
OBPRM: An Obstacle-Based PRM for 3D Workspaces

Nancy M. Amato, Texas A&M University, College Station, TX, USA

O. Burchan Bayazit, Texas A&M University, College Station, TX, USA

Lucia K. Dale, Texas A&M University, College Station, TX, USA

Christopher Jones, Texas A&M University, College Station, TX, USA

Daniel Vallejo, Texas A&M University, College Station, TX, USA

Recently, a new class of randomized path planning

methods, known as Probabilistic Roadmap Methods

(prms) have shown great potential for solving compli-

cated high-dimensional problems. prms use randomiza-

tion (usually during preprocessing) to construct a graph

of representative paths in C-space (a roadmap) whose

vertices correspond to collision-free con�gurations of

the robot and in which two vertices are connected by

an edge if a path between the two corresponding con�g-

urations can be found by a local planning method.

This work describes and evaluates various node gen-

eration and connection strategies for one such prm, the

obstacle-based probabilistic roadmap method (obprm),

in cluttered 3-dimensional Workspaces. Various node

generation strategies are evaluated in terms of their

ability to produce nodes in di�cult regions of C-space;

our results include recommendations for selecting ap-

propriate node generation strategies for di�erent types

of objects, and a default strategy for use when objects

cannot be classi�ed easily. We also propose and ana-

lyze a multi-stage strategy for connecting the roadmap

nodes; the use of di�erent local planners at di�erent

stages is shown to enhance the connectivity of the re-

sulting roadmap signi�cantly.

1 Introduction

Automatic motion planning has application in many

areas such as robotics, virtual reality systems, and

computer-aided design. Although many di�erent mo-

tion planning methods have been proposed, most are

not used in practice since they are computationally in-

feasible except for some restricted cases, e.g., when the

robot has very few degrees of freedom (dof) [11, 18].

Indeed, there is strong evidence that any complete

planner (one that is guaranteed to �nd a solution or

determine that none exists) will require time that is

exponential in the number of dof of the robot [21].

For this reason, attention has focussed on randomized

or probabilistic motion planning methods. Notable

among these are randomized potential �eld methods

(e.g., RPP [4]), which work very well when the con�gu-

ration space (C-space) is relatively uncluttered, but un-

fortunately there also exist simple situations in which

they are not successful [5, 15].

Recently, a new class of randomized motion plan-

ning methods has gained much attention (see, e.g.,

[1, 3, 10, 15, 17, 19, 20]). These methods, known

as probabilistic roadmap methods (prms), use random-

ization (usually during preprocessing) to construct a

graph in C-space (a roadmap [18]). Roadmap nodes

correspond to collision-free con�gurations of the robot.

Two nodes are connected by an edge if a path between

the two corresponding con�gurations can be found by

a local planning method. Queries are processed by

connecting the initial and goal con�gurations to the

roadmap, and then �nding a path in the roadmap be-

tween these two connection points.

PRMs: Probabilistic Roadmap Methods

I. Preprocessing: Roadmap Construction

1. Node Generation (�nd collision-free con�gurations)
2. Connection (connect nodes to form roadmap)

(repeat as desired)

II. Query Processing

1. Connect start/goal to roadmap

2. Find path in roadmap between connection nodes

prms have been shown to perform well in practice.

In particular, after the roadmap is constructed during

preprocessing, many di�cult planning queries can be

answered in fractions of seconds [3, 17]. Although prms

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

are particularly suitable when multiple queries will be

answered in the same static environment, the general

prm strategy can be used to solve single queries by only

constructing `useful' portions of the roadmap [10, 20].

Node Generation. Node generation strategies are

the methods used to select collision-free robot con�g-

urations to be used as nodes in the roadmap. A good

node generation strategy will produce nodes that can

be connected to form a roadmap that is representative

of the connectivity and complexity of C-free. Ideally,

the roadmap should contain nodes in every C-space

crevice and corridor. However, guaranteeing this re-

quires the costly computation of the constraint surfaces

| which is what randomized methods seek to avoid.

The �rst prms [15, 17] use uniform sampling in C-

space to generate roadmap candidate nodes (collision-

free con�gurations are retained); roadmaps are en-

hanced by further sampling in `di�cult' regions. These

methods perform well for general many-dof robots.

However, their e�ectiveness decreases as the environ-

ments become more cluttered since uniform sampling

of C-space is unlikely to yield con�gurations in narrow

regions of C-space. To obtain improved roadmaps in

crowded situations, some prms use information about

the environment to guide node generation. Examples

include executing random re
ections at C-obstacle sur-

faces [9], and a technique called geometric node adding

[20] for generating con�gurations of non-articulated

robots near Workspace obstacle boundaries.

Connection. After the collision-free roadmap candi-

date nodes are generated, they must be connected to

form the roadmap. The basic idea is to attempt to con-

nect selected pairs of roadmap nodes using some local

planning method(s); each successful connection identi-

�es an edge in the roadmap. To save space, the paths

found in this stage are not recorded since they can be

re-generated quickly when processing queries.

The methods by which a prm determines which (and

how many) nodes to attempt to connect, and the local

planner(s) selected to make those connections can cru-

cially impact both the quality of the resulting roadmap

and the running time of the prm. Indeed, even though

most prms greatly limit the number of connections at-

tempted (say, to ten for each node), they still typically

spend more than 95% of their preprocessing time in the

connection phase [3, 17].

The general strategy of prms is to �rst make as many

of the `easy' and `cheap' connections as possible, and

then to use more sophisticated techniques to improve

the roadmap's quality. For example, the prm of [15, 17]

�rst tries to connect each node to the k (a parameter)

closest nodes (as determined by some distance met-

ric) using the common straight-line in C-space local

planner, and then attempts to enhance the roadmap

by sampling more nodes in identi�ed `di�cult' regions

and/or by using more sophisticated local planners such

as RPP [4].

