
A Model-based Approach to Reactive Self-Con�guring Systems�Brian C. Williams and P. Pandurang NayakRecom Technologies, NASA Ames Research Center, MS 269-2Mo�ett Field, CA 94305 USAE-mail: williams,nayak@ptolemy.arc.nasa.govAbstractThis paper describes Livingstone, an implementedkernel for a model-based reactive self-con�guring au-tonomous system. It presents a formal characteriza-tion of Livingstone's representation formalism, and re-ports on our experience with the implementation ina variety of domains. Livingstone provides a reac-tive system that performs signi�cant deduction in thesense/response loop by drawing on our past experi-ence at building fast propositional con
ict-based al-gorithms for model-based diagnosis, and by framinga model-based con�guration manager as a proposi-tional feedback controller that generates focused, opti-mal responses. Livingstone's representation formalismachieves broad coverage of hybrid hardware/softwaresystems by coupling the transition system models un-derlying concurrent reactive languages with the qual-itative representations developed in model-based rea-soning. Livingstone automates a wide variety of tasksusing a single model and a single core algorithm, thusmaking signi�cant progress towards achieving a cen-tral goal of model-based reasoning. Livingstone, to-gether with the HSTS planning and scheduling engineand the RAPS executive, has been selected as part ofthe core autonomy architecture for NASA's �rst NewMillennium spacecraft.Introduction and DesiderataNASA has put forth the challenge of establishing a\virtual presence" in space through a
eet of intelli-gent space probes that autonomously explore the nooksand crannies of the solar system. This \presence" isto be established at an Apollo-era pace, with softwarefor the �rst probe to be completed in 1997 and theprobe (Deep Space 1) to be launched in 1998. The�nal pressure, low cost, is of an equal magnitude. To-gether this poses an extraordinary challenge and op-portunity for AI. To achieve robustness during years inthe harsh environs of space the spacecraft will need toradically recon�gure itself in response to failures, andthen navigate around these failures during its remain-ing days. To achieve low cost and fast deployment, one-of-a-kind space probes will need to be plugged together�Authors listed in reverse alphabetical order.

quickly, using component-based models wherever pos-sible to automatically generate
ight software. Finally,the space of failure scenarios and associated responseswill be far too large to use software that requires pre-launch enumeration of all contingencies. Instead, thespacecraft will have to reactively think through theconsequences of its recon�guration options.We made substantial progress on each of these frontsthrough a system called Livingstone, an implementedkernel for a model-based reactive self-con�guring au-tonomous system. This paper presents a formalizationof the reactive, model-based con�guration manager un-derlying Livingstone. Several contributions are key.First, the approach uni�es the dichotomy within AIbetween deduction and reactivity (Agre & Chapman1987; Brooks 1991). We achieve a reactive system thatperforms signi�cant deduction in the sense/responseloop by drawing on our past experience at buildingfast propositional con
ict-based algorithms for model-based diagnosis, and by framing a model-based con�g-uration manager as a propositional feedback controllerthat generates focused, optimal responses. Second, ourmodeling formalism represents a radical shift from �rstorder logic, traditionally used to characterize model-based diagnostic systems. It achieves broad coverageof hybrid hardware/software systems by coupling thetransition system models underlying concurrent reac-tive languages (Manna & Pnueli 1992) with the qual-itative representations developed in model-based rea-soning. Reactivity is respected by restricting the modelto concurrent propositional transition systems that aresynchronous. Third, the long held vision of model-based reasoning has been to use a single central modelto support a diversity of engineering tasks. For model-based autonomous systems this means using a singlemodel to support a variety of execution tasks includingtracking planner goals, con�rming hardware modes,recon�guring hardware, detecting anomalies, isolatingfaults, diagnosis, fault recovery, and sa�ng. Living-stone automates all these tasks using a single modeland a single core algorithm, thus making signi�cantprogress towards achieving the model-based vision.Livingstone, integrated with the HSTS planning and

