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Abstract

As more resources are added to computer networks, and as more vendors look
to the World Wide Web as a viable marketplace, the importance of being able
to restrict access and to insure some kind of acceptable behavior even in the
presence of malicious adversaries becomes paramount. Many researchers have
proposed the use of security protocols to provide these security guarantees. In
this paper. we develop a method of verifying these protocols using a special
purpose model checker which executes an exhaustive state space search of a
protocol model. Our tool also includes a natural deduction style derivation
engine which models the capabilities of the adversary trying to attack the
protocol. Because our models are necessarily abstractions, we cannot prove
a protocol correct. However. our tool is extremely useful as a debugger. We
have used our tool to analyze 14 different authentication protocols. and have
found the previousiy reported attacks for them.
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1 INTRODUCTION

The growth of such entities as the Internet and the World Wide Web have
demonstrated the large demand for electronic access to information and for
electronic transactions. However. both service providers and consumers need
to have some guarantees about reasonable behavior. such as preventing unau-
thorized access and guaranteeing confidentiality, in the presence of malicious
adversaries. Numerous protocols that take advantage of cryptography have
been proposed that claim to solve many of the security issues.

Typically. these protocols can be thought of as a set of principals which
sena messages to each other. The hope is that by requiring agents to produce
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a sequence of messages. the security goals of the protocol can be achieved.
For example. if a principal 4 receives a message encrypted with a key known
only by principals 4 and B. then principal A should be able to conclude that
the message originated from principal B or from itself. However, it would be
incorrect to conclude that principal A is talking to principal B. An adver-
sary could be replaying a message overheard during a previous conversation
between A and B. So. depending on the security goal of this simple example
protocol, the protocol may or may not be secure.

Because the reasoning behind the correctness of these protocols can be
subtle, a number of researchers have turned to formal methods to prove pro-
tocols correct. One approach has been the use of belief logics to express and
deduce security properties [4. 10]. Recently, some researchers have tried to au-
tomate the deduction process using theorem provers {5, 11}. Others have pro-
vided a rigorous mathematical proof for the correctness of a protocol {2, 26].
Many have tried using formal models to analyze security protocols. Some
have developed deductive systems or proof methodologies for their mod-
els(1,3.6, 7. 9. 20. 25. 27) while others have tried automated search techniques
to try to find an error in a model of the protocol {12, 14. 15, 17, 18, 19].

Our approach is also based on model checking and automated search. In
this paper we describe a special purpose model checker with two orthogonal
components. The first is a state ezploration component. Each honest agent is
described by the sequence of actions that it takes during a run of the protocol,
and can be viewed as a finite-state machine. A trace of the actions performed
by the asynchronous composition of these state machines corresponds to a
possible execution of the protocol by the agents. By performing an exhaustive
search of the state space of the composition. we can determine if various
security properties are violated.

The second component is the message derivation engine which is used to
model what the adversary is allowed to do. The derivation engine can be
viewed as a simple natural deduction theorem prover for constructing valid
messages. We describe the operations that can be performed on messages with
a set of inference rules. Because these operations are invertible, each has both
an introduction rule and an elimination rule. As in the case of other natu-
ral deduction systems. this property guarantees the existence of normalized
derivations. For this inference system, the existence of normalized derivations
allows for an efficient algorithm for determining whether a message is valid or
not.

The standard adversary capabilities found in the literature. which evolved
from the Dolev and Yao model [6]. fit easily into this framework. The adversary
can intercept messages. misdirect messages. and generate new messages using
encryption. decryption. concatenation i pairing), and projection. Anytime a
message is sent. the adversary intercepts the message and adds it to the set
of assumptions it can use to derive new messages. \WWhenever an honest agent
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receives a message. the message must have been generated by the derivation
engine.

This separation of functionality results in a very intuitive model of com-
putation. In particular. having a black box derivation engine to model the
adversary makes the model checker both easier to use and easier to describe
and reason about. Unlike term rewriting systems, we do not need to construct
a set of rewrite rules to model how an adversary can manipulate participants
to generate new messages. In contrast to methods based solely on state space
exploration. we need not encode the capabilities of the adversary as a state
machine. While a new compiler now provides this feature for the FDR model
checker {14], in our system. the capabilities of the adversary are incorporated
directly into the model checker itself.