1.1 Our Results

In this paper we consider an obstacle-based prm

(obprm) [3, 23] which samples points on or near C-

obstacle surfaces. Even though the prototype imple-

mentation of obprm for planar articulated robots em-

ployed only the simplest node generation and con-

nection strategies, it established that obprm was a

promising method for planning in cluttered environ-

ments. Here, we describe several more sophisticated

strategies for the node generation and connection

phases, and provide an evaluation of a more mature im-

plementation of the method for cluttered 3-dimensional

Workspaces, typical, e.g., of mechanical designs [6].

The moving objects (robots) are rigid, non-articulated

objects yielding six-dimensional C-spaces. Although

we concentrate on obprm, we believe the techniques

proposed here will be useful for prms in general, and

for other motion planning approaches as well.

We propose and study various heuristics for generat-

ing nodes on or near C-obstacle surfaces and evaluate

their e�ect on roadmap quality. The results of our

study include recommendations for selecting appropri-

ate combinations of node generation strategies for use

with objects of certain general shapes and compositions

(e.g., symmetrical with surfaces described by triangles

of roughly equivalent area). We identify a default strat-

egy for use with unclassi�ed objects.

We also propose a multi-stage connection strategy

OBPRM: An Obstacle-Based PRM for 3D Workspaces

that is shown to signi�cantly improve the connectiv-

ity of the resulting roadmaps, while still controlling

the time needed to construct them. The �rst stage at-

tempts to make the `easy' connections using many in-

vocations of the fastest local planning method(s), while

the later stages make a decreasing number of connec-

tion attempts and use increasingly more powerful lo-

cal planning methods. The last stage may add new

roadmap nodes as it attempts to join di�erent con-

nected components of the previous roadmap.

We remark that our goal is to provide empirical ev-

idence that certain node generation and connection

strategies work well for obprm for certain types of

problems. We seek empirical evidence due to the ran-

domized nature of prms, which makes them di�cult

to analyze. Recently, a number of attempts have been

made to theoretically explain the success of prms (see,

e.g., [10, 14, 16]). However, these studies generally

make simplifying assumptions regarding the nature of

the C-space and/or the prm components (e.g., local

planner), and therefore unfortunately cannot be ap-

plied to obprm.

2 Preliminaries

The moving objects (robots) considered in this paper

are rigid objects in three-space. We represent con�gu-

rations using six-tuples (x; y; z; �; �;
), where the �rst

three coordinates de�ne the position and the last three

de�ne the orientation. The orientation coordinates are

represented in radians, normalized to [0� 1).

In addition to collision detection, all prms make

heavy use of so-called local planners and distance com-

putations. Local planners are simple, fast, deter-

ministic methods used to make connections between

roadmap nodes when building the roadmap, and to

connect the start and goal to the roadmap during

queries. Distance metrics are used to determine which

pairs of nodes one should try to connect.

The local planners and distance metrics used in

obprm are based on recommendations from [2]. The

distance metric we use is scaled Euclidean distance in

C-space (the scale places more or less weight on the

position coordinates).

The local planners currently implemented in obprm

are the common straight-line in C-space, three versions

of a (parameterized) planner proposed in [2] called

rotate{at{s (0 � s � 1), and some A�-like methods

(see, e.g., [7, 8, 12, 13, 22]). The suggested order to

apply these planners was: �rst straight-line and rotate-

at-1
2
(the most successful planners), next rotate-at-0

and rotate-at-1, and �nally, the more expensive A�-

like planners, which try to �ll in gaps left by the faster

planners.

rotate-at-s. Brie
y, when moving from c1 to c2, the

rotate-at-s planner �rst translates from c1 to an in-

termediate con�guration c0, rotates to a second inter-

mediate con�guration c00, and �nally translates to c2.

The parameter s represents the fractional part of the

translational distance between c1 and c2 that the robot

travels from c1 to c0. The straight-line planner is used

to plan between each pair of con�gurations, that is,

between (c1; c
0), between (c0; c00), and between (c00; c2).

The rotate{at{1
2
planner made more connections

than the straight-line planner in nearly every situa-

tion studied, perhaps explained by the fact that it has

a smaller swept volume. It is also fairly fast, taking

about twice as long as the straight-line planner (sig-

ni�cantly less than the A� methods). The other two

versions of rotate{at{s used here are s = 0 and s = 1,

which although not as successful do make some con-

nections the straight-line and rotate{at{1
2
do not.

A�-like planners. The A�-like planners used in obprm

vary according to: (1) the number of neighboring con-

�gurations explored in each iteration, (2) the evalua-

tion function used to select among the neighbors, and

(3) the number of iterations they are allowed to run.

Currently, obprm supports three di�erent neighbor

functions yielding three, nine, and �fteen neighbors.

The �rst three neighbors, which are common to all

functions, are the con�gurations in which (i) only the

position coordinates, (ii) only the orientation coordi-

nates, and (iii) all coordinates are incremented towards

the goal. The additional six (or twelve) neighbors are

the con�gurations in which exactly one of the coordi-

nates is incremented towards (or away from) the goal.

The two evaluation functions used are (i) minimum dis-

tance from the goal, and (ii) maximum clearance from

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

a workspace obstacle; both these functions are approx-

imated using the center of mass of the relevant objects.

The maximum number of iterations the planner is al-

lowed to run is a multiple of the number of steps the

straight-line planner would take; common values for

this are 3, 6, 9, or 15. Note these planners are not truly

A� methods, but rather employ A�-like strategies.

We denote the various versions of these planners by

A��eval(nbrs,steps), e.g., A�-clearance(9nbrs,6steps).

Although signi�cantly more expensive than the other

planners, the A�-like methods can sometimes make

connections the others can not by `feeling' their way

along in tight places.

3 Node Generation in OBPRM

The prototype version of obprm [3, 23] for a many-dof

articulated robot in a 2-dimensional Workspace used a

simple strategy to generate nodes on contact surfaces.