Acc

Legend

Valve

Pyro valve

Main
Engines

Regulators

Propellant
Tanks

Helium
Tank

Figure 1: Engine schematic. Valves in solid black areclosed, while the others are open.scheduling system (Muscettola 1994) and the RAPSexecutive (Firby 1995), was demonstrated to success-fully navigate the simulated NewMaap spacecraft intoSaturn orbit during its one hour insertion window, de-spite about half a dozen failures. Consequently, Liv-ingstone, RAPS, and HSTS have been selected to
yDeep Space 1, forming the core autonomy architectureof NASA's New Millennium program. In this archi-tecture (Pell et al. 1996) HSTS translates high-levelgoals into partially-ordered tokens on resource time-lines. RAPS executes planner tokens by translatingthem into low-level spacecraft commands while enforc-ing temporal constraints between tokens. Livingstonetracks spacecraft state and planner tokens, and recon-�gures for failed tokens.The rest of the paper is organized as follows. Inthe next section we introduce the spacecraft domainand the problem of con�guration management. Wethen introduce transition systems, the key formalismfor modeling hybrid concurrent systems, and a formal-ization of con�guration management. Next, we dis-cuss model-based con�guration management and itskey components: mode identi�cation and mode recon-�guration. We then introduce algorithms for statisti-cally optimal model-based con�guration managementusing con
ict-directed best-�rst search, followed by anempirical evaluation of Livingstone.Example: Autonomous SpaceExplorationFigure 1 shows an idealized schematic of the main en-gine subsystem of Cassini, the most complex spacecraftbuilt to date. It consists of a helium tank, a fuel tank,an oxidizer tank, a pair of main engines, regulators,latch valves, pyro valves, and pipes. The helium tank

pressurizes the two propellant tanks, with the regu-lators acting to reduce the high helium pressure to alower working pressure. When propellant paths to amain engine are open, the pressurized tanks forces fueland oxidizer into the main engine, where they combineand spontaneously ignite, producing thrust. The pyrovalves can be �red exactly once, i.e., they can changestate exactly once, either from open to closed or viceversa. Their function is to isolate parts of the main en-gine subsystem until needed, or to isolate failed parts.The latch valves are controlled using valve drivers (notshown), and the accelerometer (Acc) senses the thrustgenerated by the main engines.Starting from the con�guration shown in the �gure,the high-level goal of producing thrust can be achievedusing a variety of di�erent con�gurations: thrust canbe provided by either main engine, and there are anumber of ways of opening propellant paths to eithermain engine. For example, thrust can be provided byopening the latch valves leading to the engine on theleft, or by �ring a pair of pyros and opening a set oflatch valves leading to the engine on the right. Othercon�gurations correspond to various combinations ofpyro �rings. The di�erent con�gurations have di�erentcharacteristics since pyro �rings are irreversible actionsand since �ring pyro valves requires signi�cantly morepower than opening or closing latch valves.Suppose that the main engine subsystem has beencon�gured to provide thrust from the left main engineby opening the latch valves leading to it. Suppose thatthis engine fails, e.g., by overheating, so that it fails toprovide the desired thrust. To ensure that the desiredthrust is provided even in this situation, the spacecraftmust be transitioned to a new con�guration in whichthrust is now provided by the main engine on the right.Ideally, this is achieved by �ring the two pyro valvesleading to the right side, and opening the remaininglatch valves (rather than �ring additional pyro valves).A con�guration manager constantly attempts tomove the spacecraft into lowest cost con�gurations thatachieve a set of high-level dynamically changing goals.When the spacecraft strays from the chosen con�gu-ration due to failures, the con�guration manager ana-lyzes sensor data to identify the current con�gurationof the spacecraft, and then moves the spacecraft to anew con�guration which, once again, achieves the de-sired con�guration goals. In this sense a con�gurationmanager is a discrete control system that ensures thatthe spacecraft's con�guration always achieves the setpoint de�ned by the con�guration goals.Models of Concurrent ProcessesReasoning about a system's con�gurations and au-tonomous recon�guration requires the concepts of op-erating and failure modes, repairable failures, and con-�guration changes. These concepts can be expressedin a state diagram: repairable failures are transitionsfrom a failure state to a nominal state; con�guration

