skew — coplanarity and collinearity
are preserved as expected, but the structure is skewed along one plane, and the angle between the two planes is greater than
90° (connectivity has been added to the point structure for illustration). (b) View of the computed structure together with
the computed camera positions in the frame with large projective skew. Compare with the plan view after transformation

to the Euclidean frame in Figure 8.
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(b)

Fig. 8. (a) Plan view of the reference object viewed edge-on (lower) and the arc of successive camera positions in a circle
(upper) after transformation to a Euclidean frame. Note the perpendicularity of the planes of the reference object. (b)

View from behind the arc of camera positions.

and shows the superiority of the Quasi-Euclidean
frame. Measurements are given after 2 images
when the structure has just been initialised, after 3
images when there has been one update, and after
10 images. There is a further partition of results
according to the level of localisation accuracy in
the image points utilised to compute the struc-
ture. Three levels of localisation accuracy were
explored. First, using line intersection to com-
pute point positions, an accuracy of 0.02 pixels
is obtained. Secondly, the positions are rounded
to the nearest 0.1 pixels and the structure recom-
puted, and finally rounded to the nearest integer
pixel and the structure again recomputed.

One trend evident in the results is that in all
measures the accuracy is better in the Quasi-
Euclidean frame. A second trend is that the dif-
ference in accuracy between the Quasi-Euclidean
and non Quasi-Euclidean diminishes as inform-
ation from more images is integrated, although
when using the reference object no new structure
is being introduced between frames. A third ob-
servation is that as the localisation accuracy is re-
duced to nearest pixel, the non Quasi-Euclidean
reconstruction cannot be continued: the initial

structure is so erroneous that the computed per-
spective projection matrix results in predicted im-
age positions differing from their veridical posi-

tions by greater than 10 pixels.

Figure 9 gives a more detailed graphical com-
parison of of the point error (the first measure in
Table 2) in the structure recovered in a Quasi-
Euclidean frame and in a non Quasi-Euclidean
frame with a large projective skew for a range
of corner localisation accuracies. The recovered
structure is transformed to the Euclidean coordin-
ate frame of the reference object, and the aver-
age distance between transformed points and the
veridical positions of points on the reference ob-
ject measured. The point errors are plotted over
a sequences of 11 images. Notice that at a loc-
alisation error of 1 pixel no improvement in the
Quasi-Euclidean structure is discernible over this
time scale. At the finer localisations, the Quasi-
Euclidean always out-performs the non Quasi-

Euclidean reconstruction.
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Table 2. A comparison between measurements on 3D structure in a Quasi-Euclidean frame and in a frame with a large
projective skew, showing the superiority of the Quasi-Euclidean frame. Measurements are shown at three times during the
sequences — after 2 images when the structure has just been initialised, after 3 images, and after 10 images — and for three
resolutions of image point positions — to 0.02 pixels, 0.1 pixels and 1 pixel. The blank entries indicate a failure to recover

structure, as described in the text.

Measure Exp  Quasi- Non Quasi- Quasi- Non Quasi- Quasi- Non Quasi-
val Fuclidean Fuclidean Fuclidean Fuclidean Fuclidean Fuclidean
Resolved to 0.02 pizel Resolved to 0.1 pizel Resolved to nearest pizel
At 2 images:
Pt error (Cm) 0.0 0.18 0.75 0.39 2.49 3.69 4.14
Collinearity 0.0 0.004 0.015 0.028 0.092 0.046 0.17
Coplanarity 0.0 0.007 0.021 0.019 0.093 0.039 0.10
Cross-ratio 4/3 1.337 £ 0.007 1.337 £ 0.011 1.339 £ 0.024 1.334 £ 0.059 1.328 £ 0.019 1.24 + 0.24
Distance ratio 1.0 1.016 £+ 0.020 1.003 £+ 0.026 1.017 £ 0.059 0.984 + 0.194 0.945 + 0.048 0.90 £+ 0.24
At 8 images:
Pt error (cm) 0.0 0.18 0.79 0.39 2.53 3.41 —
Collinearity 0.0 0.004 0.016 0.028 0.095 0.170 —
Coplanarity 0.0 0.007 0.021 0.018 0.093 0.149 —
Cross-ratio 4/3 1.337 £ 0.007 1.338 &+ 0.012 1.339 £+ 0.025 1.334 £+ 0.064 1.290 £ 0.098 —
Distance ratio 1.0 1.015 £+ 0.020 1.005 £ 0.031 1.017 £ 0.060 0.989 + 0.209 0.951 £+ 0.065 —
At 10 tmages:
Pt error (cm) 0.0 0.08 0.06 0.09 0.30 3.63 —
Collinearity 0.0 0.002 0.002 0.004 0.007 0.072 —
Coplanarity 0.0 0.003 0.003 0.003 0.012 0.065 —
Cross-ratio 4/3 1.335 £+ 0.002 1.335 £+ 0.002 1.335 £+ 0.003 1.334 £+ 0.003 1.317 £ 0.046 —
Distance ratio 1.0 1.007 £ 0.008 1.009 £ 0.009 1.007 £ 0.010 1.005 £ 0.008 0.942 £+ 0.044 —