Brie
y, for each obstacle X:

Prototype NodeGeneration

1. cin := colliding robot cfg with C-obstacle X
2. D := m random directions emanating out from cin

3. for each d 2 D

4. cout := free cfg in direction d (if exists)
5. �nd contact cfg on (cin; cout) by binary search

6. endfor

This simple strategy was su�cient to establish the

potential of the method. However, it is clear that more

sophisticated node generation strategies are needed for

more complex objects to produce a `good' distribution

of nodes in all the `di�erent' regions of C-free. Outlined

below are some of the methods we've implemented and

tested. Keeping in the spirit of obprm, all these meth-

ods employ information regarding the environment to

guide node generation. Brie
y, the methods are de-

signed to generate three types of nodes: (i) contact

con�gurations, (ii) free con�gurations (near contact

surfaces), and (iii) sets of con�gurations (shells) sur-

rounding C-obstacles.

Generating contact con�gurations. The node

generation strategy used in the prototype version of

obprm is attractive due to its simplicity and its e�-

ciency (node generation typically accounted for 1-2%

of preprocessing time). However, the distribution of

the generated nodes is clearly very sensitive to both

the shape of the C-obstacle and to the seed (origin cin

for the binary search). That is, no single seed will

yield a good distribution of con�gurations on the sur-

face of the C-obstacle if its shape is not roughly spher-

ical, and even if the C-obstacle is spherically shaped,

a seed removed from the C-obstacle's center will yield

more con�gurations on the region of its surface closest

to the seed.

Ideally, we would like a method that is as simple as

the binary search technique, but which is less sensitive

to the shape of the C-obstacle (which we wish to avoid

computing explicitly). One way to achieve this is to use

multiple seeds { so long as they are chosen in an intel-

ligent manner. Indeed, the current version of obprm

uses a di�erent seed for (nearly) every node generated:

GenerateContactConfiguration

1. prob := point associated with robot
2. pobs := point associated with obstacle of interest

3. cin := translate robot so prob and pobs coincide

and rotate robot randomly until collision
4. d := random direction emanating out from cin

5. cout := free cfg in direction d (if exists)

6. �nd contact cfg on (cin; cout) by binary search

The types of con�gurations found in this manner de-

pend upon the shapes of the robot and obstacle, and

also on the selected points prob and pobj (generally these

points will be on the objects, e.g., a vertex). We have

implemented and tested several methods for selecting

points in an object (robot or obstacle) in obprm (see

Table 1). There are, of course, many other possible

variants (e.g., edges instead of triangles), but the ones

we've implemented can be thought of as representative

strategies.

Generating free con�gurations. Sometimes

roadmap connectivity might be improved by generating

some points in freespace { but near constraint surfaces.

For example, such con�gurations may give local plan-

ners room to `maneuver' around obstacle corners. It

turns out the above described seed generation strate-

gies can easily be adapted to generate such free con�g-

urations. In particular, after selecting the two points

OBPRM: An Obstacle-Based PRM for 3D Workspaces

Point Selection Strategies (Node Generation)

Strategy Explanation and Bias

cM The center of mass of the object vertices.

center of mass Good for (roughly) spherical objects, and also useful to ensure that some points are generated
in the vicinity of the center of mass of that object.

rV A random object vertex.
random vertex Biased towards those portions of the object that have more vertices { which are generally the

more complex regions.

eV Select one of 6 extreme vertices with maximal and minimal x, y, and z coordinates at random.

extreme vertex Finds con�gurations distributed around the object, even in regions which do not have high

descriptive complexity (which might be captured by the random vertex case).

rT Select a triangle at random, and then randomly select a point in that triangle.

random triangle Biased towards those portions of the object that have more triangles { which are often the
regions where the object's shape (e.g., curvature) changes.

wT Select a triangle with probability proportional to its area, and then randomly select a point in
weighted triangle that triangle. Biased towards triangles with large area (largest parts of object).

Table 1: Point selection strategies for node generation.

prob and pobj in the robot and obstacle (according to

one of the methods described above), we translate the

robot until these points coincide and then randomly

rotate the robot to obtain a free con�guration (rather

than a con�guration in collision).

Building Shells. The general idea behind obprm

is that the roadmap should be densest around the C-

obstacles since that is where planning is hard. How-

ever, since planning is very di�cult near contact sur-

faces, we would like to include paths in the roadmap

that leave some clearance between the robot and the

obstacles. Roadmap nodes that might be contained in

such paths can be found at low cost during node gen-

eration. In particular, we can retain some number s

of the con�gurations found during the search (e.g., the

s closest, or s uniformly spaced among those found).

We refer to s as the number of shells generated for the

object (as they will hopefully encase the object).

4 Roadmap Connection in OBPRM

The �rst prms attempt connections between each node

and the k (e.g., 10) closest nodes to it (as determined by

some distance metric) [17]. This is a natural approach

to take since initially there is little to di�erentiate one

con�guration from another. In obprm, however, this

strategy would result in most connection attempts be-

ing between nodes associated with the same C-obstacle

which may be more di�cult to connect and also might

not be as useful, in terms of roadmap connectivity, as

connections between di�erent C-obstacles.

There are three general stages in obprm's roadmap

connection strategy. The �rst stage (Simple Connec-

tion) attempts to make the `easy' connections using

many invocations (typically thousands) of the fastest

local planning method(s). The next two stages (Con-

necting Components andGrowing Components)

make a decreasing number of connection attempts and

use increasingly more powerful local planning meth-

ods. The third stage may add new roadmap nodes as

it attempts to join di�erent connected components of

the previous roadmap. The reason for the multi-stage

strategy is that the faster local planners are not ca-

pable of making the crucial connections needed for a

well connected roadmap, while the more powerful local

planners are computationally too expensive to be used

for the easier connections (which generally account for

the majority of the roadmap edges).

Overviews of the strategies applied in each stage are

described below. Within each stage, there are still sev-

eral choices to be made, such as, for example, which

local planner(s) and distance metric(s) to use. Based

on the �ndings in [2], the current implementation of

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

obprm uses a scaled Euclidean distance metric and

employs multiple local planners (see Section 2). We

note, that it is likely that the best methods will vary

according to the particular problem, and thus ideally

the planner should adaptively select appropriate dis-

tance metrics and local planning methods.

Stage 1: Simple Connection. The �rst connection

stage in obprm is similar to those used in the original

prms. The main di�erence is that it takes advantage

of the extra C-obstacle information associated with the

nodes:

Stage 1: SimpleConnection

1. let Vi be the set of nodes associated with C-obstacle i
2. let m be the number of C-obstacles

3. for each v 2 V

4. for i := 1;m

5. Compute Cv;i, the closest K1 nodes in Vi to v.

6. Try to connect v to each node in Cv;i.
7. endfor

8. endfor

9. AnalyzeRoadmap /*compute connected components*/

The input parameter K1, the number of connections

attempted for each node, is typically quite small (e.g.,

10). Currently, the only local planner obprm uses in

this stage is the straight-line in C-space, which is our

fastest planner. After the K1 connections have been

attempted, the connectivity of the resulting roadmap

is analyzed, e.g., its connected components, and their

sizes, are computed. If, as is usually the case, the

roadmap does not consist of a single connected com-

ponent, we proceed to the next connection stage.

Stage 2: Connecting Components. The goal of

this stage is to make connections between di�erent con-

nected components of the stage one roadmap. In par-

ticular, the strategy is similar to stage one, except that

now connections are attempted between nodes that be-

long to di�erent connected components rather than dif-

ferent C-obstacles:

Stage 2: ConnectingComponents

1. Vi = fvjv 2 connected component ig, 1 � i � m

2. assume jV1j � jV2j � : : : � jVmj

3. for i := 1;m /*connected components*/

4. for j := i+ 1; m /*bigger connected components*/

5. if jVij � MAX2

6. then AttemptAll(Vi; Vj ;K2.1)

7. else AttemptK(Vi; Vj;K2.2)

8. endfor

9. endfor

10. AnalyzeRoadmap /*compute connected components*/

Each iteration of the inner for loop attempts to make

a connection between two connected components Vi

and Vj. If the size of the smaller component, Vi, is

less than some constant MAX2 (typically 10-30), then

connection attempts are made between every node in

Vi to the K2.1 closest nodes in Vj . If, however, jVij �

MAX2, then connections are attempted for the K2.2 clos-

est pairs of nodes, one in Vi and one in Vj . In either

case, the procedure returns as soon as one connection

is made.

The stage 2 strategy implemented in obprm is ac-

tually a bit more sophisticated in that it consists of

several substages, each one patterned after the proce-

dure outlined above. They di�er from each other in the

values of the parameters MAX2, K2.1, and K2.2, and in

the set of local planners used to make the connections.

In particular, there are two signi�cant substages:

stage 2.1: K2.1 = 10, K2.2 = 10, MAX2 = 10. Local

Planners: straight-line in C-space, rotate-at-1
2
.

stage 2.2: K2.1 = 10, K2.2 = 8, MAX2 = 10. Local

Planners: straight-line in C-space, straight-line in

C-space, rotate-at-1
2
, A�-clearance(15nbrs,9steps).

The connectivity of the roadmap resulting from each

substage is updated before the next substage is entered.

Stage 3: Growing Components. The �rst two con-

nection stages try to make as many connections as pos-

sible between nodes created in the initial node gener-

ation stage. As in stage 2, the main goal of stage 3

is to merge di�erent connected components in the cur-

rent roadmap. However, whereas in stage 2 we sim-

ply tried to make connections between existing nodes

in the two connected components of interest, in stage

3 we also increase individual connected components by

adding new nodes to them. The motivation is to `grow'

the connected components so that it will be easier to

make connections between them. This stage is similar

to the `enhancement' methods used in prms [17, 10].

OBPRM: An Obstacle-Based PRM for 3D Workspaces

Currently, two di�erent stage 3 strategies are im-

plemented in obprm. They may be used either inde-

pendently, or in series.

Stage 3-fp: Expanding failed paths. The motiva-

tion behind this �rst method is that even when con-

nection attempts between connected components fail,

they may make some progress which might be useful.

The general idea is to save the last valid node c3 visited

on a failed connection attempt between con�gurations

c1 and c2, and to add this node to our roadmap:

Stage 3-fp: ExpandingFailedPaths
1. Vi = fvjv 2 connected component ig, 1 � i � m

2. cmi := the center-of-mass of Vi
3. for i := 1;m /*connected components*/
4. Vj := component with minimum dist(cmi; cmj)

5. Pi;j := ClosestPairs(Vi; Vj ;K3.1)

6. for each (c1; c2) 2 Pi;j

7. connect(c1; c2; c3) /*c3 is terminus of failed path*/

8. if connect fails

9. then AttemptAll(c3; Vj ;K3.2)
10. if can't connect c3 to Vj

11. then AttemptAll(Nbrs(c3); Vj;K3.3)

12. if can't connect any v 2 Nbrs(c3) to Vj
13. then add c3 to Vi

14. endfor

15. AnalyzeRoadmap /*compute connected components*/
16. endfor

This method uses the center-of-mass to select which

connected components to try to connect (the center-

of-mass of component Vi is the average of all the con-

�gurations in Vi). Next, for each pair (Vi; Vj) of con-

nected components selected, it further selects the K3.1

closest con�guration pairs (c1; c2) in Vi � Vj . If we

cannot connect c1 and c2, we save the last valid node

c3 on this failed path. Then, we attempt to connect

c3 to the K3.2 closest nodes in Vj. If that fails also,

we attempt to connect each of the neighboring con�g-

urations Nbrs(c3) of c3 to the K3.2 closest con�gura-

tions in Vj . If this too fails, then c3 is added to the

roadmap and the process repeats with the next closet

pair (c0
1
; c0

2
) between Vi and Vj .

This whole process can be repeated until no further

progress is obtained. Generally, K3.1 and K3.2 should

be small constants; we have had success using K3.1=

15 and K3.2 = 10. Our current implementation uses

the A�-clearance(15nbrs,9steps) local planner for the

�rst two connection attempts (lines 7 and 9) and the

rotate-at-s planners for the third attempt (line 11).

Stage 3-sc: Expanding small components. The

motivation behind this method is that the con�gura-

tions that are in `di�cult' regions of C-space are likely

to be contained in the smaller connected components,

and moreover, these small components may prove in-

strumental as `bridges' between the larger connected

components. The general idea is to expand the small

components by generating more con�gurations near

con�gurations already in that component.

Stage 3-sc: ExpandingSmallComponents
1. Vi = fvjv 2 connected component ig, 1 � i � m

2. for i := 1;m /*connected components*/

3. if jVij < MAX3

4. c := random con�guration in Vi

5. generate Nbrs(c)

6. for each c0 2 Nbrs(c)
7. AttemptAll(c0; Vi; K3.3)

8. endfor

9. run ConnectingComponents /* stage 2 */

As with the other methods, there are several param-

eters that must be selected appropriately: MAX3 (the

cut-o� for small components) and K3.3 (the number

of con�gurations to try to connect with each neighbor

c0). In addition, one must select the number and type

of neighbors one would like to generate, and the lo-

cal planners to use to attempt those connections. The

current implementation uses MAX3 = 10, K3.3 = 10,

and considers the �fteen neighbors checked by the A�

method. The straight-line planner is used to try to con-

nect each c0 2 Nbrs(c) to c's connected component Vi
(line 7), and A�-clearance(15nbrs,9steps) is the planner

used in the call to ConnectingComponents (the stage

2 connection strategy).

5 Evaluating OBPRM

The experiments described below were designed to

evaluate the node generation and connection strategies

in cluttered Workspaces containing narrow C-space

corridors. All programs were written in C, and run

on SGI machines.

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

Figure 1: Corridor 1. Figure 2: Corridor 2. Figure 3: Alpha puzzle.

Environments. We considered two Workspace envi-

ronments containing easily identi�able C-space corri-

dors, and an interesting puzzle. (See Figures 1{3.)

Workspace corridor 1 had dimension 2� 3� 5, and

had three di�erent moving objects (robots): a 1�1�1

cube (easy, rotates easily in corridor), a 1�1:5�2 block

(hard, cannot rotate freely), and a `half-cone' that has

roughly the same dimensions as the block (moderate).

Workspace corridor 2 consisted of a tunnel of dimen-

sion 3�8�3 contained in a bounding box of dimension

5� 28� 6. Again, we considered three moving objects

(robots): a small block of dimension 1�2�1 (easy), a

medium block of dimension 1�4�1 block (moderate),

and a large block of dimension 2� 4� 2 block (hard).

We also considered an alpha puzzle environment con-

taining two tubes twisted into an � shape (1008 trian-

gles per tube). The objective is to separate the inter-

twined tubes by a sequence of rotations and transla-

tions. The puzzle can be made easier by scaling the

obstacle tube in one dimension, which has the e�ect of

shrinking or widening the gap between the two prongs

of the � and simultaneously transforming the tube's

cross-section from a circle to an increasingly thinner

and longer ellipsoid.

5.1 Node Generation

The two most important criteria for evaluating a

node generation scheme are, �rst, its ability to gen-

erate nodes in di�cult regions of C-space, and second,

whether the generated nodes can be connected into a

roadmap. We used the Corridor 1 environment to eval-

uate these criteria.

Generating nodes in di�cult regions. The na-

ture of the Corridor 1 environments made it easy to

determine whether a generated con�guration was in

the corridor. In particular, using the seed generation

strategy of interest, and a chosen number of shells (1,

3, or 5), we �rst attempted to generate the requested

number of nodes (100 per obstacle, or 400 total for

shell 1, and 1200 or 2000 total for shells 3 and 5, re-

spectively). Then, each resulting node was classi�ed as

being inside (all vertices inside the corridor), border

(some vertices inside and some outside), or outside.

The values reported are averages of 10 runs.

As expected, it became increasingly di�cult to gen-

erate inside con�gurations for the cube, the half-cone,

and the block. However, the same did not hold for

the border con�gurations { which are also very impor-

tant since they represent the entrance to the corridor.

In fact, for all shells, more border con�gurations were

generated for the half-cone than for the cube or block.

The reason for this is that the half-cone is longer than

the cube and thinner than the block (and thus there

are more border con�gurations possible for it).

Usually the best strategy for at least one of the

objects was a combined strategy (i.e., using multiple

strategies). This was true even though some of our

strategies are more or less indistinguishable for the ob-

jects we studied, e.g., random versus weighted trian-

gles for the cube, or extreme versus random vertices

for all objects. We suspect this will only be magni�ed

when more complex objects are studied. However, we

did see that certain strategies are preferred for certain

types of objects | and these adhere to our expecta-

tions as listed in Table 1. In particular, cM is good for

OBPRM: An Obstacle-Based PRM for 3D Workspaces

symmetrical objects like the cube, eV and wT cover

important, and perhaps di�erent, object features, and

rV and rT help assure good coverage.

Our �ndings seemed to indicate that multiple shells

are not useful for generating inside or border

con�gurations. For the cubes the percentage of

inside/border con�gurations was approximately 10%

in the �rst shell and between 7% and 8% in the sec-

ond and third shells; a similar relation existed for the

half-cone and block. However, our experience showed

that three shells did improve roadmap quality, and thus

they should probably be retained since they come for

free during node generation.

Generating connectable nodes. The connectivity

of the resulting roadmap is the other crucial criterion

for judging a node generation scheme. Since we were

concerned with our ability to �nd paths through C-

space corridors, we pruned the outside con�gurations

and built stage 1 roadmaps using only the inside and

border con�gurations.1

Figure 4 shows, for the cube and half-cone, respec-

tively, four stage 1 roadmaps built using di�erent seed

generation strategies; all roadmaps were constructed

using all local planners. Each connected component of

a roadmap is represented by a bar showing the num-

ber of nodes in that component. Thus, in general, the

fewer and the taller the bars of a roadmap, the better

it is. Of course, it is also desirable for the large con-

nected components to contain inside nodes (shown in

black).

In general, the best roadmaps were obtained using

the combined strategy rV+wT. It can be seen from

the �gures that using all the seed strategies yields

roadmaps whose connectivity is approximately an av-

erage of the others. Thus, if one knows enough about

the shapes of the objects, then some advantage can be

gained by selecting node generation strategies suited

to those objects. However, if this knowledge is not

available, then roadmaps with reasonable connectivity

1Notice that the pruning may reduce connectivity since

we may remove outside nodes that `bridge' di�erent con-

nected components that pass through di�erent C-space cor-

ridors corresponding to the one Workspace corridor.

can be obtained by using all the strategies simultane-

ously. In this case, it might be advisable to �rst build

small roadmaps using the various strategies, and then

to select appropriate strategies based on these `test'

roadmaps.

5.2 Connection

The success of the roadmap connection phase depends

on both the chosen local planning methods and on the

the strategies used to select candidate nodes for con-

nection.

Choosing Local Planners. To test the connectivity

of the roadmaps resulting from di�erent (combinations

of) local planners, we used the Corridor 1 environ-

ments, generated sets of nodes (once), and analyzed

the connected components in the stage 1 roadmaps

built using di�erent (combinations of) planners. (See

Figure 5.)

Each �gure shows the connected components of the

roadmap constructed using the di�erent combinations

of local planners. It is clear the connectivity of the

resulting roadmap is improved by using multiple lo-

cal planners, and that none of them is totally redun-

dant. That is, there are some cases in which each local

planner makes the crucial connections between di�er-

ent connected components. For example, the half-cone

roadmaps in Figure 5 show that the straight-line and

rotate-at-1
2
planners make di�erent connections (Rdmp

3 vs Rdmps 1 and 2), and that the A�-like planners

(Rdmps 5 and 6) were needed to obtain one connected

component.

While it is true that connectivity can be greatly en-

hanced by using multiple local planners, it should be

remembered that this implies a larger cost for each con-

nection. Some sample node generation and connection

times for the stage 1 (hybrid) roadmaps environment

are shown in Table 2; note that the connection times for

the Corridor 1 environments are only for the reduced

set of inside and border nodes. As can be seen, the

A�-like planner has a large impact on the running time.

Multi-stage Connection. To evaluate our multi-

stage connection strategy, we used the Corridor 2 en-

vironments. In each case, we �rst generated nodes,

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

Roadmap Construction, seed strategy 8 (all), no. shells = 3

Generation Roadmap Connection

Envt #nodes #nodes Rdmp1 Rdmp2 Rdmp3 Rdmp4 Rdmp5 Rdmp6

sec all in+bd sec #cc sec #cc sec #cc sec #cc sec #cc sec #cc

cube 10 872 100 25 21 46 19 49 15 75 7 175 7 199 6

half-cone 22 834 86 31 12 58 18 61 9 105 6 232 6 269 5

block 15 736 73 13 23 23 31 28 23 67 10 162 9 188 9

alpha 2 15 n/a 3 11 4 14 6 10 18 9 30 7 41 7

Table 2: Preprocessing computation times and statistics for stage 1 (hybrid) roadmaps.

Multi-Stage Roadmap Connection (node generation: seed strategy 77, no. shells = 3)

Generation Roadmap Connection

Envt Stage 1 Stage 2.1 Stage 2.2 Stage 3-fp Stage 3-sc

sec #nodes sec #cc sec #cc sec #cc sec #cc sec #cc

sm blk 17 327 63 12 29 6 257 2 1870 2 76 2

sm blk 47 839 159 20 120 7 645 2 4 1 0 1

md blk 7 21 3 7 14 6 487 2 27 1 96 1

md blk 25 128 32 14 34 12 797 3 330 1 331 1

md blk 36 183 42 19 101 11 709 2 5 1 70 1

lg blk 56 72 13 4 1 4 276 2 7020 2 249 2

lg blk 85 141 23 13 13 11 909 2 2273 1 169 2

lg blk 115 198 29 14 27 13 1409 2 3 1 32 1

lg blk 116 210 23 14 41 13 1114 2 14 1 93 2

alpha 15 591 156 27 31 21 3206 10 25832 7

alpha 129 4949 1346 47 202 22 3440 17 29637 14

Table 3: Preprocessing computation times and statistics for multi-stage roadmap connection.

and then performed the various connection stages;

the stage 3 connection methods were each applied to

the roadmap produced in stage 2.2. Some resulting

roadmaps are shown in Figure 6. The roadmap la-

bels correspond to the connection stage that produced

it. In almost every case, there were clear connectivity

bene�ts obtained from one stage to the next. For ex-

ample, even though stage 2.1 considers the same set

of nodes and uses only the straight-line and rotate-at-1
2

local planners, it still usually produced a better con-

nected roadmap. The �rst time the A� planners are

used is in stage 2.2. In every case studied, there was

a signi�cant improvement in connectivity between the

stage 2.1 and stage 2.2 roadmaps. This was partic-

ularly true as the environments increased in di�culty.

By design, the Corridor 2 environment has a ten-

dency to have two connected components, one on either

side of the corridor. For the medium and large blocks,

the more sophisticated stage 3 strategies proved cru-

cial for joining these components. It is interesting to

note that the stage 3 strategies sometimes discovered

crucial inside nodes that enable them to connect the

two components (e.g., for the large block).

Node generation and connection times for the various

connection stages are shown in Table 3. As expected,

stage 1 and stage 2.1 are generally the fastest since

they employ only the faster local planners (straight-

line and rotate-at-1
2
). It can also be seen that the time

spent in stage 1 depends on the number of nodes, and

the time spent in stage 2.1 depends on the number

of connected components. The times spent in stage

2.2 and stage 3 are generally signi�cantly greater due

to the A�-like planners. Thus, while it is clear that

these methods can be highly e�ective, they must be

used with care in order for the resulting methods to be

computationally feasible.

OBPRM: An Obstacle-Based PRM for 3D Workspaces

Alpha-puzzle. The hardest problem studied in this

paper is the alpha-puzzle. This problem illustrates that

di�erent problems require di�erent types of node gen-

eration strategies. A representative roadmap for this

problem must include both con�gurations in which the

two tubes are intertwined and separated. Through ex-

perimentation, we found that such con�gurations are

most easily generated using a strategy of rV+wT for

one tube and cM for the other for the free nodes; us-

ing this strategy, the generated nodes are split roughly

80/20 between intertwined and separated con�gura-

tions. In contrast to the corridor environments, the

contact con�gurations did not seem to be as useful

here.

At present, obprm has succeeded in solving a ver-

sion of the problem in which the obstacle tube is scaled

by 1:2 in the z-direction (perpendicular to the tube's

cross-section). This version was solved using a stage

1 roadmap. Although, it is a rather close �t, the gap

between the prongs of the � in this version is large

enough to enable the other tube to escape by `sliding'

out (rather than the complicated sequence of rotations

and translations needed to solve the original version).

Currently, we are working on this problem using our

multi-stage connection strategy. Based on our prelim-

inary results we believe we will be able to solve (at

least) the version in which the obstacle tube is scaled

by 1:1.

6 Conclusion

In this paper, we describe and evaluate several strate-

gies for node generation and propose a multi-stage con-

nection strategy for obprm in cluttered 3-dimensional

Workspaces.

Our evaluation of various node generation strategies

in terms of their ability to produce nodes in di�cult

regions of C-space, and in terms of the connectivity

of the resulting roadmaps, yields recommendations for

selecting appropriate combinations of node generation

strategies for di�erent types of objects (robot or ob-

stacle). When the objects cannot be classi�ed easily,

we recommend a default strategy which is essentially a

combination of all the others. While it will likely not

be the best strategy in any given situation, it seems to

give reasonable results for the problems we've studied.

Finally, when the relative importance of the contact

con�gurations and the free con�gurations cannot be

determined a priori, we recommend generating roughly

half of each.

We also show that roadmap connectivity can be

greatly improved by using a multi-level connection

strategy and multiple local planners. However, this im-

provement in connectivity does require signi�cant com-

putation. Although our study was aimed at obprm,

we believe our techniques and conclusions will be use-

ful for prms in general, and for other motion planning

approaches as well.

Currently, we are working to make obprm adapt au-

tomatically to the environment (e.g., automatically se-

lecting seed generation strategies), and are further re-

�ning the connection strategies described here. We are

also planning to augment our implementation for plan-

ning contact tasks.

Acknowledgement

This research was supported in part by NSF CAREER

Award CCR-9624315 (with REU Supplement), NSF

Grant IRI-9619850, and by the Texas Higher Education

Coordinating Board under Grant ARP-036327-017. O.

Burchan Bayazit is supported in part by the Turkish

Ministry of Education. Lucia K. Dale is supported in

part by a GE Foundation Graduate Fellowship. Daniel

Vallejo is on leave from Universidad de las Americas-

Puebla, Mexico and is supported in part by a Fulbright-

CONACYT scholarship.

We would like to thank the robotics group at Texas

A&M, especially Je� Trinkle and Li Han, for their sug-

gestions regarding this work. We are also grateful to

John Canny, Shane Chang, Lydia Kavraki, and Jean-

Claude Latombe for useful discussions and comments.

The alpha puzzle was designed by Boris Yamrom of the

Computer Graphics & Systems Group at GE's Corpo-

rate Research & Development Center. GE also pro-

vided us with Product Vision (their CAD animation

package) which was used to produce the environment

N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo

snapshots shown in this paper, and our collision detec-

tion routine is based on code developed at GE.

References

[1] J. M. Ahuactzin and K. Gupta. A motion planning
based approach for inverse kinematics of redundant

robots: The kinematic roadmap. In Proc. IEEE In-

ternat. Conf. Robot. Autom., pages 3609{3614, 1997.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones,

and D. Vallejo. Choosing good distance metrics and

local planners for probabilistic roadmap methods. In
Proc. IEEE Internat. Conf. Robot. Autom., 1998. To

appear.

[3] N. M. Amato and Y. Wu. A randomized roadmap
method for path and manipulation planning. In Proc.

IEEE Internat. Conf. Robot. Autom., pages 113{120,

Minneapolis, MN, April 1996.

[4] J. Barraquand and J.-C. Latombe. Robot motion plan-

ning: A distributed representation approach. Internat.

J. Robot. Res., 10(6):628{649, 1991.

[5] D. J. Challou, M. Gini, and V. Kumar. Parallel search
algorithms for robot motion planning. In Proc. IEEE

Internat. Conf. Robot. Autom., volume 2, pages 46{51,

1993.

[6] H. Chang and T. Y. Li. Assembly maintainability

study with motion planning. In Proc. IEEE Internat.

Conf. Robot. Autom., pages 1012{1019, 1995.

[7] P. C. Chen and Y. K. Hwang. SANDROS: A motion

planner with performance proportional to task di�-

culty. In Proc. IEEE Internat. Conf. Robot. Autom.,
pages 2346{2353, 1992.

[8] B. Glavina. Solving �ndpath by combination of di-

rected and randomized search. In Proc. IEEE Internat.

Conf. Robot. Autom., pages 1718{1723, 1990.

[9] T. Horsch, F. Schwarz, and H. Tolle. Motion planning

for many degrees of freedom { random re
ections at c-
space obstacles. In Proc. IEEE Internat. Conf. Robot.

Autom., pages 3318{3323, 1994.

[10] D. Hsu, J-C. Latombe, and R. Motwani. Path plan-
ning in expansive con�guration spaces. In Proc. IEEE

Internat. Conf. Robot. Autom., pages 2719{2726, 1997.

[11] Y. Hwang and N. Ahuja. Gross motion planning {
a survey. ACM Computing Surveys, 24(3):219{291,

1992.

[12] Y. K. Hwang and N. Ahuja. A potential �eld ap-

proach to path planning. IEEE Trans. Robot. Au-

tomat., 8(1):23{32, 1992.

[13] Y. K. Hwang and P. C. Chen. A heuristic and complete
planner for the classical mover's problem. In Proc.

IEEE Internat. Conf. Robot. Autom., pages 729{736,

1995.

[14] L. Kavraki, M. Kolountzakis, and J.-C. Latombe.

Analysis of probabilistic roadmaps for path planning.

In Proc. IEEE Internat. Conf. Robot. Autom., vol-
ume 4, pages 3020{3025, 1996.

[15] L. Kavraki and J. C. Latombe. Randomized prepro-

cessing of con�guration space for fast path planning.

In Proc. IEEE Internat. Conf. Robot. Autom., pages
2138{2145, 1994.

[16] L. Kavraki, J. C. Latombe, R. Motwani, and P. Ragha-

van. Randomized query preprocessing in robot path

planning. In Proc. ACM Symp. Theory of Computing,
pages 353{362, 1995.

[17] L. Kavraki, P. Svestka, J. C. Latombe, and M. Over-

mars. Probabilistic roadmaps for path planning in
high-dimensional con�guration spaces. IEEE Trans.

Robot. Automat., 12(4):566{580, August 1996.

[18] J. C. Latombe. Robot Motion Planning. Kluwer Aca-

demic Publishers, Boston, MA, 1991.

[19] M. Overmars. A random approach to path planning.

Technical Report RUU-CS-92-32, Computer Science,

Utrecht University, The Netherlands, 1992.

[20] M. Overmars and P. Svestka. A probabilistic learn-
ing approach to motion planning. In Proc. Workshop

on Algorithmic Foundations of Robotics, pages 19{37,

1994.

[21] J. Reif. Complexity of the piano mover's problem and
generalizations. In Proc. IEEE Symp. Foundations of

Computer Science, pages 421{427, 1979.

[22] P. Watterberg, P. Xavier, and Y. Hwang. Path plan-
ning for everyday robotics with sandros. In Proc. IEEE

Internat. Conf. Robot. Autom., pages 1170{1175, 1997.

[23] Y. Wu. An obstacle-based probabilistic roadmap

method for path planning. Master's thesis, Depart-
ment of Computer Science, Texas A&M University,

1996.

OBPRM: An Obstacle-Based PRM for 3D Workspaces

0

20

40

60

80

100

120

140

N

od
es

Roadmaps For Node Generation Algorithms

Cube in Corridor, With Different Node Generation Algorihtms and Local Planners, nshell=3

LP1: straight-line
LP2: rotate-at-s [0.0]
LP3: rotate-at-s [0.5]
LP4: rotate-at-s [1.0]
LP6: a-star-distance

RdMp6: LP1,LP2,LP3,LP4,LP6

rV+cM rV+rT rV+wT cM+rV+eV+rT+wT

border
Inside

0

10

20

30

40

50

60

70

N

o
d

es

Roadmaps For Node Generation Algorithms

Half-Cone in Corridor, With Different Node Generation Algorihtms and Local Planners, nshell=3

LP1: straight-line
LP2: rotate-at-s [0.0]
LP3: rotate-at-s [0.5]
LP4: rotate-at-s [1.0]
LP6: a-star-distance

RdMp6: LP1,LP2,LP3,LP4,LP6

rV+cM rV+rT rV+wT cM+rV+eV+rT+wT

border
inside

Figure 4: Node Generation: stage 1 roadmaps (all local planners), corridor 1, cube and half-cone, respectively.

0

5

10

15

20

25

30

35

N

o
d

es

Local Planners/Connections

Half-Cone in Corridor, With rV-wT Node Generation Algorithm, nshells=1

LP1: straight-line
LP2: rotate-at-s [0.0]
LP3: rotate-at-s [0.5]
LP4: rotate-at-s [1.0]
LP6: a-star-distance

RdMp1: LP1
RdMp2: LP3
RdMp3: LP1,LP3
RdMp4: LP1,LP2,LP3,LP4
RdMp5: LP1,LP3,LP6
RdMp6: LP1,LP2,LP3,LP4,LP6

RdMp1 RdMp2 RdMp3 RdMp4 RdMp5 RdMp6

border
Inside

0

2

4

6

8

10

12

14

16

N

od
es

Local Planners/Connections

Block in Corridor, With rV-rT Node Generation Algorithm, nshells=1

LP1: straight-line
LP2: rotate-at-s [0.0]
LP3: rotate-at-s [0.5]
LP4: rotate-at-s [1.0]
LP6: a-star-distance

RdMp1: LP1
RdMp2: LP3
RdMp3: LP1,LP3
RdMp4: LP1,LP2,LP3,LP4
RdMp5: LP1,LP3,LP6
RdMp6: LP1,LP2,LP3,LP4,LP6

RdMp1 RdMp2 RdMp3 RdMp4 RdMp5 RdMp6

border
Inside

Figure 5: Local Planners: stage 1 roadmaps, corridor 1, half-cone and block, respectively.

RM 1 RM 2.1 RM 2.2 RM 3−fp RM 3−sc
0

5

10

15

20

25

30

35

40

45
medium block in enclosed corridor (21 nodes)

Outside
Boundary
Inside

RM 1 RM 2.1 RM 2.2 RM 3−fp RM 3−sc
0

20

40

60

80

100

120

140

160
large block in enclosed corridor (141 nodes)

Outside
Boundary
Inside

Figure 6: Connection Stages: stage 1, 2.1, 2.2, 3-fp, 3-sc roadmaps, corridor 2, medium and large block, respectively.

