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Quick Probability Review: Bayes Rule
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QPR: Law of Total Probability
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QPR: Markov Assumption

Future is Independent of Past Given 
Current State 

“Assume Static World”
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The Problem

• What is the world around me (mapping)
– sense from various positions
– integrate measurements to produce map
– assumes perfect knowledge of position

• Where am I in the world (localization)
– sense
– relate sensor readings to a world model
– compute location relative to model
– assumes a perfect world model

• Together, these are SLAM (Simultaneous Localization and 
Mapping)
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Localization

Tracking: Known initial position

Global Localization: Unknown initial position

Re-Localization: Incorrect known position

(kidnapped robot problem)

Challenges
– Sensor processing
– Position estimation
– Control Scheme
– Exploration Scheme
– Cycle Closure
– Autonomy
– Tractability
– Scalability

SLAM
Mapping while tracking locally and globally
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Representations for Robot Localization

Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)
• occas. global localization, recovery

• Grid-based, metric representation (’96)
• global localization, recovery

Multi-hypothesis (’00)
• multiple Kalman filters
• global localization, recovery

Particle filters (’99)
• sample-based representation
• global localization, recovery

Kalman filters (late-80s?)
• Gaussians
• approximately linear models
• position tracking

AI

Robotics
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The Basic Idea

Robot can be anywhere

Robot senses a door

Robot moves on
(note, not unimodal)

Robot senses another door
(note, high likelihood, but multimodal)

[Simmons/Koenig 95]
[Kaelbling et al 96]
[Burgard et al 96]
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Notes

• Perfect Sensing
– No false positives/neg.
– No error

• Data association
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Notation for Localization

• At every step k

• Probability over all configurations

• Given
– Sensor readings y from 1 to k
– Control inputs u from 0 to k-1
– Interleaved:

The posterior

Velocities, force, odometry, something more complicatedMap m 
(should be in condition statements too)
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Predict and Update, combined

posterior

prior

Sensor model: robot perceives y(k) given a map and that it is at x(k)

Motion model: commanded motion moved from robot x(k-1) to x(k)

Issues

Realization of sensor and motion models

Representations of distributions

Features

Generalizes beyond Gaussians

Recursive Nature
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Prediction Step

• Occurs when an odometry measurement (like a control) or when 
a control is invoked…. Something with u(k-1)

• Suppose u(0: k-2) and y(1: k-1) known and
Current belief is

• Obtain   
– Integrate/sum over all possible x(k-1)
– Multiply each                                                   

by Motion model
Not k
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Update Step

• Whenever a sensory experience occurs… something with y(k)

• Suppose                                                         is known
and we just had sensor y(k)

• For each state x(k)

Multiply                                                   by                          & η
Sensor model

Normalization constant: make it all sum to one
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That pesky normalization factor

• Bayes rule gives us

• This is hard to compute:
– What is the dependency of y(k) on previous controls and sensor 

readings without knowing your position or map of the world?

• Total probability saves the day

• We know these terms 
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Summary



RI 16-735,  Howie Choset

Issues to be resolved

• Initial distribution P(0)
– Gaussian if you have a good idea
– Uniform if you have no idea
– Whatever you want if you have some idea

• How to represent distributions: prior & posterior, sensor & motion 
models

• How to compute conditional probabilities

• Where does this all come from? (we will do that first)
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The derivation: 

• Consider odometry and sensor information separately

• Lets start with new sensor reading comes in – a new y(k)
– Assume y(1:k-1) and u(0:k-1) as known
– Apply Bayes rule

Once state is known, then all previous controls and measurements are independent 
of current reading

Denominator is a normalizer which is the same for all of x(k)

= η
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Incorporate motions

• We have

• Use law of total probability on right-most term

assume that x(k) is independent of sensor readings y(1:k-1) and controls u(1:k-2)
that got the robot to state x(k-1) given we know the robot is at state x(k-1)

assume controls at k-1 take robot from x(k-1) to x(k), which we don’t know x(k) x(k-
1) is independent of u(k-1)
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Incorporate motions

• We have
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Representations of Distributions

• Kalman Filters

• Discrete Approximations

• Particle Filters
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Extended Kalman Filters

as a Gaussian

The Good
Computationally efficient
Easy to implement

The Bad
Linear updates
Unimodal
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Discretizations

• Topological structures

• Grids

Spatial 10-30cm
Angular 2-10 degrees
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Algorithm to Update Posterior P(x)

k loops

Start with u(0: k-1) and y(1:k)

Integrate u(i-1) and y(i-1) in each loop

Incorporate motion u(i-1) with motion
model

Sensor model
Normalization Constant

Bypass with convolution details we will skip
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Convolution Mumbo Jumbo

• To efficiently update the belief upon robot motions, one typically 
assumes a bounded Gaussian model for the motion uncertainty.