Average point 4507
error (cm) 4.00 4
350 4
3.00 4
250 +
2.00 4
1.50 -

1.00

0.50

- Quasi-Euclidean, 0.02 pixel
- Quasi-Euclidean, 0.1 pixel
- Quasi-Euclidean, 0.5 pixel
- Quasi-Euclidean, 0.7 pixel
- Quasi-Euclidean, 1.0 pixel

® oo o

f - Non Quasi-Euclidean, 0.02 pixel
g - Non Quasi-Euclidean, 0.1 pixel

0.00

12

Image number

Fig. 9. Comparison of the time evolution of the point error in the 3D structure recovered in the Quasi-Euclidean frame and
in a non Quasi-Euclidean frame with a large projective skew, for a range of corner localisation accuracies. The method of
reconstruction by determining the midpoint of two backprojected rays produces structure of significantly better quality in

the Quasi-Euclidean frame.

6.4. Structure from motion of a mobile vehicle

Figures 10(a and b) show the first and last im-
ages of a twelve image sequence taken by a cam-
era mounted on a mobile vehicle which translated
forward along a corridor while turning to the left.
The maximum depth of the scene is about 7m.
Corners were obtained using the sub-pixel corner

detector discussed earlier. Figures 10(c and d)
show the structure recovered in a Quasi-Euclidean
frame rendered from two different vantage points.
Notice that Euclidean relationships such as per-
pendicularity of the side wall and floor are ap-
proximately correct, and the quality of the recon-
struction remains high even at the most distant

points.
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Fig. 10. (a)-(c) Three images of a sequence taken by a camera mounted on a mobile vehicle as it moves forward and turns
left. (d)-(f) Recovered 3D structure in the Quasi-Euclidean frame, viewed from novel viewpoints not obtained during the
sequence. (The overlaid image texture is created by mapping between Delaunay triangulations of the 2D image corners.)
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6.5. Summary of results

The questions posed at the start of this section

can now be related to the experimental results.

o There is effectively no difference in the qual-
ity of the structure recovered by the Quasi-
Euclidean projective algorithm and the strictly
Euclidean DROID system, although the lat-
ter utilises accurate camera calibration. Table
1 shows that both at initialisation and at a
later stage in the sequence, all the evaluation
measures are similar. Note the accuracy of
recovered structure: the structure is accurate
to within 1mm, after transformation to a Eu-
clidean frame, for an object at a distance of
80cm.

e The initialisation of a suitable Quasi-Euclidean
frame is not sensitive to the particular approx-
imation of camera calibration and motion (Sec-
tion 6.1).

e The Quasi-Euclidean frame produces superior
structure to a coordinate frame which has a
large projective skew away from Euclidean, as
shown in Figure 9. This is a consequence of
the method used to initialise 3D points. The
method has the requirement that the coordin-
ate frame is Quasi-Euclidean (whereas there are
approaches which avoid this as discussed in Sec-
tion 3.3), but offers the most straightforward
and computationally efficient way of handling
error in the image measurements.

e Sequential update of the structure over time
using an iterated EKF provides a way of integ-
rating many observations of a point in a compu-
tationally efficient way. There is no guarantee
of optimality or convergence with an EKF but
empirically the quality of the recovered struc-
ture improves under the sequential update as
demonstrated in Figures 5 and 9, and the struc-
ture has been found to be stable provided the
number of gross mismatched corners is reduced
using the outlier detection methods described
in Section 5.

7. Affine Structure from Motion

The previous sections of the paper, particularly
Section 3, have dealt with the computation of pro-
jective structure. Here we specialise our approach

to recover affine structure. The objective of the
affine structure from motion algorithm is to use
correspondences between corners x in a sequence
of images to recover the structure X of the scene,
modulo an affine transformation. That is, if the
Fuclidean structure of the scene is Xg, the re-
covered structure is

X =ZHsXg

where X = (XY, Z, 1)V, Xg = (Xg,Ye, Zg, )T,
and Hy i1s an affine transformation which is un-
determined but the same for all points:

[ 1]
with A a non-singular 3 x 3 matrix and t a 3-vector.

An affine coordinate frame differs from a pro-
jective coordinate frame because the plane at in-
finity T has been identified (Semple & Kneebone
1952).

Our approach is a variation on a result of
Moons et al. (1994) who showed that affine struc-
ture can be obtained from a perspective camera
with fixed intrinsic parameters undergoing pure
translational motion. Unlike their method which
is based on a small fixed number of image points,
we use all available image points to set up the
affine frame. Note that affine structure is be-
ing obtained from perspective images, and there
is no need to assume affine imaging conditions;
that is, there is no need to assume weak or para-
perspective cameras. (Sequential computation of
affine structure under affine imaging conditions is

described in [26].)

7.1. Setting an affine coordinate frame

This section describes initialisation of an affine co-
ordinate frame. Unlike the projective case where
there are several significant modifications to ob-
tain a Quasi-Euclidean frame, only one modific-
ation to the basic processing is required to ob-
tain a Quasi-Euclidean affine coordinate frame.
To maintain consistency with the projective case,
we will call this Step 0 in the following listing:



Setting an Affine Frame

Step 0 (optional): If the coordinate frame is to
be Quasi-Euclidean, normalize the image coordin-
ates x < (C*)~!x in both images.

Step 1: Set P, = [I|0].

Step 2: Determine the fundamental matrix F (a
skew matrix here). Use it to determine the epipole
ey in the second image.

Step 3: Set Py = [I|t] = [I]|Aeq]

Step 4: Backproject the rays and determine the
midpoint of mutual perpendicular.

At Step 2, the epipole es is obtained as be-
fore from the fundamental matrix computed for
the two images. Here, however, F has a special
form because the intrinsic parameters are fixed
and the camera motion between image 1 and 2 is
a pure translation. For this special situation, and
in a Euclidean frame, the perspective projection
matrices for the images 1 and 2 have the form

P1 = C[thl] and P2 = C[R|t2] .

From equation (5), the fundamental matrix is then
F = [CR]™ "[t1 — t2]x[CR] ™}

which is of the form F = ATSA where S is skew-
symmetric. It follows that F is skew symmetric.
Further, since F is unaffected by a projective trans-
formation of the world frame, the same argument
holds in any coordinate frame, not just a Euc-
lidean one. Because F is skew symmetric, it has
only three distinct homogeneous elements or two
degrees of freedom, as opposed to seven degrees
of freedom in the general case. This substan-
tial reduction in the number of unknowns makes
the computation more efficient and better condi-
tioned. The skew form also means that the rank
2 condition on F is imposed automatically during
the linear computation. (As we saw earlier, this is
not possible for the general form, where the rank
2 condition must be imposed in a non-linear step.)

Note that at Step 2, unlike the projective case,
we do not need to compute My and use it in setting
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P,. Instead, for a camera with fixed intrinsic para-
meters undergoing a pure translation, the much
simpler choices of P; = [I|0] and Ps = [I|\es] are
valid. This sets the plane at infinity to 7, =
(0,0,0,1)T, the conventional value for an affine
frame. This may be verified using Lemma 2 in
Appendix C.

7.2.  Updating the affine coordinate frame

The previous section addressed the initialisation
of an affine coordinate frame. Here we describe
a method for transforming an ezisting arbitrary
projective coordinate frame into an affine frame,
using a pure translational motion of the camera.
This can be used to update an existing affine frame
which has “drifted” slightly over time. Strictly
this should be unnecessary because the coordin-
ate frame is fixed once it has been set up, but
in practice the need to recompute the frame can
arise for two reasons. First, as structure is up-
dated the plane at infinity may drift due to er-
ror. Secondly, the motion made in order to de-
termine the plane at infinity might not be pure
translation, and the error which arises in an indi-
vidual measurement can be overcome by making
repeated measurements.

