Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesota - April 1996

A Randomized Roadmap Method for Path and Manipulation Planning*

NANCY M. AMATO
amato@cs. tamu.edu

YAN WU
yanwu@cs. tamu.edu

Department of Computer Science, Texas A&M University
College Station, TX 77843-3112

Abstract

This paper presents a new randomized roadmap method
for motion planning for many dof robots that can be used
to obtain high quality roadmaps even when C-space is
crowded. The main novelty in our approach is that roadmap
candidate points are chosen on C-obstacle surfaces. As
a consequence, the roadmap is likely to contain difficult
paths, such as those traversing long, narrow passages in
C-space. The approach can be used for both collision-free
path planning and for manipulation planning of contact
tasks. Experimental results with a planar articulated 6 dof
robot show that, after preprocessing, difficult path planning
operations can often be carried out in less than a second.

1 Introduction

Automatic motion planning has application in many ar-
eas such as robotics, virtual reality systems, and computer-
aided design. Although many different motion planning
methods have been proposed, most are not used in prac-
tice since they are computationally infeasible except for
some restricted cases, e.g., when the robot has very few
degrees of freedom (dof) [7, 9]. In particular, it has be-
come apparent that with existing technology the enormous
complexity of the problem can only be overcome through
the use of probabilistic or heuristic methods (as opposed to
complete methods which are guaranteed to find a solution
or determine that none exists).

Several promising heuristics for path planning have been
proposed, of which we mention a few here. The Random-
ized Path Planner (RPP) of Barraquand and Latombe [2]
is a potential field method that uses random walks to at-
tempt to escape local minima. ‘Although this method has
been shown to work well for many dof robots, there exist
simple situations in which it performs poorly (i.e., does
not find a solution) [3, 8]. Researchers have proposed var-
ious potential functions (e.g., [1]) and other techniques,

*This research supported in part by NSF Grant IRI-9304734.

0-7803-2988-4/96 $4.00 © 1996 IEEE

such as learning [6], for escaping local minima. In gen-
eral, potential field methods can be quite effective when
the configuration space (C-space) is relatively uncluttered.
However, they have not been as successful for planning in
crowded C-space.

Independently, Kavraki and Latombe [8] and Overmars
and Svestka [10, 11], proposed similar path planning meth-
ods which use randomization during preprocessing to con-
struct a graph in C-space (often called a roadmap {9]) whose
vertices correspond to collision-free configurations of the
robot, and in which two vertices are connected by an edge
if a path between the two corresponding configurations can
be found by a simple, local, deterministic planner. Briefly,
roadmap candidates are selected according to a uniform dis-
tribution over C-space and those found to be collision-free
are retained. Next, connections between candidate pairs are
attempted with a simple planner, and then “difficult’ regions
of C-space are identified and the roadmap is enhanced in
these regions with additional roadmap nodes. Planning in-
volves connecting the initial and goal configurations to the
roadmap, and then finding a path in the roadmap between
these two connection points. Planning can be done very
fast in many situations. However, long, narrow passages
between C-obstacles might be difficult to find. In [11],
it is discussed how this approach can be used in ‘single
shot’ mode, i.e., without constructing the entire roadmap
first during preprocessing. Earlier, Donald [5] proposed
the related idea of using free points drawn from a coarse
grid in C-space to specify promising subgoals for motion
planning.

1.1 Our Results

In this paper, we present a new randomized roadmap
method for motion planning for many dof robots. The gen-
eral approach follows traditional roadmap methods: during
preprocessing a graph, or roadmap, is built in C-space, and
planning consists of connecting the initial and goal con-
figurations to the roadmap, and then finding a path in the
roadmap between these two connection points. The main
novelty in our approach is a new method for generating

Figure 1: A roadmap in C-space that might be obtained when
candidate nodes are uniformly distributed on constraint surfaces.

roadmap candidate points. In particular, we attempt to gen-
erate candidate points uniformly distributed on the surface
of each C-obstacle. (See Figure 1.) Using this approach,
high quality roadmaps can be obtained even when C-space
is crowded. Experimental results with a planar articulated
6 dof robot show that, after preprocessing, difficult path
planning operations can often be carried out in less than a
second.

The approach extends fairly easily to dynamic envi-
ronments. To update the roadmap when an object in the
workspace moves we first remove current roadmap nodes
in conflict with the new position, and then generate nodes
reflecting the new position and connect them to the existing
roadmap.

Our approach can be applied to some important situ-
ations that have so far not been satisfactorily solved by
heuristic methods:

¢ Paths through long, narrow passages in a crowded C-
space can be found since they are likely to appear in
the roadmap.

¢ The method can be used for manipulation planning of
contact tasks since the roadmap can be built on the
constraint surfaces.

The previous approaches most closely related to ours
are the path planning methods of Kavraki and Latombe [8]
and Overmars and Svestka [10, 11] mentioned above. In
fact, in [11] the authors describe a technique they call geo-
metric node adding in which roadmap nodes are generated
from robot configurations near obstacle boundaries, which
is very similar in concept to the idea of generating nodes
on C-obstacle boundaries. Moreover, they observe that this
technique yields better roadmaps than uniform node gen-
eration. However, they state that geometric node adding
(as they describe it) cannot be applied to articulated robots.
Thus, a contribution of this paper is to provide methods
for generating points on C-obstacle surfaces for general
many dof robots. The randomized methods we propose

114

for finding these roadmap candidate nodes are more costly
than in the techniques [8, 11] where candidate points are
randomly selected according to a uniform distribution in
C-space. However, our experimental results show that this
additional computation in the node generation phase is neg-
ligible in comparison to the total preprocessing time, which
in all the methods is dominated by the roadmap connection
phase. Finally, in some sense, one can view our work as
extending the strategy of [8, 11] to contact tasks.

We describe how the roadmap is constructed in Sec-
tion 2, and how it is used for planning in Section 3. Im-
plementation details and experimental results are presented
in Sections 4 and 5, respectively. Future extensions of this
work are discussed in Section 6.

2 Building the Roadmap

The tasks required for building the roadmap are gen-
erating the roadmap candidate nodes and connecting the
candidates to form the roadmap. The description of these
tasks below is for a general many dof robot.

2.1 Generating Candidate Nodes

Let d be the number of degrees of freedom of the robot,
andletS = {s;|1 <4 < n} betheobjectsin the workspace.
Without loss of generality, assume that C-space has dimen-
sion d, and let §’ = {s}]1 < ¢ < n} denote the set of
C-objects corresponding to the objects in the workspace.

In this phase, we generate a set V' of candidate roadmap
nodes, each of which corresponds to a point in C-space.
The general strategy of the node generation process is to
construct a set V; of candidate nodes for each object s;
such that each p € V; lies on the surface of s and is not
contained in the interior of any s’ € S’. The set of roadmap
candidate nodes is the union of the candidate sets computed
for each object, i.e., V = U;V;.

We now consider how to compute the candidate set for
an object. To obtain a high quality roadmap, we would
like the nodes to be uniformly distributed (according to
some metric in C-space) on the constraint surfaces that
delineate the robot’s free space. To simplify the exposition,
in the following we assume the metric is the Euclidean
distance in C-space; this and some other possible metrics
are mentioned in Section 4. The easiest way to generate
a candidate set for an object s € S is to first compute a
set of points uniformly distributed on the surface of s’, and
then discard those points found to be internal to any other
C-object. The process is sketched below for s; € S.

1. Generate m; points py,p2,...,Pm, (approximately)
uniformly distributed on the surface of s and place
these points in V;.

Figure 2: Generating points uniformly on a C-object in two-
dimensional C-space with m = 8.

2. Remove all points from V; that lie in the interior of
some s; € 8,1 <j<n.

Briefly, the points in Step 1 are identified by binary searches
which perform collision detection checks at each step. Ide-
ally, the number m; of points generated in Step 1 will de-
pend upon the size and shape of s}, and thus may vary from
C-object to C-object. In Step 2, collision detection is used
to determine which points are to be removed from V;. We
next describe the point generation process in more detail.
Collision detection is discussed with other implementation
issues in Section 4.

2.1.1 Finding Points on C-objects

We now consider how to generate m points on the surface
of a C-obstacle s’ € S’. For now, assume that we know the
number of points we wish to obtain. Ideally, as mentioned
above, these m points should be uniformly distributed on
the surface of s’. However, since we wish to avoid the
costly computation of the constraint surfaces, we propose
using the heuristic method outlined below to generate the
points.

1. Determine a point o (the origin) inside s’

2. Select m rays with origin o and directions uniformly

distributed in C-space.

. For each ray identified in Step 2, use binary search to
determine a point on the boundary of s’ that lies on
that ray.

An example of the method for two-dimensional C-space
and m = 8 is shown in Figure 2.

In Step 1, an internal point o can be determined by
selecting any configuration in which the robot is known
to collide with the object s. This is trivially done for a
free-flying robot, and requires only slightly more effort
otherwise. Of course, to obtain as uniform a distribution

115

as possible, one would like to select the origin somewhere
near the center of the C-object. A simple heuristic is to
select a configuration in which a central point of the object
(e.g., an average of the coordinates of the object’s vertices)
coincides with a central point of the robot.

The rays in Step 2 can be selected according to a simple,
regular partition of C-space. For example, in Figure 2,
since m = 8 and d = 2, the available 360 degrees are
divided into eight equal regions.

Consider a ray 7 identified in Step 2. The binary search
in Step 3 proceeds by continually narrowing the region on
r known to contain a surface point of s’. Initially, we
know that the origin o is internal to s, and assume that
we also know a point external to s', e.g., the point labeled
1 in Figure 2. Next, the segment determined by these
internal and external points is divided at its midpoint, e.g.,
the point labeled 2 in the figure. The search then proceeds
recursively in the sub-segment which has one internal and
one external endpoint. The process terminates when a
point on the boundary of s’ is found and/or the minimum
step size is reached, e.g., the point labeled 4 in the figure.
Before beginning the binary search we must find a point
on r known to be external to s’. This could be done, for
example, by choosing some point known to be at the edge
of the relevant portion of C-space, or by iteratively testing
points of increasing distance from the origin. Note that it
is possible no external point is found, either because r may
not pierce s', or because our search for such a point is not
successful.

Potential problems and optimizations. There are several
situations in which the point generation scheme described
above may not yield a good distribution on the surface of
the C-object.

Clearly, the shape of the C-object and the selected origin
both have a great influence on the quality of the resulting
distribution. In particular, a distribution close to uniform
can only be obtained if the C-object is roughly spherically
shaped and the origin lies near its center. For example, if
the C-object is long and narrow, then no choice of origin
will yield a uniform distribution. In particular, the surface
points that are farthest from the origin will have a much
larger distance from their neighbors than those that are
close to the origin. An optimization that can be applied in
this case is to generate more points on the surface between
points that are considered too far apart. An example is
shown in Figure 3. Another heuristic is to compare the
surface normal of a point with those of its neighbors: if
they are very different, then the constraint surface must
curve between them and we should generate more points.