• This reduces the update cost from O(n2) to O(n), where n is the number 
of states.

• The update can also be realized by shifting the data in the grid according 
to the measured motion.

• In a second step, the grid is then convolved using a separable Gaussian 
Kernel.

• Two-dimensional example:
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• Fewer arithmetic operations

• Easier to implement
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Probabilistic Action model

40m                                                    80m. 

Darker area has higher probability.

xk-1 xk-1

uk-1

uk-1

p(x(k)|u(k-1),x(k-1))

Continuous probability density Bel(st) after moving

Thrun et. al.
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Probabilistic Sensor Model

Probabilistic sensor model for laser range finders

y

P
(y

|x
)
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One of Wolfram et al’s Experiments

5 scans 18 scans 24 scans

A, after 5 scans; 
B, after 18 scans, 
C, after 24 scans

Known map
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What do you do with this info?
• Mean,  continuous but may not be meaningful

• Mode,  max operator, not continuous but corresponds to a robot 
position

• Medians of x and y, may not correspond to a robot position too 
but robust to outliers
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Represent belief by random samples

Estimation of non-Gaussian, nonlinear processes

Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]

Computer vision: [Isard and Blake 96, 98]

Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle Filters
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Basic Idea

• Maintain a set of N samples of states, x, and weights, w, in a set 
called M.

• When a new measurement, y(k) comes in, the weight of particle 
(x,w) is computed as p(y(k)|x) – observation given a state

• Resample N samples (with replacement) from M according to 
weights w
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Particle Filters
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∫←− 'd)'()'|()( , xxBelxuxpxBel

Robot Motion
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Robot Motion
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Start

Motion Model  Reminder

Or what if robot keeps moving and there are no observations
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Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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1. Algorithm particle_filter( Mt-1, ut-1 yt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by Mt-1

5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights
11. RESAMPLE!!!

Particle Filter Algorithm
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Resampling

• Given: Set M of weighted samples.

• Wanted : Random sample, where the probability of drawing xi is given by 
wi.

• Typically done N times with replacement to generate new sample set M’.
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1. Algorithm systematic_resampling(M,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While (            ) Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return M’

Resampling Algorithm
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w2

w3

w1wn

Wn-1

Resampling, an analogy Wolfram likes

w2

w3

w1wn

Wn-1

• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity

• Easy to implement, low variance
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Initial Distribution
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After Incorporating Ten Ultrasound Scans
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After Incorporating 65 Ultrasound Scans
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Limitations

• The approach described so far is able to 
– track the pose of a mobile robot and to
– globally localize the robot.

• How can we deal with localization errors (i.e., the kidnapped robot 
problem)?
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Approaches

• Randomly insert samples (the robot can be teleported at any 
point in time).

• Insert random samples proportional to the average likelihood of 
the particles (the robot has been teleported with higher probability 
when the likelihood of its observations drops). 
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Summary

• Recursive Bayes Filters are a robust tool for estimating the pose of a 
mobile robot.

• Different implementations have been used such as discrete filters 
(histograms), particle filters, or Kalman filters.

• Particle filters represent the posterior by a set of weighted samples.
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Change gears to
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Occupancy Grids [Elfes]

• In the mid 80’s Elfes starting implementing cheap 
ultrasonic transducers on an autonomous robot 

• Because of intrinsic limitations in any sonar, it is 
important to compose a coherent world-model 
using information gained from multiple reading
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Occupancy Grids Defined

• The grid stores the probability that Ci = 
cell(x,y) is occupied  O(Ci) = P[s(Ci) = 
OCC](Ci) 

• Phases of Creating a Grid:
– Collect reading generating O(Ci)
– Update Occ. Grid creating a map
– Match and Combine maps from multiple 

locations
x

y

Ci

Original notation

Cell       is occupied Given sensor observations Given robot locations

Binary variable
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Bayes Rule Rules!