Updating an Affine Frame

Step 1. At the current step k determine Py for
the camera position in the established coordinate
frame.

Step 2. Keeping the intrinsic parameters fixed,
make the camera undergo pure translation. De-
termine Pg4q for the new camera position in the
established coordinate frame.

Step 3. Transform the coordinate frame so that
Py takes the canonical form P, = [I|0]. Ap-
ply the same transformation to Pry; to obtain

P;c+1 = [Meya] £7].

Step 4. Decompose Mgy, into [AI + t*v '] using
Lemma 2, where X is a scale factor, and v a vector.
The plane at infinity is 7o, = (v, 1).



20 22

Step 5. Transform the whole coordinate frame
once more so that the plane at infinity takes its
conventional form of 7 = (0,0,0, 1).

Step 4 exploits Lemma 2 which, with its proof,
is given in Appendix C. Also in Appendix C is the
method for decomposing Miz4+1 so that v can be
found.

7.3.  Results for affine SFM

Experiments similar to those for projective struc-
ture in Section 6 were carried out.  Quasi-
Euclidean affine structure is computed for two
image sequences, one of the reference object and
the other of an indoor scene. Assessment is by
(1) measurement of affine invariants directly from
the recovered structure and (ii) measurements on
the structure after transformation to a Euclidean
frame.

The reference object. The ratio of distances
on parallel lines is an affine invariant. Ratios were
measured from the affine structure of the reference
object for thirty-two triples of equidistant collin-
ear points, each triple defining a ratio of unity.
The variation of the mean and standard deviation
over an image sequence is shown in Figure 11,
and the value is evidently converging to the ex-
pected value of unity. This value, and the other
error measures, are compared with results from
the projective and Euclidean DROID algorithms
in Table 1.

Indoor scene. Figure 12 shows results for an
indoor sequence. The camera was translated lat-
erally in front of a scene comprising a variety
of boxes. Two views of the recovered structure
computed in a Quasi-Euclidean affine frame are
shown, one from above, and the other laterally
from the right and behind. We shall explore this
structure further in the next section as we use it
to drive an affine path planning algorithm.

7.4. Summary

The experimental results for affine structure echo
the conclusions already listed in Section 6: viz.
that the quality of structure is the same for un-
calibrated and calibrated systems (see Table 1),
and that structure improves over time.

However, it is worth recalling our introduct-
ory remarks about the significant advantages af-
fine structure presents over projective structure in
terms of the extra invariants available, invariants
which appear to offer more scope for interaction
with the environment than does the fundamental
invariant in projective structure, the cross-ratio.
In the next section we demonstrate the use of mid-
point invariance, and the quality of the affine re-
construction, by using the structure to carry out
path-planning for navigation.

8. Navigation in Affine Space

The affine SFM scheme provides the basis for nav-
igation through an unknown environment popu-
lated with unmodelled obstacles. We investigate
to what extent affine structure can be used for a
task traditionally carried out with Euclidean in-
formation. The experimental setup is a camera
mounted on a robot arm moving in a horizontal
plane and rotating around a vertical axis. The
objective is to reach a target position specified in
the robot’s coordinate frame. The area in between
the start and target positions is unknown and may
contain obstacles as illustrated in Figure 13.

8.1.  Structure recovery

Processing begins with initialisation of a Quasi-
Euclidean affine coordinate frame as described in
Section 7, and sequential update of affine scene
structure with initialisation of newly appearing
points using the methods from Section 4. Re-
maining stages involve incremental acquisition of
free space regions, path planning through the free
space, and finally control of the robot.
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arm or mobile vehicle which is constrained to ex-
ecute motion in the plane and is well modelled by
a vertical cylinder. The recovered structure and
camera positions are projected onto the ground
plane using a method described in Section §8.4.

