Robotic Motion Planning: Bug Algorithms
(with some discussion on curve tracing and sensors)

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion

Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset
What’s Special About Bugs

• Many planning algorithms assume global knowledge

• Bug algorithms assume only *local* knowledge of the environment and a global goal

• Bug behaviors are simple:
 – 1) Follow a wall (right or left)
 – 2) Move in a straight line toward goal

• Bug 1 and Bug 2 assume essentially tactile sensing

• Tangent Bug deals with finite distance sensing
A Few General Concepts

- **Workspace** W
 - $\mathbb{R}(2)$ or $\mathbb{R}(3)$ depending on the robot
 - could be infinite (open) or bounded (closed/compact)

- **Obstacle** WO_i

- **Free workspace** $W_{\text{free}} = W \setminus \bigcup_i WO_i$
The \textbf{Bug} Algorithms

\textit{Insect-inspired}

- known direction to goal
 - robot can measure distance \(d(x,y) \) between pts \(x \) and \(y \)
- otherwise local sensing
 - walls/obstacles & encoders
- \textit{reasonable world}
 1) finitely many obstacles in any finite area
 2) a line will intersect an obstacle finitely many times
 3) Workspace is bounded
 \[W \subset B_r(x), \ r < \infty \]
 \[B_r(x) = \{ y \in \mathbb{R}^2 \mid d(x,y) < r \} \]

\text{16-735, Howie Choset with slides from G.D. Hager and Z. Dodds}
Buginner Strategy

“Bug 0” algorithm

- known direction to goal
- otherwise local sensing
 walls/obstacles & encoders

Some notation:

q_{start} and q_{goal}

“hit point” q_{H_i}
“leave point q_{L_i}

A path is a sequence of hit/leave pairs bounded by q_{start} and q_{goal}
Buginner Strategy

“Bug O” algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue

• known direction to goal
• otherwise local sensing
 walls/obstacles & encoders
Buginner Strategy

"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue

assume a left-turning robot

The turning direction might be decided beforehand...

OK?
Bug Zapper

What map will foil Bug 0?

"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue
Bug Zapper

What map will foil Bug 0?

"Bug 0" algorithm

1) head toward goal
2) follow obstacles until you can head toward the goal again
3) continue
A better bug?

But add some memory!

- known direction to goal
- otherwise local sensing
 walls/obstacles & encoders

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

improvement ideas?
Bug 1

But some computing power!

1. known direction to goal
2. otherwise local sensing
 walls/obstacles & encoders

“Bug 1” algorithm

1) head toward goal
2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
3) return to that closest point (by wall-following) and continue

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987
16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
Bug 1

1) head toward goal
2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
3) return to that closest point (by wall-following) and continue

But some computing power!

- known direction to goal
- otherwise local sensing walls/obstacles & encoders

"Bug 1" algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987 16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
BUG 1 More formally

- Let $q_L^0 = q_{start}$; $i = 1$
- repeat
 - repeat
 - from q_L^{i-1} move toward q_{goal}
 - until goal is reached or obstacle encountered at q_H^i
 - if goal is reached, exit
 - repeat
 - follow boundary recording pt q_L^i with shortest distance to goal
 - until q_{goal} is reached or q_H^i is re-encountered
 - if goal is reached, exit
 - Go to q_L^i
 - if move toward q_{goal} moves into obstacle
 - exit with failure
 - else
 - $i = i + 1$
 - continue
Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to goal

P_i = perimeter of the i^{th} obstacle

Lower bound:
What's the shortest distance it might travel?

Upper bound:
What's the longest distance it might travel?

What is an environment where your upper bound is required?
Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?

\[D = \text{straight-line distance from start to goal} \]

\[P_i = \text{perimeter of the } i \text{ th obstacle} \]

Lower bound:
What's the shortest distance it might travel?

Upper bound:
What's the longest distance it might travel?

\[D + 1.5 \sum_i P_i \]

What is an environment where your upper bound is required?

“Quiz”

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
How Can We Show Completeness?

• An algorithm is *complete* if, in finite time, it finds a path if such a path exists or terminates with failure if it does not.