The inclusion of a message derivation engine also means that we do not need
to specify ahead of time which messages or which types of messages the model
will consider. In theory, the adversary is free to generate any message in an
attempt to deceive an honest agent. Moreover, the use of a natural deduction
engine allows us to introduce inference rules for new operations, such as XOR
and hash functions. easily. Because the derivation engine is an orthogonal
component, a new one could be substituted without changing how we model
protocols. Finally, we believe this natural deduction framework sheds light on
the reasons for the perfect encryption and atomic key assumptions which are
frequently made when formal methods are used in this area.

2 INTUITION

In order to concentrate on the security of the protocol itself as opposed to the
security of the cryptosystem used. the vast majority of research in this area
has made the following “perfect encryption™ assumptions.

® The decryption key must be known in order to extract the plain-text from
the cipher-text.

® There is enough redundancy in the cryptosystem that a cipher-text can only
be generated using encryption with the appropriate key. This aiso implies
that there are no encryption collisions. If two cipher-texts are equal, they
must have been generated from the same plain-text using the same key.

While the assumptions are obviously not true. they are, in practice. reason-
able. They are important because they allow us to abstract away the cryp-
tosystem and analyze the protocol itself. The drawback is that an attack that
takes advantage of a particular property of a specific cryptosystem cannot be
found.

We have developed a model checking scheme for the verification of security
protocols. and we make use of the same “perfect encryption® assumptions.
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We have a very intuitive model which captures the basic idea of message gen-
eration and communication. Each role in the protocol. whether the initiator.
responder. or server, is described using a sequence of simple commands, such
as SEND. RECEIVE. and NEWSECRET. which describe how it interacts with the
network during a protocol run.

Once we have a sequence of actions for each of the participants we take their
asynchronous composition to get the full model of the protocol. There is also
an unspecified participant which we cail the adversary. The adversary models
an untrusted communication medium as well as any malicious agents. When
messages are sent, they are always intercepted by the adversary, who can then
forward them (possibly to someone other than the intended participant). The
adversary is also allowed to send messages while impersonating a trusted
principal. The adversary may even be selected as a participant in a protocol
run.

A run of the protocol will then consist of some interleaving of actions from
a set of participants (a single session for each role) and from the adversary.
A trace is the interleaving of one or more runs. We can analyze a trace to
determine if the security of the protocol was compromised. In particular we
can check if the adversary ever learns a secret or if some principal A believes
it has completed a run with principal B, while principal B has not partici-
pated in the run. In general, a set of security requirements can be specified
in some kind of logic and then the trace can be checked to see if any of these
requirements are violated.

To verify that a protocol is correct, all the possible traces must be checked.
We can think of a trace as an alternating sequence of global states and actions.
The global state will consist of the local state of each participant together with
the state of the adversary. Because the length of each run is finite, and we
only consider a small number of runs. each trace must necessarily be finite as
well. If we can also insure that the number of different traces is finite. then the
entire search space will be finite. and we can do an exhaustive search to insure

that no reachable state violates the security specification. We will discuss this
in more detail in section 3.

3 THE SPECIFICATION

There are two kinds of properties that we currently are interested in. The
first is a kind of secrecy property. e provide the model checker with a set of
terms which the adversary is not allowed to obtain. During the verification. we
simply check that the adversary does not have possession of any of the terms
in this set. The second property is a temporal property which occurs quite
frequently in the literature and which Woo and Lam call correspondence 27).
The correspondence relation .X — ¥ is satisfied if every .\’ event is preceded
by a Y event. and there is a one-to-one mapping from X events to Y events.