Computation of free space is complicated by
the fact that the recovered structure consists
solely of points so there is no representation of
continuous surfaces, and thus no notion of ob-
jects or the free space between objects. We begin
with the assumptions first that recovered points
lie on surfaces and so are not isolated in space,
and second that points cover each surface with
sufficient density to make the surface detectable
— that is, there are no large homogeneous regions
on surfaces (the latter assumption is defined more
rigorously below). A simple occlusion test is then
used to detect free space as sketched in Figure 14a.
Consider first the 3D information prior to projec-
tion to the ground plane. If a scene point P is
visible continuously as the camera moves from C}
to Cy (this may be over several images rather than
between consecutive images), then there is no oc-
cluding surface in the triangle defined by C; PCs.
The projection of this free space triangle to the
ground plane defines a free space triangle on the
2D map.

A necessary modification of this test, shown in
Figure 14b, is that the projection of C1 PC5 onto
the ground plane is accepted as free space only
if no other projected 3D point @ lies within that
triangle. The modification is required for a num-
ber of reasons. Firstly, point @@ might arise from
a low object O in the foreground while P is a
point which is visible above and to the rear of O,
in which case the projected C;PC); clearly should
not be accepted as free space because it overlays
O; this situation relates to the assumption made
at the start of the paragraph that O must gen-
erate points in “sufficient density” to indicate its
presence and prevent the acceptance of free space
triangles which overlay it. Secondly, the modific-
ation deals with the case of concave objects where
P arises from a point within a concavity and @
is a point on the convex hull of the projected ob-
ject i.e. we prevent the marking of the inside of
the concavity as free space on the projected map.
Thirdly and finally, the modification is conservat-
ive, and prevents the acceptance of free space tri-

angles when there is a mismatched or badly local-
ised point present.

The complete free space map is the union of all
accepted triangles — thus the more corners there
are in the images, the more detailed will be the
computed free space. An alternative approach to
free space computation involving the use of points
to construct a polyhedral approximation to an
object is described in [10]. The identification of
obstacles directly from range data for map build-
ing in a navigation system is described in [21].

8.3.  Path planning

Path planning involves the determination of a
route to the target, passing only through areas
which have been confirmed to be free space. Use of
the midline, an affine construct, through an area
of free space is fundamental to the adopted ap-
proach. The explanation below is given with ref-
erence to Figure 15 which shows actual free space
maps computed during the processing (further ex-
amples are given in [4]).

Figure 15(a) is a schematic plan view of the
environment, where there is no direct route from
the initial camera position to the target because of
the presence of obstacles 01,02, 03. Figure 15(b)
shows the free space map computed as described
in Section 8.2 after several small lateral camera
motions have been executed, and affine structure
computed. The free space extends forward from
the camera, is truncated at O1 and O2, but a
central lobe extends through the gap between the
obstacles. The midline of the lobe is computed,
and the trajectory from the current camera posi-
tion to a point on the midline, and then along the
midline, is checked to see how far the camera can
proceed.

Figure 15(c) shows the free space after the
camera has moved through the gap between the
obstacles O; and O,. A lateral camera motion
has been carried out at the new position, and af-
fine structure computed for the newly visible parts
of the scene. Newly detected free space has been
used to incrementally enlarge the free space map,
the new area being truncated by obstacle Oz to
the left and terminating at the obstacle to the
rear of the scene. The midline of the new lobe of
free space is computed and the camera proceeds
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to the target. Figure 15(d) shows the computed
affine structure (isolated points) and the camera
trajectory (connected line).

8.4. Computation of mappings

Two mappings which arise in the navigation pro-
cessing are the 3D-2D projection of 3D structure
to the ground plane in the affine frame, and a
2D-2D transformation between the ground plane
in the affine frame and the ground plane in the
Euclidean robot frame.

3D-2D projection to the ground plane.
Projection of 3D point positions to the ground
plane in the affine coordinate frame requires know-
ledge of the vertical direction. This is in fact read-
ily available since the camera is mounted such that
its y-axis is vertical, and the axes of the camera
and the affine coordinate frames are aligned at ini-
tialisation (Section 7.1). Thus the vertical direc-
tion is aligned with the Y-axis of the affine frame,
and a 3D point X = (X,Y, Z,1) projects simply
to Xp = (X, Z,1) on the ground plane.