Another difficulty arises if the C-object boundary has
“folds’, i.e., a ray from the origin may intersect the bound-
ary multiple times. In this case, one cannot determine if a
good distribution has been obtained by inspecting the Eu-

Figure 3: To get a better distribution on ‘oblong’ C-objects,
additional points (lightly shaded) are generated near points with
large nearest neighbor distance.

clidean distances between neighboring nodes. For exam-
ple, in Figure 2, although the Euclidean distances between
neighboring nodes are fairly uniform, the boundary dis-
tance between p and q is much larger than between other
neighboring nodes. Unfortunately, this situation is difficult
to identify without computing the C-object, which we hope
to avoid. The heuristic mentioned above of comparing the
surface normals of neighboring points can be used to iden-
tify some of these situations. Finally, even if one knows
a priori that the boundary has ‘folds’, it is not clear how
this information can be used to obtain a better distribution
without performing a significant amount of computation.

2.2 Connecting Roadmap Candidates

We now consider how to connect the candidate nodes
V = U;V; to create the roadmap. The basic idea is to use
a simple, fast, local planner to connect pairs of roadmap
candidate nodes. To save space, the paths found in this
stage will not be recorded since they can be regenerated
quickly. After the connections are made, the connected
components in the roadmap are identified, e.g., by depth-
first search.

Ideally, the roadmap will include paths through all cor-
ridors in C-space. The degree to which this goal can be met
depends upon a number of factors: the number and distribu-
tion of the candidate nodes, the effectiveness of the simple
planner, and the number of connections attempted for each
candidate node. Thus, a trade-off exists between the qual-
ity of the resulting roadmap and the resources (computation
and space) one is willing to invest in building it. Also, the
amount of preprocessing required to achieve a given degree
of connectivity will depend greatly on the complexity of the
C-objects and the robot’s free-space.

Clearly, the method used to determine adjacencies in the
roadmap will depend upon the intended use of the roadmap.
In particular, different planners will be needed for path and

116

Figure 4: Improving the roadmap quality for path planning by
selecting new roadmap nodes (lightly shaded) in C-space corri-
dors.

manipulation planning. However, in all cases the planners
should be simple and the paths easy to reconstruct. In
addition, as outlined below, the connection strategy (i..,
determining which connections to attempt) may vary from
application to application. In the following, k is a parame-
ter, and distances are measured according the chosen metric
in C-space.

Many different connection strategies could be used in
path planning applications. For example, the method used
in [8] is to try to connect each node v € V to its k nearest
neighbors in V. A strategy that could improve the chance
of finding connections across wide C-space corridors is as
follows. For each node v € V;, attempt to connect it to
its k nearest neighbors in V; € V, for 1 < j < n. Note
that both of these strategies require a non-trivial amount
of computation to determine the & closest nodes. Thus, it
might be desirable to use some heuristic method to identify
the ‘close’ nodes.

The connection strategies for manipulation planning are
more constrained since planning is restricted to the con-
straint surfaces. In this case a simple approachiis to attempt
to connect each node v € V; to its ky nearest neighbors in
V. and also to its k) nearest neighbors in V' — V;; usually
one would select k1 > k.

Possible optimizations. Since the roadmap nodes are lo-
cated on constraint surfaces (i.e., points of contact between
the robot and an object), the paths encoded in the roadmap
will ‘skip’ along the surfaces of C-objects and will not be
very desirable for many path planning applications. In the
planning phase, smoothing techniques can be used to im-
prove the paths. We can also try to improve the quality of
the paths in the roadmap by generating additional roadmap
nodes near the center of C-space corridors. This could be
done, for example, by adding an additional node near the
midpoint of the path found by the simple planner when con-
necting two roadmap nodes (lying on different C-objects).
Next, connections would be attempted between pairs of

these new ’corridor’ nodes (see Figure 4).

Another potential optimization is to adaptively deter-
mine the number of roadmap candidate nodes to generate
and the number of connections to attempt. For example,
one could begin by attempting a small number of connec-
tions for each node. Then, if the resulting roadmap is not
sufficiently connected, additional connections could be at-
tempted. This process could be iterated until the roadmap
is deemed to be sufficiently connected or until no further
improvement is obtained.

3 Planning

Planning is carried out as in any roadmap method: we
attempt to connect the nodes z; and z,, representing the
start and goal configurations, respectively, to the same con-
nected component of the roadmap, and then find a path in
the roadmap between these two connection points. The
following approach, proposed in [8], is well suited for our
roadmap. First, the simple planner is used to try to connect
the start and goal nodes to the roadmap; connections are
attempted between z; and the & closest roadmap nodes.
If no connection is made for z;, then we execute a ran-
dom walk and try to connect the end node of the random
walk to the roadmap. This can be repeated a few times
if necessary. If we still can’t connect both nodes to the
same connected component of the roadmap, then we de-
clare failure. After both connections are made, we find a
path in the roadmap between the two connection points us-
ing breadth-first search. Recall that we must regenerate the
paths between adjacent roadmap nodes since they are not
stored with the roadmap. Finally, smoothing techniques
can be applied to improve the resulting path.

In many situations, some paths may be preferred to other
paths. This information could be encoded in the roadmap
by giving edges on desired (undesired) paths lower (higher)
weights, and then using a shortest path computation to find
the path between the start and goal connection points. Other
methods for favoring certain paths have been proposed that
could potentially be integrated into the roadmap (e.g., [41).

4 Implementation Details

We implemented a path planner for a fixed-base seg-
mented manipulator in a two-dimensional workspace. Gen-
erally, whenever there was a choice between implementa-
tion options, we chose the simplest method, which was
often also the least efficient. This strategy was taken in
order to produce a working prototype quickly and test the
general concept of our approach. The descriptions below

are for a planar articulated robot with J joints; in our ex-
periments J > 6.

C-Space distance metric. We used a simple Euclidean
distance metric in C-space (also adopted in [8]). Let j;(z)
denote the position of the ith joint when the robot is in
configuration z, 1 < ¢ < J. The distance d(z, y) between
configurations z and y is

7 1/2
d(z,y) = (Z(di(w,y)f) :
i=1

where d;(z,y) is the Euclidean distance between j;(z) and
and j;(y). Our implementation uses this metric in both
the roadmap connection and the planning phases to select
‘nearby’ candidate nodes. Although the above metric is
simple and intuitive, in some cases a more sophisticated
metric may be desirable. For example, one might want to
assign greater (lesser) weight to joints controlling longer
(shorter) links of the robot. Another possibility is to assign
larger weights to the joints closer to the base of the robot.

Number of candidate nodes. Recall that we attempt to
generate a set V; of m; roadmap candidate nodes for each
obstacle s; in the workspace. As previously mentioned,
the number of candidate nodes that should be generated
depends on both the amount of preprocessing one is willing
to do and on the geometry of the C-obstacle. For simplicity,
we attempted to generate the same number of candidate
nodes for each C-obstacle. We did this by equally dividing
the allowable range of each joint angle into ¢ angles, and
then considering all possible combinations. For example,
in our experiments, ¢ = 4 and we attempt to generate about
47 candidate nodes for each C-obstacle.

Collision detection. The dominant operation in the cre-
ation of the roadmap is collision detection: it is heavily
used both in the node generation and in the roadmap con-
nection phases. Thus, its efficiency is of vital importance
to the overall efficiency of the method. For simplicity, in
our implementation, collision detection was implemented
by checking each link of the robot with each obstacle, and
also with the other links (for self-collision). For the two-
dimensional workspace, better results might have been ob-
tained if we had used C-space bitmaps for each link of the
robot as was done it [8]. For a three dimensional workspace
or complex objects it is not clear what method is best.

Interconnection strategy. In the interconnection phase,
we would like to connect all the roadmap candidate nodes
into a single connected component. Clearly, the intercon-
nection strategy chosen can greatly affect how close we
come to this goal. Recall that we have a set V; of roadmap
candidate nodes for each obstacle s; in the workspace. The
basic approach we have taken is to attempt to connect each

Figure 5: El: five objects.

Environment Generation Connection Roadmap Structure
#nodes | time time #ce sizes time
El 21342 33 3880 | 1 | 21342 109
3 E2 14017 10 786 | 5 | 14011,2(2), 1(2) 39
. <m> B e E3 9046 9 405 | 6 | 9041, 1(5) 14
2 > 2 5 E4 7360 9 285 | 22 | 7339,1(21) 8
o 6 [E] E5 6969 9 287 | 1 | 6969 7

Figure 7: Preprocessing times (seconds) and statistics for the five environments.

Environment Configuration Number
1 2 3 4 5 6
El Fail | .0028 | .0027 | .0027 | .0027 | .0163
E2 0016 | .0012 | .0104 | .0012 - -
E3 0015 | 0012 | .0056 | .0011 - -
E4 0019 | 0012 | .0047 | .0578 - -
E5 0014 | 0012 | .0747 | .1960 - —

Figure 6: The single connected

component for E1. .1948 seconds.

node v € V; to its k nearest neighbors in V; € V, for
1 < 7 < n, where k is is a constant. Clearly, the larger &,
the greater chance of connection, but also the more compu-
tation involved; for our experiments £ = 10.

Note also that this requires a non-trivial amount of com-
putation to determine the & closest nodes for every candi-
date node in every candidate set. In an attempt to reduce
the cost of finding the closest nodes, we tried a heuristic
method to identify ‘close’ nodes. Briefly, we partitioned
V; into k equal-sized subsets, and found the closest node
in each subset; in this way we are guaranteed to find the
closest node, and will also probably get some other close
nodes.

Local planner. The local planner is used in both the
roadmap connection phase of the preprocessing and in the
planning. Our experiments show that the efficiency of the
local planner is of crucial importance since the roadmap
connection phase required orders of magnitude more time
than any other part of the preprocessing. On the other hand,
the local planner must also be deterministic since we do not
want to store the paths connecting nodes in the roadmap.
Thus, great care should be taken in selecting this planner
and different methods will be needed in different situations.

We used the following simple planner. Let = and y be
two configurations we wish to connect. The local planner
we tried was to move directly along the straight line seg-
ment connecting x and y in C-space, performing collision-
detection checks at uniform intervals on the line segment.
The distance between subsequent points checked is deter-
mined by the resolution needed for the current problem
instance.

118

Figure 8: Times (seconds) to connect configurations to the largest connected component
using the straight-line planner. The failure to connect configuration #1 in El was declared in

5 Experimental Results

‘We implemented a path planner for a planar articulated
manipulator in a two-dimensional workspace. The code
was written in C. All measurements were taken on a SGI
Indy workstation running IRIX Version 5.3; the CPU was
a 100 Mhz MIPS R4600 with 32 MB of RAM. All YO
requests were serviced remotely using NFS. Clearly, better
results would be obtained by a faster machine with more
memory and a local disk.

In the following, we analyze the performance of the
method in a few environments. In all cases, we used a fixed-
base articulated robot with 6 dof (6 links). The various
environments, and some representative configurations of
the robot, are shown in Figures 5, 9, 10, 11, and 12.

The preprocessing times (seconds) and other statistics
related to the roadmap construction are shown in the ta-
ble in Figure 7. In this table, the second column lists the
number of configurations generated as roadmap candidate
nodes, the fifth column lists the number of connected com-
ponents in the roadmap after the interconnection process
(using only the straight-line in C-space planner), and the
sixth column lists the number of nodes in each connected
component (if needed, the number of connected compo-
nents of a certain size is indicated in parenthesis). Note
that the roadmap size is influenced by the number of ob-
stacles in the workspace since a set of roadmap nodes is
generated for each obstacle, i.e., the size of the network is
related to the complexity of the environment. We used the
heuristic interconnection strategy mentioned in Section 4
of picking k¥ = 10 candidates from each set V; for every
roadmap node. Note that even with this simple strategy, in

I3

Figure 10: E3: two objects
with narrow passage, base 1.