changes are between nominal states; and failures aretransitions from a nominal to a failure state.Selecting a restricted, but adequately expressive, for-malism for describing the con�gurations of a hybridhardware/software system is essential to achieving thecompeting goals of reactivity and expressivity. First-order formulations, though expressive, are overly gen-eral and do not lend themselves to e�cient reasoning.Propositional formulations lend themselves to e�cientreasoning, but are inadequate for representing conceptssuch as state change. Hence, we use a concurrent tran-sition system formulation and a temporal logic speci�-cation (Manna & Pnueli 1992) as a starting point formodeling hardware and software. Components operateconcurrently, communicating over \wires," and hencecan be modeled as concurrent communicating transi-tion systems. Likewise, for software routines, a broadclass of reactive languages can be represented natu-rally as concurrent transition systems communicatingthrough shared variables.Where our model di�ers from that of Manna &Pnueli, is that reactive software procedurally modi-�es its state through explicit variable assignments. Onthe other hand, a hardware component's behavior ina state is governed by a set of discrete and continu-ous declarative constraints. These constraints can becomputationally expensive to reason about in all theirdetail. However, experience applying qualitative mod-eling to diagnostic tasks for digital systems, copiers,and spacecraft propulsion, suggests that simple qual-itative representations over small �nite domains arequite adequate for modeling continuous and discretesystems. The added advantage of using qualitativemodels is that they are extremely robust to changesin the details of the underlying model. Hence behav-iors within states are represented by constraints over�nite domains, and are encoded as propositional for-mulae which can be reasoned with e�ciently.Other authors such as (Kuipers & Astrom 1994;Nerode & Kohn 1993; Poole 1995; Zhang & Mack-worth 1995) have been developing formal methods forrepresenting and reasoning about reactive autonomoussystems. The major di�erence between their work andours is our focus on fast reactive inference using propo-sitional encodings over �nite domains.Transition systemsWe model a concurrent process as a transition system.Intuitively, a transition system consists of a set of statevariables de�ning the system's state space and a set oftransitions between the states in the state space.De�nition 1 A transition system S is a tupleh�;�; T i, where� � is a �nite set of state variables. Each state variableranges over a �nite domain.� � is the feasible subset of the state space. Eachstate in the state space assigns to each variable in �a value from its domain.

� T is a �nite set of transitions between states. Eachtransition � 2 T is a function � : �! 2� represent-ing a state transforming action, where � (s) denotesthe set of possible states obtained by applying tran-sition � in state s.A trajectory for S is a sequence of feasible states� : s0; s1; : : : such that for all i � 0, si+1 2 � (si) forsome � 2 T . In this paper we assume that one ofthe transitions of S, called �n, is designated the nom-inal transition, with all other transitions being failuretransitions. Hence in any state a component may non-deterministically choose to perform either its nominaltransition, corresponding to correct functioning, or afailure transition, corresponding to a component fail-ure. Furthermore in response to a successful repairaction, the nominal transition will move the systemfrom a failure state to a nominal state.A transition system S = h�;�; T i is speci�ed usinga propositional temporal logic. Such speci�cations arebuilt using state formulae and the
 operator. A stateformula is an ordinary propositional formula in whichall propositions are of the form yk = ek, where yk is astate variable and ek is an element of yk's domain.
is the next operator of temporal logic denoting truthin the next state in a trajectory.A state s de�nes a truth assignment in the naturalway: proposition yk = ek is true i� the value of yk isek in s. A state s satis�es a state formula � preciselywhen the truth assignment corresponding to s satis�es�. The set of states characterized by a state formula �is the set of all states that satisfy �. Hence, we specifythe set of feasible states of S by a state formula �S .A transition � is speci�ed by a formula �� , which isa conjunction of formulae ��i of the form �i)
	i,where �i and 	i are state formulae. A feasible state skcan follow a feasible state sj in a trajectory of S usingtransition � i� for all formulae ��i , if sj satis�es theantecedent of ��i , then sk satis�es the consequent of��i . A transition �i that models a formula ��i is called asubtransition. Hence taking a transition � correspondsto taking all its subtransitions �i.Note that this speci�cation only adds the
 opera-tor to standard propositional logic. This severely con-strained use of temporal logic is an essential propertythat allows us to perform deductions reactively.Example 1 The transition system correspondingto a valve driver consists of 3 state variablesfmode; cmdin; cmdoutg, where mode represents thedriver's mode (on, o�, resettable or failed), cmdinrepresents commands to the driver and its associatedvalve (on, o�, reset, open, close, none), and cmdoutrepresents the commands output to its valve (open,close, or none). The feasible states of the driver arespeci�ed by the formulamode = on) (cmdin = open) cmdout= open)^ (cmdin = close) cmdout = close)^ ((cmdin 6= open ^ cmdin 6= close)) cmdout= none)mode = o�) cmdout = none

together with formulae like (mode 6= on) _ (mode 6=o�), : : : that assert that variables have unique values.The driver's nominal transition is speci�ed by the fol-lowing set of formulae:((mode = on) _ (mode= o�)) ^ (cmdin = o�))
(mode = o�)((mode = on) _ (mode= o�)) ^ (cmdin = on))
(mode = on)(mode 6= failed) ^ (cmdin = reset))
(mode = on)(mode = resettable) ^ (cmdin 6= reset))
(mode = resettable)(mode = failed))
(mode = failed)The driver also has two failure transitionsspeci�ed by the formulae
(mode = failed) and
(mode = resettable), respectively.Con�guration managementWe view an autonomous system as a combination ofa high-level planner and a reactive con�guration man-ager that controls a plant (Figure 2). The plannergenerates a sequence of hardware con�guration goals.The con�guration manager evolves the plant transitionsystem along the desired trajectory. The combinationof a transition system and a con�guration manager iscalled a con�guration system. More precisely,De�nition 2 A con�guration system is a tuplehS ;�; �i, where S is a transition system, � is afeasible state of S representing its initial state, and� : g0; g1; : : : is a sequence of state formulae calledgoal con�gurations. A con�guration system generatesa con�guration trajectory � : s0; s1 : : : for S such thats0 is � and either si+1 satis�es gi or si+1 2 � (si) forsome failure transition � .Con�guration management is achieved by sensingand controlling the state of a transition system. Thestate of a transition system is (partially) observablethrough a set of variables O � �. The next state ofa transition system can be controlled through an ex-ogenous set of variables � � �. We assume that � areexogenous so that the transitions of the system do notdetermine the values of variables in �. We also assumethat the values of O in a given state are independent ofthe values of � at that state, though they may dependon the values of � at the previous state.De�nition 3 A con�guration manager C for a transi-tion system S is an online controller that takes as inputan initial state, a sequence of goal con�gurations, anda sequence of values for sensed variables O, and in-crementally generates a sequence of values for controlvariables � such that the combination of C and S is acon�guration system.A model-based con�guration manager is a con�gura-tion manager that uses a speci�cation of the transitionsystem to compute the desired sequence of control val-ues. We discuss this in detail shortly.

Plant transition systemWe model a plant as a transition system composedof a set of concurrent component transition systemsthat communicate through shared variables. The com-ponent transition systems of a plant operate syn-chronously, that is, at each plant transition every com-ponent performs a state transition. The motivation forimposing synchrony is given in the next section. Werequire the plant's speci�cation to be composed out ofits components' speci�cation as follows:De�nition 4 A plant transition system S = h�;�; T icomposed of a set CD of component transition systemsis a transition system such that;� The set of state variables of each transition systemin CD is a subset of �. The plant transition systemmay introduce additional variables not in any of itscomponent transition systems.� Each state in �, when restricted to the appropriatesubset of variables, is feasible for each transition sys-tem in CD, i.e.., for each C 2 CD, �S j= �C , though�S can be stronger than the conjunction of the �C .� Each transition � 2 T performs one transition �Cfor each transition system C 2 CD. This means that�� , ^C2CD ��CThe concept of synchronous, concurrent actions iscaptured by requiring that each component performsa transition for each state change. Nondeterminismlies in the fact that each component can traverse eitherits nominal transition or any of its failure transitions.The nominal transition of a plant performs the nomi-nal transition for each of its components. Multiple si-multaneous failures correspond to traversing multiplecomponent failure transitions.Returning to the example, each hardware compo-nent in Figure 1 is modeled by a component transitionsystem. Component communication, denoted by wiresin the �gure, is modeled by shared variables betweenthe corresponding component transition systems.Model-based con�guration managementWe now introduce con�guration managers that makeextensive use of a model to infer a plant's current stateand to select optimal control actions to meet con�gu-ration goals. This is essential in situations where mis-takes may lead to disaster, ruling out simple trial-and-error approaches. A model-based con�guration man-ager uses a plant transition modelM to determine thedesired control sequence in two stages|mode identi-�cation (MI) and mode recon�guration (MR). MI in-crementally generates the set of all plant trajectoriesconsistent with the plant transition model and the se-quence of plant control and sensed values. MR usesa plant transition model and the partial trajectories

