Robotic Motion Planning: Probabilistic Primer

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion
Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset

Experiments and outcomes

- Experiment: Flip a Coin
- Outcome: Heads or Tails
- Experiment: Person's temperature in class now
- Outcome: a scalar
- Event Subset of possible outcomes $E \subset S$

Probability

- $\operatorname{Pr}(E)$: Probability of an event E occurring when an experiment is conducted
- Pr maps S to unit interval

$$
\begin{aligned}
& \operatorname{Pr}(\text { heads })=0.5, \operatorname{Pr}(\text { tails })=0.5 \\
& \operatorname{Pr}(\text { heads } \cup \text { tails })=1 .
\end{aligned}
$$

1. $0 \leq \operatorname{Pr}(E) \leq 1$ for all $E \subset \mathcal{S}$.
2. $\operatorname{Pr}(\mathcal{S})=1$.
3. $\sum_{i} \operatorname{Pr}\left(E_{i}\right)=\operatorname{Pr}\left(E_{1} \cup E_{2} \cup \ldots\right)$ for any countable disjoint collection of sets E_{1}, E_{2}, \ldots. This property is known as sigma additivity. In particular, we have $\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)=\operatorname{Pr}\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$.
4. $\operatorname{Pr}(\emptyset)=0$.
5. $\operatorname{Pr}\left(E^{c}\right)=1-\operatorname{Pr}(E)$, where E^{c} denotes the complement of E in \mathcal{S}.
6. $\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)-\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.

Dependence

- Independent: $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)=\operatorname{Pr}\left(E_{1}\right) \operatorname{Pr}\left(E_{2}\right)$
- Conditional Probability:
- If E_{1} and E_{2} are independent, then $\operatorname{Pr}\left(E_{1} \mid E_{2}\right)=\operatorname{Pr}\left(\mathrm{E}_{1}\right)$
- Bayes Rule

$$
\operatorname{Pr}\left(E_{1} \mid E_{2}\right)=\frac{\operatorname{Pr}\left(E_{2} \mid E_{1}\right) \operatorname{Pr}\left(E_{1}\right)}{\operatorname{Pr}\left(E_{2}\right)} .
$$

More Bayes Rule

$$
\begin{aligned}
p(a \mid b) & =\frac{p(b \mid a) p(a)}{p(b)} \\
p(a \mid b, c) & =\frac{p(b \mid a, c) p(a \mid c)}{p(b \mid c)}
\end{aligned}
$$

Total Probability

Discrete

$$
\begin{aligned}
p(a) & =\sum_{i} p\left(a \wedge b_{i}\right) \\
& =\sum_{i} p\left(a \mid b_{i}\right) p\left(b_{i}\right)
\end{aligned}
$$

Continuous

$$
p(a)=\int p(a \mid b) p(b) d b
$$

it follows that:

$$
p(a \mid b)=\int p(a \mid b, c) p(c \mid b) d c
$$

Random Variable

- A mapping from events to a real number $X: \mathcal{S} \rightarrow \mathbb{R}$
- Examples
- Discrete: heads or tails, number of heads for repeated flips
- Continuous: temperature
- Random Vector: $X: \mathcal{S} \rightarrow \mathbb{R}^{n}$

Distribution

- Any statement one can make about a random variable
- Cumulative Distribution Function (CDF): $F_{X}(a)=\operatorname{Pr}(X \leq a)$
- Probability \qquad Function (P_F):
- Discrete: Mass (PMF)

$$
\begin{aligned}
& f_{X}(a)=\operatorname{Pr}(X=a) \\
& \operatorname{Pr}(a \leq X \leq b)=\int_{x=a}^{b} f_{X}(x) d x
\end{aligned}
$$

- Continuous: Density (PDF)

Note that $\operatorname{Pr}((X=a))=\int_{x=a}^{a} f_{X}(x) d x=0$

Uniform Distribution

CDF

$$
U(x ; a, b)=\begin{array}{rl}
0 & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x \geq b
\end{array}
$$

PDF

$$
u(x ; a, b)=\begin{array}{rl}
0 & x<a \\
\frac{1}{b-a} & a \leq x \leq b \\
0 & x \geq b
\end{array}
$$

$$
\operatorname{Pr}\left(a^{\prime} \leq x \leq b^{\prime}\right)=U\left(b^{\prime} ; a, b\right)-U\left(a^{\prime} ; a, b\right) \quad \operatorname{Pr}\left(a^{\prime} \leq x \leq b^{\prime}\right)=\int_{x=a^{\prime}}^{b^{\prime}} u(x ; a, b) d x
$$

Expected Value

- PMF

PDF
$E(X)=\sum_{i} x_{i} f_{X}\left(x_{i}\right)$
$E(X)=\int_{x \in \mathbb{R}^{n}} x f_{X}(x) d x$
$E(a X+b Y)=a E(X)+b E(Y)$
$E(X)$ with \bar{X}

Variance and Co-variance

- Variance: $\sigma^{2}=E\left((X-\bar{X})^{2}\right)$

$$
\text { Or } \sigma_{i}^{2} \text { for } X_{i}
$$

- Co-Variance

$$
\sigma_{i j}=E\left(\left(X_{i}-\bar{X}_{i}\right)\left(X_{j}-\bar{X}_{j}\right)\right)
$$

$$
\sigma_{i j}=0 \quad X_{i} \text { and } X_{j} \text { are independent }
$$

- Co-Variance Matrix $\quad P_{X}=E\left((X-\bar{X})(X-\bar{X})^{T}\right)$

$$
\sigma_{i}^{2} \quad \sigma_{i j}
$$

Diagonal terms

Off-Diagonal Terms

Gaussians

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{n}\left|P_{X}\right|}} e^{-\frac{1}{2}(x-\bar{X})^{T} P_{\bar{X}}{ }^{1}(x-\bar{X})} \\
& P_{X} \in \mathbb{R}^{n \times n} \quad \bar{X} \in \mathbb{R}^{n} \text { is the mean vector }
\end{aligned}
$$