Figure 9: E2: two objects with
a passage.

Figure 12: E5: two objects
with narrow passage, base 3.

Figure 11: E4: two objects
with narrow passage, base 2.

Figure 14: The largest con-
nected component for E3.

Figure 13: The largest con-
nected component for E2.

all cases almost all the nodes were contained in one large
connected component. Finally, it is important to note that
by far the most expensive phase of the preprocessing is
roadmap interconnection, and thus fast local planners and
collision detection routines are of great importance.

In Figures 6, 13, 14, 15, and 16 all the configurations in
the largest connected component for that environment are
drawn one on top of another in the workspace. The density
of these figures indicates that most reachable regions of the
workspace are well represented in the roadmap (recall that
all roadmap nodes correspond to configurations in which
the robot is in contact with at least one obstacle.)

The times (seconds) required to connect the configura-
tions shown in Figures 5, 9, 10, 11, and 12 to the roadmap
are shown in the table in Figure 8. The times include both
the time of the simple planner and the time to search the
roadmap for candidates for connection (again, using the
heuristic method of Section 4). The only planner used in
this stage was the straight-line in C-space planner, i.e., if
the straight-line planner failed we did not try the approach
mentioned in Section 3 of executing a random walk and
then attempting to connect the terminus of the random walk
to the roadmap. Even so, the only instance in which we
failed to connect to the roadmap was configuration #1 in
environment E1; in this case, failure was declared in .1948
seconds.

The time for path planning between any two configura-
tions would add the time to find the path in the roadmap
between the connection points to the connection times re-
ported above. For the environments considered here, the
search in the roadmap for these paths is very fast (e.g., less

Figure 16: The single con-
nected component for ES.

Figure 15: The largest con-
nected component for E4.

than a second).
Below, we discuss the various environments in more
detail.

E1: This environment contains five obstacles, and the base
of the robot is fixed above the center of obstacle B. The
roadmap for this environment is the largest of our exam-
ples and consequently also takes the most time to produce.
Recall that in this simple implementation we attempted to
generate the same number of roadmap candidate nodes on
each C-obstacle. In this case we successfully generated
8124 nodes for obstacle A, 3832 nodes for obstacie B,
8124 nodes for obstacle C, 630 nodes for obstacle D, and
632 nodes for obstacle E. Fewer valid nodes are generated
for obstacles D and E since they are farther from the base
and most of the configurations in contact with these ob-
stacles will collide with obstacle B. It is also worth noting
that since the environment is symmetric with respect to the
robot, essentially the same number of nodes are generated
for obstacles A and C, and for D and E.

The only case in which we failed to connect a configura-
tion to the roadmap was configuration #1 in E1 which lies
in aregion that is not well-represented in our roadmap. It is
possible that a connection might have been achieved had we
tried executed one or more random walks (see Section 3).

E2: This environment has a long passage between two
obstacles, and the base of the robot is fixed above this
passage. This is a difficult environment for most planning
methods since the workspace passage corresponds to along
passage in C-space. As can be seen, our method handles
this situation easily, and connects all four configurations to

119

the roadmap in a fraction of a second. Also note that the
preprocessing time is less than that for E1. This is mainly
because the roadmap contains fewer nodes since there are
only two obstacles rather than five; we generate 7416 nodes
for obstacle A and 6601 nodes for obstacle B.