Planner

MI MR

Plant

High-level
goals

Confirmation
Configuration

goals

Control
actions

Sensed
values

Configuration
ManagerFigure 2: Model-based con�guration managementgenerated by MI up to the current state to determinea set of control values such that all predicted trajecto-ries achieve the con�guration goal in the next state.Both MI and MR are reactive. MI infers the cur-rent state from knowledge of the previous state andobservations within the current state. MR only consid-ers actions that achieve the con�guration goal withinthe next state. Given these commitments, the deci-sion to model component transitions as synchronousis key. An alternative is to model multiple transitionsthrough interleaving. This, however, places an arbi-trary distance between the current state and the statein which the goal is achieved, defeating a desire to limitinference to a small number of states. Hence we use anabstraction in which component transitions occur syn-chronously, even though the underlying hardware mayinterleave the transitions. The abstraction is correct ifdi�erent interleavings produce the same �nal result.We now formally characterize MI and MR. Recallthat taking a transition �i corresponds to taking allsubtransitions �ij. A transition �i can be de�ned toapply over a set of states S in the natural way:�i(S) = [s2S �i(s)Similarly we de�ne �ij(S) for each subtransition �ij of�i. We can show that�i(S) �\j �ij(S) (1)In the following, Si is the set of possible states at timei before any control values are asserted by MR, �i is thecontrol values asserted at time i, Oi is the observationsat time i, and S�i and SOi is the set of states in whichcontrol and sensed variables have values speci�ed in�i and Oi, respectively. Hence, Si \ S�i is the set ofpossible states at time i.We characterize both MI and MR in two ways|�rstmodel theoretically and then using state formulas.Mode Identi�cationMI incrementally generate the sequence S0; S1; : : : us-ing a model of the transitions and knowledge of thecontrol actions �i as follows:S0 = f�g (2)

Si+1 = [j �j(Si \ S�i)! \� \ SOi+1 (3)� [j \k �jk(Si \ S�i)! \� \ SOi+1 (4)where the �nal inclusion follows from Equation 1.Equation 4 is useful because it is a characterizationof Si+1 in terms of the subtransitions �jk. This allowsus to develop the following characterization of Si+1 interms of state formulae:�Si+1 �_�j 0@ ^�Si^�S�i j=�jk 	jk1A ^ �� ^ �Oi+1 (5)This is a sound but potentially incomplete character-ization of Si+1, i.e., every state in Si+1 satis�es �Si+1but not all states that satisfy �Si+1 are necessarily inSi+1. However, generating �Si+1 requires only that theentailment of the antecedent of each subtransition bechecked. On the other hand, generating a completecharacterization based on Equation 3 would requireenumerating all the states in Si, which can be com-putationally expensive if Si contains many states.Mode Recon�gurationMR incrementally generates the next set of control val-ues �i using a model of the nominal transition �n, thedesired goal con�guration gi, and the current set ofpossible states Si. The model-theoretic characteriza-tion ofMi, the set of possible control actions that MRcan take at time i, is as follows:Mi = f�j j�n(Si \ S�j) \� � gig (6)� f�j j\k �nk(Si \ S�j) \� � gig (7)where, once again, the latter inclusion follows fromEquation 1. As with MI, this weaker characterizationof Mi is useful because it is in terms of the subtran-sitions �nk. This allows us to develop the followingcharacterization of Mi in terms of state formulae:Mi � f�jj �Si ^ ��j is consistent and^�Si^��j j=�nk	nk ^ �� j= �gig (8)The �rst part says that the control actions must beconsistent with the current state, since without thiscondition the goals can be simply achieved by makingthe world inconsistent. Equation 8 is a sound but po-tentially incomplete characterization of the set of con-trol actions inMi, i.e., every control action that satis-�es the condition on the right hand side is in Mi, butnot necessarily vice versa. However, checking whethera given �j is an adequate control action only requiresthat the entailment of the antecedent of each subtran-sition be checked. On the other hand, generating acomplete characterization based on Equation 6 would

require enumerating all the states in Si, which can becomputationally expensive if Si contains many states.IfMi is empty, no actions achieve the required goal.The planner then initiates replanning to dynamicallychange the sequence of con�guration goals.Statistically optimal con�gurationmanagementThe previous section characterized the set of all feasibletrajectories and control actions. However, in practice,not all such trajectories and control actions need tobe generated. Rather, just the likely trajectories andan optimal control action need to be generated. Wee�ciently generate these by recasting MI and MR ascombinatorial optimization problems.A combinatorial optimization problem is a tuple(X;C; f), where X is a �nite set of variables with �nitedomains, C is set of constraints over X, and f is an ob-jective function. A feasible solution is an assignment toeach variable in X a value from its domain such thatall constraints in C are satis�ed. The problem is to�nd one or more of the leading feasible solutions, i.e.,to generate a pre�x of the sequence of feasible solutionsordered in decreasing order of f .Mode Identi�cationEquation 3 characterizes the trajectory generationproblem as identifying the set of all transitions fromthe previous state that yield current states consistentwith the current observations. Recall that a transi-tion system has one nominal transition and a set offailure transitions. In any state, the transition systemnon-deterministically selects exactly one of these tran-sitions to evolve to the next state. We quantify thisnon-deterministic choice by associating a probabilitywith each transition: p(�) is the probability that theplant selects transition � .1With this viewpoint, we recast MI's task to be oneof identifying the likely trajectories of the plant. Inkeeping with the reactive nature of con�guration man-agement, MI incrementally tracks likely trajectories byextending the current set of trajectories by the likelytransitions. The only change required in Equation 5 isthat, rather than the disjunct ranging over all transi-tions �j , it ranges over the subset of likely transitions.The likelihood of a transition is its posterior proba-bility p(� jOi). This posterior is estimated in the stan-dard way using Bayes Rule:p(� jOi) = p(Oij�)p(�)p(Oi) / p(Oij�)p(�)If � (Si�1) and Oi are disjoint sets then clearlyp(Oij�) = 0. Similarly, if � (Si�1) � Oi then Oi is en-tailed and p(Oij�) = 1, and hence the posterior prob-ability of � is proportional to the prior. If neither of1We make the simplifying assumption that the proba-bility of a transition is independent of the current state.

the above two situations arises then p(Oij�) � 1. Es-timating this probability is di�cult and requires moreresearch, but see (de Kleer & Williams 1987).Finally, to view MI as a combinatorial optimizationproblem, recall that each plant transition consists of asingle transition for each of its components. We intro-duce a variable into X for each component in the plantwhose values are the possible component transitions.Each plant transition corresponds to an assignment ofvalues to variables in X. C is the constraint that thestates resulting from taking a plant transition is consis-tent with the observed values. The objective functionf is the probability of a plant transition. The result-ing combinatorial optimization problem hence identi-�es the leading transitions at each state, allowing MIto track the set of likely trajectories.Mode recon�gurationEquation 6 characterizes the recon�guration problemas one of identifying a control action that ensures thatthe result of taking the nominal transition yields statesin which the con�guration goal is satis�ed. Recast-ing MR as a combinatorial optimization problem isstraightforward. The variables X are just the controlvariables � with identical domains. C is the constraintin Equation 5 that �j must satisfy to be inMi. Finally,as noted earlier, di�erent control actions can have dif-ferent costs that re
ect di�ering resource requirements.We take f to be negative of the cost of a control ac-tion. The resulting combinatorial optimization prob-lem hence identi�es the lowest cost control action thatachieves the goal con�guration in the next state.Con
ict-directed best �rst searchWe solve the above combinatorial optimization prob-lems using a con
ict directed best �rst search, similar inspirit to (de Kleer & Williams 1989; Dressler & Struss1994). A con
ict is a partial solution such that anysolution containing the con
ict is guaranteed to be in-feasible. Hence, a single con
ict can rule out the feasi-bility of a large number of solutions, thereby focusingthe search. Con
icts are generated while checking tosee if a solution Xi satis�es the constraints C.Our con
ict-directed best-�rst search algorithm,CBFS , is shown in in Figure 3. It has two major com-ponents: (a) an agenda that holds unprocessed solu-tions in decreasing order of f ; and (b) a procedure togenerate the immediate successors of a solution. Themain loop removes the �rst solution from the agenda,checks its feasibility, and adds in the solution's imme-diate successors to the agenda. When a solution Xi isinfeasible, we assume that the process of checking theconstraints C returns a part of Xi as a con
ict Ni. Wefocus the search by generating only those immediatesuccessors of Xi that are not subsumed by Ni, i.e., donot agree with Ni on all variables.Intuitively, solution Xj is an immediate successor ofsolutionXi only if f(Xi) � f(Xj) andXi andXj di�er