• Suppose BUG1 were incomplete
 – Therefore, there is a path from start to goal
 • By assumption, it is finite length, and intersects obstacles a finite number of times.
 – BUG1 does not find it
 • Either it terminates incorrectly, or, it spends an infinite amount of time
 • Suppose it never terminates
 – but each leave point is closer to the obstacle than corresponding hit point
 – Each hit point is closer than the last leave point
 – Thus, there are a finite number of hit/leave pairs; after exhausting them, the robot will proceed to the goal and terminate
 • Suppose it terminates (incorrectly)
 • Then, the closest point after a hit must be a leave where it would have to move into the obstacle
 – But, then line from robot to goal must intersect object even number of times (Jordan curve theorem)
 – But then there is another intersection point on the boundary closer to object. Since we assumed there is a path, we must have crossed this pt on boundary which contradicts the definition of a leave point.
Another step forward?

Call the line from the starting point to the goal the \textit{m-line}
A better bug?

Call the line from the starting point to the goal the *m-line*

“Bug 2” Algorithm

1) head toward goal on the *m-line*
A better bug?

Call the line from the starting point to the goal the \textit{m-line}

\begin{itemize}
 \item[1)] head toward goal on the \textit{m-line}
 \item[2)] if an obstacle is in the way, follow it until you encounter the \textit{m-line} again.
\end{itemize}

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
A better bug?

“Bug 2” Algorithm

1) head toward goal on the *m-line*

2) if an obstacle is in the way, follow it until you encounter the *m-line* again.

3) Leave the obstacle and continue toward the goal
A better bug?

"Bug 2" Algorithm

1) head toward goal on the *m-line*
2) if an obstacle is in the way, follow it until you encounter the *m-line* again.
3) Leave the obstacle and continue toward the goal
A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line
2) if an obstacle is in the way, follow it until you encounter the m-line again closer to the goal.
3) Leave the obstacle and continue toward the goal

Better or worse than Bug1?
BUG 2 More formally

- Let $q^L_0 = q_{\text{start}}; i = 1$
- repeat
 - repeat
 - from q^L_{i-1} move toward q_{goal} along the m-line
 - until goal is reached or obstacle encountered at q^H_i
 - if goal is reached, exit
 - repeat
 - follow boundary
 - until q_{goal} is reached or q^H_i is re-encountered or m-line is re-encountered, x is not q^H_i, $d(x, q_{\text{goal}}) < d(q^H_i, q_{\text{goal}})$ and way to goal is unimpeded
 - if goal is reached, exit
 - if q^H_i is reached, return failure
 - else
 - $q^L_i = m$
 - $i = i + 1$
 - continue
head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

Bug 1 beats Bug 2
head-to-head comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

Bug 1 beats Bug 2

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
head-to-head comparison
or thorax-to-thorax, perhaps

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

Bug 2 beats Bug 1

Bug 1 beats Bug 2

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
BUG 1 vs. BUG 2

• BUG 1 is an *exhaustive search algorithm*
 – it looks at all choices before committing

• BUG 2 is a *greedy* algorithm
 – it takes the first thing that looks better

• In many cases, BUG 2 will outperform BUG 1, but

• BUG 1 has a more predictable performance overall
Bug 2: Path Bounds

What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to goal

\(P_i = \) perimeter of the \(i \)th obstacle

Lower bound:
What's the shortest distance it might travel?

Upper bound:
What's the longest distance it might travel?

What is an environment where your upper bound is required?

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds
Bug 2 analysis

What are upper/lower bounds on the path length that the robot takes?

\[D = \text{straight-line distance from start to goal} \]
\[P_i = \text{perimeter of the } i \text{th obstacle} \]

Lower bound:
What's the shortest distance it might travel?

\[D \]

Upper bound:
What's the longest distance it might travel?

\[D + \sum_{i} \frac{n_i}{2} P_i \]

\[n_i = \text{# of s-line intersections of the } i \text{th obstacle} \]

What is an environment where your upper bound is required?
Bug 2: Path Bounds

What are upper/lower bounds on the path length that the robot takes?

\[D = \text{straight-line distance from start to goal} \]
\[P_i = \text{perimeter of the } i \text{th obstacle} \]

Lower bound:
- What's the shortest distance it might travel?