Many security properties can e expressed as a correspondence relation.
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and the vast majority of the properties verified in the literature (typically
authentication properties) can be expressed as correspondence properties as
well. For example. Woo and Lam express authentication by the property that
if principal 4 has finished a protocol run with B, then principal B has at
least started a protocol run with A. (Principal B has indeed participated in
the protocol) {27]. Mitchell and others check for this property by insuring that
if principal A has entered its final state then principal B is no longer in its
initial state [19). Lowe checks that the action R_running.A.B (meaning that B
is running a protocol in response to A) occurs before the action I.commit.A.B
(meaning that A has successfully completed a protocol run with B) {13].
Others have checked a weaker property in which the mapping between events
need not be one-to-one {12, 24}, although these methodologies could check
the stronger property as well. There has also been work done on intensional
specifications which insure that a protocol behaves “as intended.” and so
necessarily depend on the protocol [23]. It is also easy to see how certain
properties of electronic commerce protocols could be expressed this way. For
instance, one may want to check that a merchant provides a service only after
a client has paid for it and that a client’s account is debited only after the
merchant has provided the service. Indeed, Leduc and others have verified
a kind of electronic commerce protocol by checking for six safety properties
which are all expressed as correspondence relations [12].

In order to check for this kind of property, we will augment the global state
with counters. For each correspondence property X <+ Y we will maintain a
separate counter which will keep track of the difference between the number of
Y events and X events. If this counter ever turns negative (i.e. there are more
X events than Y events) then the correspondence property will be violated at
that point (there will be no one-to-one mapping from X events to Y events).
Conversely. as long as the counter never goes negative there is always a one-
t0-one mapping from .\ events to Y events.

1 MESSAGES

Typically, the messages exchanged during the run of a protocol are constructed
from smaller sub-messages using pairing and encryption. The smallest such
sub-messages (i.e. they contain no sub-messages themselves) are called atomic
messages. There are four kinds of atomic messages.

® Reys are used to encrypt messages. Keys have the property that every key
k has an inverse &~! such that for all messages m. {{m}«}s-1 = m. (Note
that for symmetric cryptography the decryption key is the same as the
encryption key. so k = k~1))

® Principal names are used to refer to the participants in a protocol.

® MNonces are randomly generated numbers. The intuition is that since they
are randomly generated. any message containing a nonce can be assumed
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to have been generated after the nonce was generated. (It is not an “old”
message. )

® Data which plays no role in how the protocol works but which is intended
to be communicated between principals.

Let A denote the space of atomic messages. The set of all messages M over
some set of atomic messages A is defined inductively as follows:

® If a € A then a € .M. (Any atomic message is a message.)

® If m; € M and m2 € M then my -m2 € M. (Two messages can be paired
together to form a new message.)

® Ifm € .M and key k € A then {m}x € M. (A message M can be encrypted
with key & to form a new message.)

Because keys have inverses., we take this space modulo the equivalence
{{m}«}x-+ = m. It is also important to note that we make the following per-
fect encryption assumption. The only way to generate {m} is from m and k.
In other words. for all messages m,my, and m and keys k, {m}x # my - maq,
and {m}i = {m'}s > m=m' Ak=k.

We also need to consider how new messages can be created from already
known messages by encryption. decryption. pairing (concatenation), and pro-
jection. The following rules capture this relationship by defining how a mes-
sage can be derived from some initial set of information I.

.Ifmethen/Fm.

.If I+ m, and [ + ma then [ - my - ma. (pairing)

. If I+ my-m->then [+ my and [ F ma. {projection)

CIf I+ mand [+ k for key k. then [+ {m}k. {encryption)
.If I+ {m}y and [ = k~! then [+ m. (decryption)

O s O O =

While this defines the derivability relation I, it is not clear if checking [ Fm
is decidable. We will return to this question in section 7.

5 THE MODEL

We now define the model formally by describing how the overall global state
and the individual principal local states are defined, as well as by describing
how actions update the state. The model consists of the asynchronous com-
position of a set of named. communicating processes which model the honest
agents and the adversary. The state of an honest principal is determined by
the bindings for its local variables. and by its “program counter.” Each run of
an honest principal involved in the protocol is modelled as one of these pro-
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cesses and is described by a sequence of actions it is to perform. The initial
state of the bindings is assumed to be empty.

The adversary is modelled differently. First, it is not bound to follow any
protocol. so it doesn’t make sense to describe it as a sequence of actions. At
any point in time it is allowed to perform any “realistic” action, which includes
intercepting all messages and sending any messages it can generate. The state
of the adversary process is completely determined by the set of messages it
“knows” and so we model the adversary by keeping track of acquired mes-
sages and by using a derivation engine that describes how it can create new
messages.

More formally, each honest principal is modelled as a triple (N, p, B), where:

® N € names is the name of the principal.

® pis a process (similar in style to CSP) given as a sequence of actions to be
performed.

® B:vars(N) — M is a set of bindings for vars(N), the set of variables
appearing in principal V.

We model the adversary as the pair (Z. I), where:

® Z ¢ names is the name of the adversary.

® | C M is a set of all messages known by the adversary either as initial
information or by eavesdropping. Recall that M is the set of all possible
messages.

The global state is then maintained as the composition of the participating
principals. along with the adversary process. a list of secrets, and a set of
counters. one for each correspondence relation we are checking. More formally,
the global state is a triple (IT.C. 5). where:

® IT is the product of the individual principals and the adversary process.
This product is asynchronous. yielding an interleaving semantics. with the
restriction that processes synchronize with the adversary on messages.

® C is a set of counters one for each correspondence relation. For each relation
X; — Y;, there is a counter C; € N whose value is equal to the difference
between the number of Y; events and X; events that have occurred along
the trace so far.

® S C M is a set of messages that are are considered secrets. These are the
set of words that the adversary is not allowed to know. This set usually

includes things like the private keys that principals use to communicate
with a server.

The specific actions that a principal may perform can be divided into inter-
nal actions and communication actions. The internal actions are performed



8 Verijying Security Protocols

asynchronously. Any principal is allowed to perform an internal action and
interleaving is used to model all possible behaviors when multiple principals
can make a transition. We define a transition relation — between principals
such that A — B if and only if principal A can take an action and become a
principal that behaves like B.

Communication actions consist of send and receive actions. Communication
actions always involve the adversary who controls the network. The action
can be thought of as a synchronous transition involving the adversary and
the honest principal performing the action. Each receive action corresponds
to a message being sent from the adversary to an honest principal and can
augment the honest principal’s bindings. Each send action corresponds to a
message being sent by an honest principal and being received or intercepted
by the adversary. thus possibly increasing the set of messages “known” by the
adversary. These communication actions are also interleaved with the possible
actions of other processes.

The adversary is always willing to receive any messages from any principal.
and so send actions are aiways enabled. When a principal performs a send
action. the adversary adds the new message to its local store and the principal
takes the following transition:

(A, SEND(s-msg).¢’, Ba) — (4.¢',Ba)

In order for a receive action to take place, the message from the adversary
must match the message being received. A message s-msg € [ from the ad-
versary matches a message template r-msg from principal B = (B.q, Bg), if
there exists a substitution og: vars(B) — M extending Bp (Bp C oB), such
that s-msg = og(r-msg). If the messages match. then the following transition
can be taken:

(B, RECEIVE(r-msg).¢', Bg) — (B.q'.0p)

where o is the smallest substitution satisfying the conditions above. Because
we require that s-msg match r-msg, if there is already a pair (var. val) in B
for some var appearing in r-msg. then the corresponding value in s-msg must
be val. In other words. messages received by honest agents must be consistent
with their view of the protocol. Thus the updates to B only add new bindings
and never change previous bindings.

For the most part internal actions are used to create new information. For
example. NEWSECRET is used to create a nonce or session key, and bind it to
a variable. Secrets are globally distinct. and each NEWSECRET action creates
a secret that has not appeared up to that point in the protocol. The new
binding is added to the principai’s set of bindings.

(A.NEWSECRET(var).p’.B) — . 4d.p".B’)
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where B’ = Blvar « vall when valis the new value generated by the action.

Finally, we have four special actions BEGINIT, ENDINIT, BEGRESPOND, and
ENDRESPOND. These are used to mark the beginning and the end of a prin-
cipal’s participation in a protocol. They have no effect on the state of the
principal taking the action. However. the purpose of these actions is to check
the correspondence relations. such as A.ENDINIT(B) — B.BEGRESPOND(A)
which will maintain a counter in the global state. If this relation is satisfied,
then we know that if the principal named A finishes the protocol with B then
the principal named B has participated in the protocol with A. We also check
that if B finishes. A has participated.

The actions a particular honest principal may make are restricted to the
sequence of actions p that represent its role in the protocol. The adversary has
no such restriction and is allowed to make any action at any time. provided
that it can only send a message s-msg to an honest principal if it can derive
it (I + s-msg). We also place a bound on the number of NEWSECRET actions
the adversary can perform, because otherwise the state space would become
infinite. In all the protocols we have analyzed, no principal ever checks to see
if a key or nonce is new, and so the adversary for these examples never has
to take any NEWSECRET actions.

6 SEARCH ALGORITHM

Recall that a trace is an alternating sequence of global states and actions,
and that we are interested in checking all possible traces. Clearly, everything
in the model is finite except for the set of messages that the adversary can
generate. If we can show that the adversary never generates an infinite set
of messages. then the entire model is finite and we can perform a depth-first
search to check all possible traces of the model, and check that none violate
the security properties.

The only times we consider the set of messages the intruder can generate are
when we check if it contains a secret, and when we check if the adversary can
generate a message that an honest principal is waiting to receive. In the first
case. we have a finite set of messages to check. and we prove in section T that
this is decidable. The later case involves matching against a pattern and in
the majority of cases the pattern is restrictive enough to limit the derivation
to a finite number of matches (because there are a finite number of atomic
messages). In general. however. this need not be the case. In particular. just
by using multiple encryption. the set of messages the adversary can generate
is infinite. Researchers have used different methods to restrict the model to
a finite state space. Lowe restricts the set of messages that the intruder can
learn to the set of all atoms along with the set of all encrypted components
appearing in protocol messages {14]. Others place type restrictions on variables
appearing in messages (8. 12. 19]. Still others solve rewrite equations that can
be used to prove that entire families of messages cannot be generated [16.
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Figure 1 Derivation rules for messages

18]. We plan to augment our matching algorithm to allow for message types:
however. we currently limit the state space by placing a bound on the length
of the derivations that can be used to find messages that match a variable
during the matching process. In this way, we can find “type errors”, where, for
example, an attack might occur because an honest agent expects to receive a
key and accepts a nonce instead. In practice we have been able to get away
with a derivation length of 1. Hence. we only generate finite sets of messages,
thus the entire state space is finite. and we can use depth first-search to
perform an exhaustive search.

7 NORMALIZED DERIVATIONS

In section 4 we discussed how new messages can be generated from known
messages using a set of derivation rules. This standard set of adversary capa-
bilities which have evolved from the Dolev and Yao model (6], and which are
used by a number of model checkers. fit quite naturally into our framework.
In section 5 we discuss when it is necessary to check if the intruder can de-
rive a message. In this section we prove the decidability of this problem by
~xploiting its similarity to natural deduction and using the idea of normalized
derivations. A good discussion of natural deduction and the idea of normalized
derivations can be found in [22].

We will assume that the reader is familiar with derivation trees and so
we will not formalize them here. We will say that a particular message m is
derivable from a set of information /. if there exists a valid derivation tree
using the inference rules in Figure 1. such that m appears at the bottom of
the tree and all messages appearing at the top of the tree are contained in /.
An example of such a tree can be found in Figure 2.

Note that in general there is more than one derivation tree for some message
m. While all derivations trees are finite. their sizes are unbounded. In order to
prove the decidability of checking / = m we would like to show that there is
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always a normalized derivation of bounded size for which we can search. Unlike
normalized derivations in natural deduction, this normalized derivation will
have the additional property that all elimination rules (-&, -&., {}x€) appear
above all introduction rules (-Z, {}+I). A similar idea for placing bounds on the
lengths of derivations can be found in (3. 11, 15, 20]. However, this framework
allows for an straightforward translation into a proof search algorithm and
explains the reasons behind certain assumptions made about the message
space. in particular, the perfect encryption assumption and the atomic key
assumption.

Each message construction operation (pairing and encryption) is character-
ized by a pair of inference rules. One is an introduction rule that creates a
new message whose principal connective is that operation. For example the
{}&Z rule creates a new encrypted message {m}, from the message m and the
key k. The second is an elimination rule that removes that particular opera-
tion from the compound message. For example the -£ rule takes a message
m, - ma and returns its left component m,. The intuition behind normalized
derivations is that an instance of an elimination rule appearing immediately
below an instance of the corresponding introduction rule gains no new infor-
mation. So we transform such a derivation into a smaller derivation in which
we eliminate this redundant step.

Using terminology similar to that found in {22], we will call the key % in
an instance of the inference rule {}x€ a minor premise. Any other premise
is a major premise. A message that appears in a derivation tree T as the
conclusion of an introduction rule and as a major premise of an elimination
rule is a marimum message. A derivation tree is a normalized derivation if
it contains no maximum message. We now show that we can transform any
derivation tree T into a normalized derivation tree T’ by eliminating maximum
messages one at a time.

Let T be a derivation tree that is not atomic. and let M be a maximum
message in . Then I”. a reduction of T at M is constructed from T using
one of the rules below. depending on the form of M. In the diagrams. II is
what would remain of T after removing .\/ and everything above it. while £,
€., and T; represent sequences of derivation trees.
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Theorem 1 Any derivation tree T for m depending on assumplions A can
be transformed into a normalized derivation tree T' for m depending on the
same assumptions A.

Proof: We proceed by induction on the number of maximum messages. If T
has no maximum messages then it is already normalized and we are done.
Otherwise. take any maximum message .\{. Because of the perfect encryp-
tion assumption. M cannot be the conclusion of an introduction rule for one
operator and a major premise in the elimination rule for the other opera-
tor. Therefore. one of the reduction rules applies to M. After applying the
appropriate reduction rule. we have removed one maximum message and we
have not introduced any new ones. The result is a derivation tree for m that
depends on the same assumptions and which has one less maximum mes-
sage. By the induction hypothesis this new derivation tree can be properly
transformed.

In fact. the structure of these derivations trees is even more restricted.

Theorem 2 o introduction rule appears above an elimination rule in a nor-
malized dervation tree.

Proof: By the definition of normalized. no message appears as the conclusion
of an introduction rule and a major premise of an elimination rule. Therefore.
we only need consider minor premises. The only minor premises are keys.
Recall that we restricted keys to be atomic: therefore. no key can appear as
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the conclusion of an introduction rule. Hence no message can appear as the
conclusion of an introduction rule and a premise of an elimination rule. It
follows that no introduction rule appears above an elimination rule.

This theorem provides a simple explanation for the atomic key restriction.

As we shall see. this theorem also leads to an efficient algorithm for deciding
Ik m.

8 INFORMATION ALGORITHMS

Theorem 2 suggests an efficient algorithm for determining if I F m. Since all
elimination rules appear above all introduction rules in a normalized deriva-
tion. we can first construct /. the closure of the initial set of assumptions /
under all elimination rules. We then do a backwards search for a derivation of
m from /* using only introduction rules. (We will use /* -7 m to denote that
such a derivation tree exists.} We will now prove termination and correctness
of this algorithm.

Theorem 3 [+ m iff I* -z m (Correctness)

Proof: (=>) Consider the case when I - m. Let T be a normalized derivation
tree for m from /. By removing all elimination rules, we get a new tree 7"
for m from /U A, where A is the set of all the messages appearing at the
top of T that are not in I. So T” is a derivation tree for /U A 7 m. By
construction. each 4; € A can be derived from / using only elimination rules
so JUA C I*. Therefore T" is also a derivation tree for I* -7 m.

{«) Consider the case when /* 17 m. By definition. [ - i for each i € I*.
Therefore. we can transform the tree 7' for /* Fr mintoatree T for [ F m
by placing a derivation tree T; for [/ I i above each message i € / at the top
of T".

Theorem 3 proves the correctness of our algorithm. To prove termination,
consider all the messages that are generated during the derivation. The elimi-
nation rules start from the assumptions and generate only sub-messages. Since
the original messages are finite length. and since there are only a finite num-
ber of them. the process of closing under elimination rules terminates. Now
consider the backwards search using introduction rules. Since these rules are
applied backwards. the new major premise messages we search for must be
sub-messages. and so that part of the search terminates when we reach a mes-
sagein /® or we reach an atomic message that is not in /*. The minor premises
we search for are all atomic keys. and so clearly, that involves a simple scan
of I* as well. Therefore. the entire algorithm terminates.

The implementation of this algorithm is given in the following two figures.
In Figure 3 we consider how to update the adversary's set of information when
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1 funct add(/.m)

2 foreachi €/ do

3 Ki:{.r}y A m.—..y'l

] then / := add(/. 1)

5 ifye/then/:=1-ifi
s fi

7 od

s ifmeA

9 then return /U {m}

10 elsifm=z-y

1 then return add(add(/, £),y)
12 elsifm={z}, Ny lel

13 then ify €/

14 then return add(I, r)
1s else return add(/ U {m}, z)
16 fi

17 else

18 return / U {m}

I:hl

19

Figure 3 Augmenting the adversary’s knowledge

it learns a new message. Anytime the adversary gains a new message, we add
it to the set of messages it currently has and we close this set under elimination
rules while also removing “redundant” messages. Figure 4, describes how to
search for a derivation of m from I* using only introduction rules. This search
involves first checking if m € [*. If this fails. then we recursively search for
the components of m. '

: funct inil.m)

2 ifmel

3 then return true

4 elsifm=zy

s then returnin(l.z) A in(l.y)
¢

7

8

9

(]
e

sif m = {r},
then returnini/.z) A in{l.y)
se

®
H

return false

([=2] |

10

Figure 4 Searching the adversary’s knowledge
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9 WOO AND LAM EXAMPLE

We now analyze a protocol published by Woo and Lam in (28]. The protocol
is given below:

.A=>B:4

.B—PA:N(, R

. A—)B:{Nb}K"

- B> 5:{A-{N}k..}x.,
.S—= B:{A-No}x,,

OV O N

Here A is the initiator, B is the responder, and S is a server. In message
one, A initiates the protocol by sending B its name. B replies in message two
‘with a nonce. In message three. .1 encrypts the nonce with the secret key it
shares with the server and sends it back to B. B then concatenates this with
A’s name, encrypts the whole thing with its private key with the server and
sends it to the server in message four. In the last message, the server can
decrypt using both keys to recover the original nonce and return it to B along
with A’s name and encrypted with B’s key.

In order to use our model checker, we first isolate which actions are per-
formed by A, which actions are performed by B, and which are performed by
S. We then write a short sequence of actions which make up each participant’s
role in the protocol. The process description for principal B can be found in
Figure 5. The descriptions for the other honest agents are similar. All that
remains is to specify the initial state of the adversary’s local store. Initially,
the adversary knows the names of all agents and its own secret key with the
server.

In just a few seconds. our model checker finds the following attack:

L H(A) =B A

B I(A): N,

. I(A) = B: N,

. B=1(S): {4 W}k,
. I(S) = B: {4 No}x.

OV e G2 N +—

In this case B is the only honest agent participating in the protocol. The
adversary pretends to be both the server S and the other honest agent A. In
the end, B believes that A has participated in a run of the protocol, while
A has not participated at all. The error occurs in step 3 of the protocol. B
is waiting for a message that is encrypted with a key it does not possess:
therefore. B has no idea what the message should look like. The adversary
can replay the message B sent in step 2 and B will accept it as coming from
4 in step 3. B then generates message 4 by concatenating this message with
A’s name and encrypting with the secret key it shares with the server. The
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problem now is that this message just sent by B in step 4, is the exact message
B is expecting from the server in step 5. So again. the adversary just replays
this message to B in order to complete the attack.