function CBFS(X, C, f)Agenda = ffbest-solution(X)gg; Result = ;;while Agenda is not empty doSoln = pop(Agenda);if Soln satis�es C thenAdd Soln to Result;if enough solutions have been found thenreturn Result;else Succs = immediate successors Soln;elseConf = a con
ict that subsumes Soln;Succs = immediate successors of Soln notsubsumed by Conf;endifInsert each solution in Succs into Agendain decreasing f order;endwhilereturn Result;end CBFSFigure 3: Con
ict directed best �rst search algorithmfor combinatorial optimizationonly in the value assigned to a single variable (ties arebroken consistently to prevent loops in the successorgraph). One can show this de�nition of the immediatesuccessors of a solution su�ces to prove the correctnessof CBFS , i.e., to show that all feasible solutions aregenerated in decreasing order of f .Our implemented algorithm further re�nes the no-tion of an immediate successor. The major bene�t ofthis re�nement is that each time a solution is removedfrom the agenda, at most two new solutions are addedon, so that the size of the agenda is bounded by thetotal number of solutions that have been checked forfeasibility, thus preserving reactivity (details are be-yond the scope of this paper). For MI, we use fullpropositional satis�ability to check C (transition con-sistency). Interestingly, reactivity is preserved sincethe causal nature of a plant's state constraints meansthat full satis�ability requires little search. For MR, wepreserve reactivity by using unit propagation to checkC (entailment of goals), re
ecting the fact that entail-ment is usually harder than satis�ability. Finally, notethat CBFS does not require minimal con
icts. Empir-ically, the �rst con
ict found by the constraint checkerprovides enough focusing, so that the extra e�ort to�nd minimal con
icts is unnecessary.Implementation and experimentsWe have implemented Livingstone based on the ideasdescribed in this paper. Livingstone was part of a rapidprototyping demonstration of an autonomous architec-ture for spacecraft control, together with the HSTSplanning/scheduling engine and the RAPS executive(Pell et al. 1996). In this architecture, RAPS fur-ther decomposes and orders HSTS output before hand-ing goals to Livingstone. To evaluate the architec-

Number of components 80Average modes/component 3.5Number of propositions 3424Number of clauses 11101Table 1: NewMaap spacecraft model propertiesFailure MI MRScenario Chck Accpt Time Chck TimeEGA preaim 7 2 2.2 4 1.7BPLVD 5 2 2.7 8 2.9IRU 4 2 1.5 4 1.6EGA burn 7 2 2.2 11 3.6ACC 4 2 2.5 5 1.9ME hot 6 2 2.4 13 3.8Acc low 16 3 5.5 20 6.1Table 2: Results from the seven Newmaap failure re-covery scenariosture, spacecraft engineers at JPL de�ned the Newmaapspacecraft and scenario. The Newmaap spacecraft isa scaled down version of the Cassini spacecraft thatretains the most challenging aspects of spacecraft con-trol. The Newmaap scenario was based on the mostcomplex mission phase of the Cassini spacecraft|successful insertion into Saturn's orbit even in theevent of any single point of failure. Table 1 providessummary informationabout Livingstone's model of theNewmaap spacecraft, demonstrating its complexity.The Newmaap scenario included seven failure sce-narios. From Livingstone's viewpoint, each scenariorequired identifying the failure transitions using MIand deciding on a set of control actions to recover fromthe failure using MR. Table 2 shows the results of run-ning Livingstone on these scenarios. The �rst columnnames each of the scenarios; a discussion of the detailsof these scenarios is beyond the scope of this paper.The second and �fth columns show the number of so-lutions checked by algorithm CBFS when applied toMI and MR, respectively. On can see that even thoughthe spacecraft model is large, the use of con
icts dra-matically focuses the search. The third column showsthe number of leading trajectory extensions identi�edby MI. The limited sensing available on the Newmaapspacecraft often makes it impossible to identify uniquetrajectories. This is generally true on spacecraft, sinceadding sensors increases spacecraft weight. The fourthand sixth columns show the time in seconds on a Sparc5 spent by MI and MR on each scenario, once againdemonstrating the e�ciency of our approach.Livingstone's MI component was also tested on tencombinational circuits from a standard test suite (Br-glez & Fujiwara 1985). Each component in these cir-cuits was assumed to be in one of four modes: ok,stuck-at-1, stuck-at-0, unknown. The probability oftransitioning to the stuck-at modes was set at 0:099and to the unknown mode was set at 0:002. We ran 20