E3-E5: These environments are similar to E2 except that
the width of the passage is considerably narrower, which
makes it even more difficult for planning since the corre-
sponding passage in C-space is also narrower. In E3, the
base of the robot is fixed above the passage, and in E4 and
ES5 the base is progressively translated to the right. Again,
our method handles these situations very well, connecting
all configurations to the roadmap with the simple straight-
line in C-space planner in less than a second. Note that
these roadmaps contain fewer nodes that the roadmap for
E2. Thereason for this is that, due to the narrower passage,
fewer collision-free configurations are found in the node
generation phase. In particular, we generate 5045 nodes
for A and 4001 nodes for B in E3, 3730 nodes for A and
3630 nodes for B in E4, and 3584 nodes for A and 3385
nodes for B in E5. Note that as we generate fewer valid
nodes the roadmap connection time, which is the most ex-
pensive phase of the preprocessing, is reduced. Thus, as
C-space gets more cluttered, the preprocessing costs actu-
ally decrease.

A trend shown in this set of environments is that as the
base of the robot is translated away from the passage, fewer
collision-free configurations are found in the passage. This
in turn makes connection between a configuration in the
passage and the roadmap more difficult, as is evidenced in
the differences in the times needed to connect configuration
#4 to the roadmap. In order to improve the chance of
connection in cases such as this, one could use one of the
optimizations mentioned in Section 2.1.1 during the node
generation phase.

6 Conclusion

We have described a new randomized roadmap method
for motion planning that is applicable for both collision-
free path planning and for manipulation planning of contact
tasks. To test the concept, we implemented the method for
path planning for a segmented robot in a two-dimensional
workspace. The method was shown to perform well, even
in crowded C-space.

In the future we plan to extend our implementation
to manipulation planning for contact tasks, to a three-
dimensional workspace, and to dynamic environments (in
which obstacles may move). We also plan to investi-
gate how the cost of building the roadmap can be reduced
through the use of parallel processing, which is becoming
increasingly available in very economical platforms (e.g.,

120

multiple processors on a single chip, and workstations with
several processors). Another interesting problem is to mod-
ify the method for ’single-shot’ planning, i.e., without first
constructing the roadmap in preprocessing, as is done in
[10, 11].

Acknowledgement

We would like to thank the robotics group at Texas
A&M, especially Jeff Trinkle, Peter Stiller, and David
Stewart, for their suggestions regarding this work. We
are also grateful to Lydia Kavraki and Shane Chang for
their comments.

References

[1] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical
potential field techniques for robot path planning. IEEE
Trans. Sys., Man, Cybern., 22(2):224-241, 1992.

J. Barraquand and J.-C. Latombe. Robot motion planning:
A distributed representation approach. Internat. J. Robot.
Res., 10(6):628-649, 1991,

D. J. Challou, M. Gini, and V. Kumar. Parallel search algo-
rithms for robot motion planning. In Proc. IEEE Internat.
Conf. Robot. Autom., volume 2, pages 46-51, 1993,

H. Chang and T. Y. Li. Assembly maintainability study
with motion planning. In Proc. IEEE Internat. Conf. Robot.
Autom., pages 1012-1019, 1995.

[5] B.R. Donald. A search algorithm for motion planning with
six degrees of freedom. Artif. Intell., 31(3):295-353, 1987.

[6] B. Faverjon and P. Tournassoud. A practical approach to
motion-planning for manipulators with many degrees of
freedom. In H. Miura and S. Arimoto, editors, Robotics
Research 5. The MIT Press, 1990.

Y. Hwang and N. Ahuja. Gross motion planning — a survey.
ACM Computing Surveys, 24(3):219-291, 1992.

L. Kavraki and J. C. Latombe. Randomized preprocessing
of configuration space for fast path planning. In Proc. IEEE
Internat. Conf. Robot. Autom., pages 2138-2145, 1994,

J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, 1991.

M. Overmars. A random approach to path planning. Tech-
nical Report RUU-CS-92-32, Computer Science, Utrecht
University, The Netherlands, 1992.

[3

—

[4]

[7]

(8]

(9]

[10]

[11] M. Overmars and P. Svestka. A probabilistic learning ap-
proach to motion planning. In Proc. Workshop on Algorith-

mic Foundations of Robotics, pages 19-37, 1994.