2D-2D transformation between affine and
frames. A full 3D transformation
between the affine coordinate frame and the ro-

robot

bot coordinate frame is not needed, since mo-
tions are in a horizontal plane and information
about height above the ground plane is not relev-
ant. Thus it suffices to obtain a 2D transforma-
tion for the ground plane. The transformation can
be found given the coordinates of three or more
non-collinear points on the ground plane in the
affine frame, and their corresponding position on
the ground plane in the robot coordinate frame.
Computation of the transformation utilises optical
centre positions computed in the affine frame in
the normal course of the SFM processing, with the
corresponding positions in the robot frame being
provided by the robot, and no special calibration
is necessary. All computed camera positions are
utilised in a least-squares linear computation.
The primary use of the transformation between
the affine and robot frames is to enable motions in
the affine frame to be mapped to Euclidean com-
mands for the robot. This could potentially be

avoided because the robot could be controlled by
visual servoing alone. For example, with no cal-
ibration the robot could be driven to rotate until
a certain point (for instance an affine invariant
such as a centroid) was at the middle of the im-
age. This has not been addressed since the focus
of the work so far has been on the computation of
3D structure. In addition, the transformation has
two further uses: first, the dimensions of the robot
assembly which carries the camera are specified as
Fuclidean measurements; and, secondly, the tar-
get position for the robot motion is specified as a
Fuclidean position in the robot coordinate frame.

9. Conclusion

This paper has demonstrated the initialisation
of projective and affine structure from image se-
quences, with an accuracy similar to a system us-
ing calibrated cameras. The work has been im-
plemented in a system which has been extensively
tested on real images, with automatic and reli-
able correspondence matching, and the use of ro-
bust techniques to detect outliers. The recovery of
projective and affine structure is increasingly well-
understood, but its use in practice raises interest-
ing problems about what can be achieved when
Euclidean measurements are not available. Here
affine structure has been applied to path planning.

The possibility of utilising a constraint such as
translational motion (Moons et al. (1994) to ob-
tain affine structure underlies a spectrum of pos-
sibilities for investigation, ranging from fully calib-
rated stereo heads through to cameras of unknown
intrinsic parameters and motion. The precision of
the constraints and the stage at which they are in-
troduced interplay to determine the type of the re-
covered structure and motion — projective, affine,
or Euclidean — and its accuracy. This echoes the
idea of stratification introduced by Koenderink
and van Doorn [20].

Here we have concentrated on the uncalibrated
end of this spectrum. There are many remaining
questions concerning the constraints required, and
the stage at which they are introduced, when spe-
cialising structure. For example, there are various
ways to specialise projective structure to affine;
by translation as demonstrated, or by identify-
ing distant points [8]. Further specialisation to
scaled Euclidean structure is possible by camera



self-calibration (Faugeras 1992; Hartley 1993) , or
by other constraints on lengths and angles (Mohr
et al. 1994). The interaction and application of
such constraints offers numerous possibilities for
extension of the ideas presented here.

Our contribution has been to provide a mech-
anism — via the Quasi-Euclidean frame — for in-
corporating poor or partial camera calibration. It
has been demonstrated that in practice this ap-
proximate information is sufficient to obtain a re-
construction which is only slightly skewed away
from metric structure.

Finally, the work has highlighted a number of
issues which proved to be of key importance in ex-
perimental terms, although their importance was
not always immediately evident in the mathemat-
ical theory.

Sensitivity to mismatches. The veracity of
the fundamental matrix F and the perspective
projection matrix P is severely affected by mis-
matched corners. It is crucial to remove mis-
matches since, even if they appear to be having
only a small effect in individual computations,
they cause a cumulative degradation over time as
the structure is updated. As described in Sec-
tion 5, we employ a three-stage process in which
mismatches are identified as outliers in the com-
putation of F and P.

Camera motion. The conditioning of the com-
putation of F becomes poorer as the distance
between the camera optical centres gets smaller.
We have utilised large (rather than infinitesimal)
motions between images of 1-3cm.

Wide-angle lens. Use of a wide angle lens (a
field of view of about 50°) leads to better camera
localisation because rays from the optical centre to
the scene have good divergence; it also makes it
easier to fix each new camera position in the ongo-
ing coordinate frame because many points remain
in view between images.