This example demonstrates a type of attack that depends on the fact that
an agent cannot differentiate between one kind of message and another. In
this example. the responder does not possess the key K,, and so cannot tell
in step 3 whether the message it receives is encrypted or not. Actually, the
situation is worse. since we assume that B knows nothing about the message
it receives and could actually accept any message at this point. However, not
all messages generate an attack. By accepting its own nonce in step 3. B
generates and sends in step 4 the exact message it is expecting in step 5. It is
this interplay that allows the attack.

This kind of attack illustrates one of the trade-offs involved when trying to
make the message space finite. When we look at the model of the responder in
this protocol in Figure 5. we notice that the second receive performed by the
responder consists of a single message variable. This is because, as discussed
above, from the responder’s point of view, this message could be anything. If
we place a type restriction on this variable. so that it can only unify against an
encrypted nonce, the attack discussed here would not be found. However, this
variable matches an infinite number of messages derivable by the adversary
and so we must somehow limit the set of messages we consider. In this case. the
attack is found even if we limit the size of the derivations that the adversary is
allowed to perform when generating messages to a single step (i.e. to messages
directly contained in [*).

((begrespond (*var* a))
(receive (*var* a)
(*var* a))
(newsecret (*var* nb))
(send (*var= a)
(*var* nb))
(receive (*var* a)
(-vars* tos))
(sead s
(encrypt (*secret* b)
(concat (*varx a) (*var* tos))))
(receive s
(encrypt (*secret* b)
(concat (*var* a) (*vars 2b))))
(endrespond (*vars aj))))

Figure 5 Process description for the responder
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10 CONCLUSION

The prototype model checker described here has successfully discovered previ-
ously published errors in protocols. When run on correct protocols. the model
checker takes a bit longer because it ends up exploring the entire reachable
state space. but for the examples investigated so far. with a single session for
each role. the system still terminates in about a minute. We are confident that
this kind of exhaustive simulation is a feasible and useful technique for veri-
fying security protocols. However, there are still many extensions that can be
investigated and implemented as well as additional experiments to be carried
out.

Despite the fact that there is a simple and straightforward translation from
protocol descriptions in the literature into our modelling language, this process
is tedious and prone to error. We are currently developing a better interface
that would allow protocols to be specified exactly the same way they are
specified in the literature. We are also working on defining a logic in which
to specify the properties we are interested in checking. We are investigating
how to add other message operations such as XOR and encryption with non-
atomic keys. While these extensions should be possible, it is not clear how
these additions will affect the efficiency of the decision procedure for message
derivations.

Efficiency is also an important concern. Currently, the model checker runs
in an acceptable amount of time. As we begin to increase the number of con-
current protocol runs. and as we increase the complexity of the model checker
itself. we can expect the execution time to increase dramatically. Techniques
that increase the efficiency of the model checker are necessary to combat this
increase in complexity. In particuiar. it has become clear that a number of
operations can be thought of as independent of each other. in the sense that
they can be swapped in the execution trace without affecting the rest of the
trace. This leads us to believe that partial order techniques {21] can be applied.
The increase in efficiency, ease of use. and expressibility will prove useful in
analyzing more complex protocols. including electronic commerce protocols.

Finally. there is the problem of how many runs to check. Because the size
of the model grows exponentially with the number of runs. it would be ideal
to be able to limit the search to only one or two runs. Inspired by the kind
of analysis done by Lowe [13], we are investigating a framework in which one
can analyze and prove bounds on the number of runs that need to be checked.
We use a kind of dependence graph on the messages that the adversary needs
to generate. For some simple protocois. we have been able to argue that if
there is a flaw in a protocol. then that flaw will be discovered by a model
checker on a model with only one run. We plan to continue investigating this
methodology with the hope of being able to automate it as well.
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