of # ofDevices components clauses Checked Timec17 6 18 18 0.1c432 160 514 58 4.7c499 202 714 43 4.5c880 383 1112 36 4.0c1355 546 1610 52 12.3c1908 880 2378 64 22.8c2670 1193 3269 93 28.8c3540 1669 4608 140 113.3c5315 2307 6693 84 61.2c7552 3512 9656 71 61.5Table 3: Testing MI on a standard suite of circuitsexperiments on each circuit using a random fault and arandom input vector sensitive to this fault. MI stoppedgenerating trajectories after either 10 leading trajecto-ries had been generated, or when the next trajectorywas 100 times more unlikely than the most likely tra-jectory. Table 3 shows the results of our experiments.The columns are self-explanatory, except that the timeis the number of seconds on a Sparc 2. Note once againthe power of con
ict-directed search to dramatically fo-cus search. Interestingly, these results are comparableto the results from the very best ATMS-based imple-mentations, even though Livingstone uses no ATMS.Furthermore, initial experiments with a partial LTMShave demonstrated an order of magnitude speed-up.Livingstone is also being applied to the autonomousreal-time control of a scienti�c instrument called aBioreactor. This project is still underway, and �nalresults are forthcoming. More excitingly, the successof the Newmaap demonstration has launched Living-stone to new heights: Livingstone, together with HSTSand RAPS, is going to be part of the
ight software ofthe �rst New Millennium mission, called Deep SpaceOne, to be launched in 1998. We expect �nal deliveryof Livingstone to this project in 1997.ConclusionsIn this paper we introduced Livingstone, a reactive,model-based self-con�guring system, which provides akernel for model-based autonomy. It represents animportant step toward our goal of developing a fullymodel-based autonomous system (Williams 1996).Three technical features of Livingstone are par-ticularly worth highlighting. First, our modelingformalism achieves broad coverage of hybrid hard-ware/software systems by coupling the transition sys-tem models underlying concurrent reactive languages(Manna & Pnueli 1992) with the qualitative represen-tations developed in model-based reasoning. Second,we achieve a reactive system that performs signi�cantdeduction in the sense/response loop by using proposi-tional transition systems, qualitative models, and syn-chronous components transitions. The interesting andimportant result of Newmaap, Deep Space One, and

the Bioreactor is that Livingstone's models and re-stricted inference are still expressive enough to solveimportant problems in a diverse set of domains. Third,Livingstone casts mode identi�cation and mode re-con�guration as combinatorial optimization problems,and uses a core con
ict-directed best-�rst search tosolve them. The ubiquity of combinatorial optimiza-tion problems and the power of con
ict-directed searchare central themes in Livingstone.Livingstone, the HSTS planning/scheduling system,and the RAPS executive, have been selected to formthe core autonomy architecture of Deep Space One, the�rst
ight of NASA's New Millennium program.Acknowledgements: We would like to thankNicola Muscettola and Barney Pell for valuable dis-cussions and comments on the paper.ReferencesAgre, P., and Chapman, D. 1987. Pengi: An implemen-tation of a theory of activity. In Procs. of AAAI-87.Brglez, F., and Fujiwara, H. 1985. A neutral netlist of10 combinational benchmark circuits. In Int. Symp. onCircuits and Systems.Brooks, R. A. 1991. Intelligence without reason. In Procs.of IJCAI-91, 569{595.de Kleer, J., and Williams, B. C. 1987. Diagnosing mul-tiple faults. Arti�cial Intelligence 32(1):97{130.de Kleer, J., and Williams, B. C. 1989. Diagnosis withbehavioral modes. In Procs. of IJCAI-89, 1324{1330.Dressler, O., and Struss, P. 1994. Model-based diagnosiswith the default-based diagnosis engine: E�ective controlstrategies that work in practice. In Procs. of ECAI-94.Firby, R. J. 1995. The RAP language manual. WorkingNote AAP-6, University of Chicago.Kuipers, B., and Astrom, K. 1994. The compositionand validation of heterogenous control laws. Automatica30(2):233{249.Manna, Z., and Pnueli, A. 1992. The TemporalLogic of Reactive and Concurrent Systems: Speci�cation.Springer-Verlag.Muscettola, N. 1994. HSTS: Integrating planning andscheduling. In Fox, M., and Zweben, M., eds., IntelligentScheduling. Morgan Kaufmann.Nerode, A., and Kohn, W. 1993. Models for hybrid sys-tems. In Grossman, R. L. et al, eds., Hybrid Systems.Springer-Verlag. 317{356.Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscet-tola, N.; Nayak, P. P.; Wagner, M. D.; and Williams, B. C.1996. A remote agent prototype for spacecraft autonomyIn Procs. of SPIE Conf. on Optical Science, Engineering,and Instrumentation.Poole, D. 1995. Sensing and acting in the independentchoice logic. In Procs. of the AAAI Spring Symp. on Ex-tending Theories of Action, 163{168.Williams, B. C. 1996. Model-based autonomous systemsin the new millennium. In Procs. of AIPS-96.Zhang, Y., and Mackworth, A. K. 1995. Constraint nets:A semantic model for hybrid dynamic systems. Journalof Theoretical Computer Science 138(1):211{239.