• Seek to find m to maximize

Assume that current readings is independent of all previous states and readings 
given we know the map

Bayes rule on 

Local map
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• The m

• Or not the m

A cell is occupied or not

=
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The Odds

RECURSION
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Recover Probability

Given a sequence of measurements y(1:k), known positions x(1:k), and an initial distribution P0(m)

Determine 

THE PRIOR
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Actual Computation of 

• Big Assumption: All Cells are Independent

• Now, we can update just a cell 

Depends on current cell, distance to 
cell and angle to central axis 

The prior

Local map
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More details on s

Deviation from occupancy probability from the prior given a reading and angle

Else if’s
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Break it down

• d1, d2, d3 specify the intervals

• Between the arc and current location, lower probability

• Cells close to the arc, ie. Whose distances are close to readings

• Immediately behind the cell (obstacles have thickness)

• No news is no news                                              is prior beyond

Some linear function

< d <
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Example

y(k) = 2m, angle = 0, s(2m,0) = .16
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Example

y(k) = 2m y(k) = 2.5m
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A Wolfram Mapping Experiment
with a B21r with 24 sonars

18 scans, note each scan looks a bit uncertain but 
result starts to look like parallel walls
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Are we independent?

• Is this a bad assumption?
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SLAM!

• A recursive process.

Motion model Sensor model

Posterior, hard to calculate
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“Scan Matching”

At  time                the robot is given

1. An estimate                      of state

2.     A map estimate 

The robot then moves and takes measurement y(k)

And robot chooses state estimate which maximizes

And then the map is updated with the new sensor reading
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Another Wolfram Experiment

28m x 28m, .19m/s, 491m

after
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Another Wolfram Experiment

28m x 28m, .19m/s, 491m

before after
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Tech Museum, San Jose

CAD map occupancy grid map
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Issues

• Greedy maximization step (unimodal) 

• Computational burden (post-processing)

• Inconsistency (closing the loop, global map?)

Solutions [still maintain one map, but update at loop closing]
• Grid-based technique (Konolodige et. al)
• Particle Filtering (Thrun et. al., Murphy et. al.)
• Topological/Hybrid approaches (Kuipers et. al, Leonard et al, 

Choset et a.)
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Probabilistic SLAM
Rao-Blackwell Particle Filtering 

If we know the map, then it is a localization problem
If we know the landmarks, then it is a mapping problem

Some intuition: if we know x(1:k) (not x(0)), then we know the “relative map” but
Not its global coordinates

The promise: once path (x(1:k)) is known, then map can be determined analytically

Find the path, then find the map
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Mapping with Rao-Blackwellized Particle 
Filters

• Observation: 
Given the true trajectory of the robot, all measurements are independent.

• Idea:
– Use a particle filter to represent potential trajectories of the robot 

(multiple hypotheses). Each particle is a path (maintain posterior of 
paths)

– For each particle we can compute the map of the environment (mapping 
with known poses).

– Each particle survives with a probability that is proportional to the 
likelihood of the observation given that particle and its map. 

[Murphy et al., 99]
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RBPF with Grid Maps

map of particle 1 map of particle 3

map of particle 2

3 particles
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Some derivation

P(A,B) = P(A|B)P(B)

given

We can compute Use particle filtering

Computing prob map (local map) given trajectory  for each particle



RI 16-735,  Howie Choset

Methodology
• M be a set of particles where each particle starts at [0,0,0]T

• Let h(j)(1:k) be the  jth path or particle

• Once the path is known, we can compute most likely map

• Once a new u(i-1) is received (we move), do same thing as in 
localization, i.e., sample from 

– Note, really sampling from
– Ignore the map for efficiency purposes, so drop the m

• Get our y(k)’s to determine weights, and away we go 
(use same sensor model as in localization)

Hands start waving….. Just a threshold here

Not an issue, but in book
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Rao-Blackwell Particle Filtering
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Wolfram Experiment
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Most Recent Implementations

15 particles

four times faster 
than real-time
P4, 2.8GHz

5cm resolution 
during scan 
matching

1cm resolution in 
final map

Courtesy by Giorgio Grisetti & Cyrill Stachniss
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Maps, space vs. time

Maintain a map for each particle

OR

Compute the map each time from scratch

Subject of research
Montermerlou and Thrun look for tree-like structures that capture 
commonality among particles.

Hahnel, Burgard, and Thrun use recent map and subsample
sensory experiences
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How many particles?

• What does one mean?

• What does an infinite number mean?