Forward motion. Simple forward motion pro-
duces poor structure because rays from the cam-
era to a 3D point change angle slowly (relative to
the effect of a lateral motion) resulting in large
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error in the computed point position. To avoid
this, forward motion paths could be “dithered”
with lateral movements (stereo would be of ob-
vious benefit in this role). Instead, a 3D point
is not initialised from its first two observations if
the angle between the backprojected rays is below
a threshold (2° estimated in the Quasi-Euclidean
frame), but the observations are accumulated un-
til the angle exceeds the threshold. Only then is
initialisation carried out, using all the backprojec-
ted rays in a generalisation of the 2-ray scheme:
the 3D point is found as that which minimises the
sum of the square distances between the 3D point
to each backprojected ray.

Critical surfaces. The problem of critical sur-
faces in structure from motion is well-known (see
for example [25]). A special case of the general
form of a critical surface arises in our environ-
ment when a planar surface fills (or nearly fills)
the field of view. This suggests a need to explicitly
test for critical surfaces and switch to alternative
processing when detected.

Homogeneous coordinates. The arbitrary
homogeneous component in a homogeneous vec-
tor is typically chosen as unity — e.g., an im-
age corner (u,v) is represented as (u,v,1). In-
creased stability is achieved if the third component
is chosen to be of the same order of magnitude as
u and v (Section 3.3). Hartley describes an auto-
matic procedure for achieving this initialisation
(Hartley 1995). Similar remarks apply to points
in 3D.

Corner matching. The cross-correlation used
to measure strength of match between corners is
initially on raw image intensity to avoid unne-
cessary computation. However, if the matching
between a pair of images appears to be failing at
any stage (which is tested by examining whether
the ratio of number of matches to total number of
corners is below a threshold), then the matching
is restarted with cross-correlation on normalised
intensity. The normalisation is effectively done by
dividing the pixel patch at a corner by its mean
intensity. The initiation of normalisation occurs
for two reasons in practice: (i) changing illumina-
tion is an obvious effect which will cause matching
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on raw image intensity to fail; and (ii) the auto-
matic gain control of the camera may adjust the
grey-level intensity across the whole image in re-
sponse to some event such as a bright area ap-
pearing on the image periphery; again, this will
prevent matching on raw intensity.
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Appendix A
Lemma 1

LEMMA 1 Given two cameras with distinct optical
centres and fundamental matriz F, and the per-
spective projection matrix for the first camera in
the canonical form Py = [I|0], then Ps has the
general form

P2 = [M2 + e2bT| 682]

where eq, the epipole in the second image, sat-
isfies Flegy = 0; My is a particular solution of
F = [es]xM2; and b and ¢ are an arbitrary 3-vector
and scalar respectively.

Proof:

This proof follows closely Hartley’s proof of
the uniqueness of decompositions of the funda-
mental matrix [14]. Suppose Py = [My| t3] and
P, = [M}]| t}] are two possible Ps matrices consist-
ent with F. Since P; = [I|0], the optical centre of
the first camera has coordinates Q; = (0,0,0,1)T.
The epipole in the second image is the projection
of the optical centre. Applying P and P} we have

P2Q1 = t2 = dey
PIQQl = tlz = )\/82 .

Thus t2 = t, = es up to a scale factor.
Next from equation (5) for the fundamental
matrix defined from projection matrices, we have:

F= [e2]><M2 = [ez]XMIQ .

It follows that [e2] x (M2 —M5) = 0 and so Mg — M, =
esz.

Thus, including the overall scale factor, there
are five homogeneous parameters or four DOF in
P,. Values for M, and es; are obtained by decom-
posing F as described next. [ ]

A.1. Decomposing F

The first step is to obtain ey from the equation
Fle; = 0. If F = (fy,fy,f3), where f; are the
columns of F, then f; - es = 0. Thus the epipole
can be computed as ey = f; x f5.

The second step is to compute a particular M,.
Note, that there is not a unique decomposition
since (from the proof of the lemma) if N is a par-
ticular solution, then so is N + ead” where d is
an arbitrary 3-vector. The equation My = [e3]«F
provides a particular solution. This can be verified
by substitution: F = [es]xMy = [e2]x[ea]xF = AF
where A is a scalar. This holds since for each
column e¢1,¢a,¢3 of F, €3 X (e2 X ¢;) = A¢; with
A the same scalar for each ¢;.

Appendix B

Transformation between FEuclidean and
Quasi-Euclidean frames

We develop theory to quantify the residual pro-
jective skew in the Quasi-Euclidean frame.

Consider two cameras with the same intrinsic
parameters C, separated by a rotation R and trans-
lation t. Then a Euclidean coordinate frame
is obtained by setting the perspective projection
matrices to

Py = c[1]0] = [c|o]
PY = C[R|—Rt] = [CR| — CRt] = [CR|\éy]
where A = || — CRt||, & is the epipole in image 2

normalised so that the sum of its squared compon-
ents is unity, and it has been made explicit that



the last column of Py is a multiple of ;. (For the
purposes of explanation, we will keep C explicit
here unlike the approach in §3.3).

Now consider a projective coordinate frame set
up with

P, = [c*|0]
P2 = [C*R;|Mé2]
where p is the scale of the reconstruction.
We now show that the transformation X =

H 'XF between the Euclidean and projective
frames is

Ap—1lpx
Ac—1lc*x 0
H=| # Bl
B (B1)
where
vl =p~'e; (C*R; — CRCT'CY) . (B2)

Proof: Under the transformation X = H™'Xg,
equation (7) shows the projection matrices trans-
form as
PPH = P, (B3)
PPH = P, . (B4)

H can be written as

where A is a 3x3 matrix, b and ¢ are 3-vectors,
and d a scalar. From equation (B3) it follows that
A=C!'C*and b=0i..

H clcr 0
- ¢t d|

and from equation (B4)

[CRCTIC* + Aege! |dAes] = [C*R |pes] . (B5)

Pre-multiplying the left 3 x 3 matrices of equa-
tion (B5) by eJ gives
¢’ = A7"e] (C*R} — CRC™'CY),

and the final column gives d = u/A. An overall
scaling gives the form of H in equations (B1) and

(B2). m
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Appendix C

Lemma 2

LEMMA 2 Given two camera matrices Py = [I]0]
and Py = [M|t*] for identical cameras related by
a pure translation, matrix M can be decomposed
as M = AL + t*v" where X is a scale factor, and
Too = (VT,1)T is the equation of the plane at in-
finity.

Proof:

The proof is based on the approach given in
(Mundy & Zisserman 1994) . The cameras have
identical intrinsic parameters, and their positions
differ only by a pure translation. Thus, assuming
image coordinates have been normalised accord-
ing to equation (8), the projection matrices for a
Euclidean frame are

PP = [R|—Rty]
PY = [R - Rts]

The Euclidean structure XF and projective
structure X are related by X¥ = HX, where

H— 4 s
vt 1
The projection matrices in the projective frame
are

P, = PPH

The Py equality gives
A[I|0] =R[A—tv[s — tq]
where A is an arbitrary scale factor. Hence,

S = t1
RA = AI +Rt;v' .

From the Py equality (equation (C1)), if follows
that

t* = R[t; — to]
M= A +t*v' .

This completes the first part of the proof. It
only remains to demonstrate that 7o, = (v',1)T
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is the equation of the plane at infinity. The point
transformation matrix is X = H~'X¥ hence the
plane transformation matrix is H' [35]. The co-
ordinates of the plane at infinity in the Euclidean
frame are 72 = (0,0,0,1)T. Therefore the co-
ordinates in the projective frame are

Moo = HTWOEO
— (VT,I)T

C.1. C.1 Solving for A and v

Given M and t* we now describe how to obtain A
and v from

M— A =t*v' .

This is an eigenvector problem: the matrix
t*v' is rank one, so A must be a repeated ei-
genvalue of M. Call this eigenvalue A;, associated
with eigenvectors e, and ey, and the remaining ei-
genvalue A associated with eigenvector e.. Then

(M — )\1I)ec = ()\2 - Al)ec

= (t*vT)ec =t"(v-e)

(€2)

Hence e, is parallel to t*.
vectors (i = a,b)

For the other eigen-

(M — /\1I)ei = t*vTei = t*(v . ei) =0.

Hence e,,e; are both perpendicular to v, and
therefore

VvV = pfieg X €p

(C3)

where p is an unknown scale. This scale u is de-
termined from equation (C2) as follows:

(A2 = As)llec]”

t* - e

C

and, taking the scalar product with v in equation

(CS)J
(A2 = As)llec|?

N (t* : e)c[eC; €4, eb]
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