Upper bound:
- What's the longest distance it might travel?

\[D + \sum_{i=1}^{\infty} \frac{n_i}{2} P_i \]

\[n_i = \# \text{ of s-line intersections of the } i \text{th obstacle} \]

What is an environment where your upper bound is required?
A More Realistic Bug

• As presented: global beacons plus contact-based wall following

• The reality: we typically use some sort of range sensing device that lets us look ahead (but has finite resolution and is noisy).

• Let us assume we have a range sensor

• distance fn: \(\rho(x, \theta) = \min_{\lambda \geq 0} d(x, x+\lambda[c_\theta, s_\theta]) \)
 \[\text{s.t. } x+\lambda[c_\theta, s_\theta] \in \bigcup_i WO_i \]

• Note we write \(\rho: \mathbb{R}(2) \times S(1) \rightarrow \mathbb{R} \)
 – what is \(S(1) \)?

• Saturated distance: \(\rho_R(x, \theta) = \rho(x, \theta) \) if \(\rho(x, \theta) < R \), else \(\infty \)
Move to Goal

• Distance $d(a,b) = ((a_x - b_x)^2 + (a_y - b_y)^2)^{\frac{1}{2}}$

• Gradient descent of $d(a,b)$, i.e., decrease distance to the goal
Circumnavigating Obstacles: Curve Tracing

Predict: Tangent

Correct: Something else
Normal (and hence Tangent) to Obstacle
Circumnavigate Obstacles: Boundary Following

\[D(x) = \min d(x,c) \]

Normal is parallel to \(\nabla D(x) \)

Increase/Decrease/Same

Tangent is orthogonal to both

\[\dot{c}(t) = v \quad v \text{ is in } (n(c(t))^\perp) \]
Raw Distance Function

\[\rho(x, \theta) = \min_{\lambda \in [0, \infty]} d(x, x + \lambda[\cos \theta, \sin \theta]^T), \]

such that \(x + \lambda[\cos \theta, \sin \theta]^T \in \)

Saturated raw distance function

\[\rho_R(x, \theta) = \begin{cases}
\rho(x, \theta), & \text{if } \rho(x, \theta) < R \\
\infty, & \text{otherwise.}
\end{cases} \]
Implicit Function Theorem

\[G(x) = D(x) - W^* \]

Roots of \(G(x) \) trace the offset curve

\[DG(x) = DD(x), \text{ which is like a gradient in Euclidean spaces} \]

Null of \(DG(x) \) is tangent, hence perp of \(DD(x) \) is too

Theorem D.1.1 (Implicit Function Theorem) Let \(f : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n \) be a smooth vector-valued function, \(f(x, y) \). Assume that \(D_y f(x_0, y_0) \) is invertible for some \(x_0 \in \mathbb{R}^m, y_0 \in \mathbb{R}^n \). Then there exist neighborhoods \(X_0 \) of \(x_0 \) and \(Z_0 \) of \(f(x_0, y_0) \) and a unique, smooth map \(g : X_0 \times Z_0 \to \mathbb{R}^n \) such that

\[f(x, g(x, z)) = z \]

for all \(x \in X_0, z \in Z_0 \).
THEOREM D.2.1 (Newton-Raphson Convergence Theorem) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ and $f(y^*) = 0$. For some $\rho > 0$, let f satisfy

- $Df(y^*)$ is nonsingular with bounded inverse, i.e., $\|(Df(y^*))^{-1}\| \leq \beta$

- $\|Df(x) - Df(y)\| \leq \gamma \|x - y\|$ for all $x, y \in B_\rho(y^*)$, where $\gamma \leq \frac{2}{\rho \beta}$

Now consider the sequence $\{y^h\}$ defined by

$$y^{h+1} = y^h - (Df(y^h))^{-1} f(y^h),$$

for any $y^0 \in B_\rho(y^*)$. Then $y^h \in B_\rho(y^*)$ for all $h > 0$, and the sequence $\{y^h\}$ quadratically converges onto y^*, i.e.,

$$\|y^{h+1} - y^*\| \leq a\|y^h - y^*\|^2$$

where $a = \frac{\beta \gamma}{2(1 - \rho \beta \gamma)} < \frac{1}{\rho}$.

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds