
15-887 Solutions Homework 1

Lunar Lockout Game

a) - d)

Many valid solutions to this problem. We were looking for clear idea about the predicates that a
state could be composed of. We also wanted to see recognition that actions have precondition, add,
and delete effects. Domain axioms should be stated but are implicit in the definition of actions.

Below is a possible solution, represented using PDDL. Adapted from the answer by Devin
Schwab.

Listing 1: Domain specification

( d e f i n e ( domain lunar−lockout−b)
( : requ i rements : s t r i p s : ad l : typing )

( : types s p a c e c r a f t coord )

( : p r e d i c a t e s
( g reate r−than ? s1 − coord ? s2 − coord )
( one−greate r−than ? s1 − coord ? s2 − coord )
( at ? s p a c e c r a f t − s p a c e c r a f t ?row − coord ? c o l − coord ) )

( : a c t i on move− l e f t
: parameters (? s p a c e c r a f t 1 − s p a c e c r a f t ?row − coord

? s p a c e c r a f t 2 − s p a c e c r a f t ? s2−c o l − coord
? from−c o l − coord ? to−c o l − coord )

: p r e cond i t i on ( and
( at ? s p a c e c r a f t 1 ?row ? from−c o l )
( at ? s p a c e c r a f t 2 ?row ? s2−c o l )
( one−greate r−than ? to−c o l ? s2−c o l )
( g reate r−than ? from−c o l ? to−c o l )
( f o r a l l (? s p a c e c r a f t 3 − s p a c e c r a f t ? c o l − coord )

( not ( and
( at ? s p a c e c r a f t 3 ?row ? c o l )
( g reate r−than ? from−c o l ? c o l )
( g reate r−than ? c o l ? s2−c o l ) ) ) ) )

: e f f e c t ( and ( at ? s p a c e c r a f t 1 ?row ? to−c o l )
( not ( at ? s p a c e c r a f t 1 ?row ?from−c o l ) ) ) )

( : a c t i on move−r i g h t
: parameters (? s p a c e c r a f t 1 − s p a c e c r a f t ?row − coord

? s p a c e c r a f t 2 − s p a c e c r a f t ? s2−c o l − coord
? from−c o l − coord ? to−c o l − coord )

: p r e cond i t i on ( and
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( at ? s p a c e c r a f t 1 ?row ? from−c o l )
( at ? s p a c e c r a f t 2 ?row ? s2−c o l )
( one−greate r−than ? s2−c o l ? to−c o l )
( g reate r−than ? to−c o l ? from−c o l )
( f o r a l l (? s p a c e c r a f t 3 − s p a c e c r a f t ? c o l − coord )

( not ( and
( at ? s p a c e c r a f t 3 ?row ? c o l )
( g reate r−than ? c o l ? from−c o l )
( g reate r−than ? s2−c o l ? c o l ) ) ) ) )

: e f f e c t ( and ( at ? s p a c e c r a f t 1 ?row ? to−c o l )
( not ( at ? s p a c e c r a f t 1 ?row ?from−c o l ) ) ) )

( : a c t i on move−up
: parameters (? s p a c e c r a f t 1 − s p a c e c r a f t ? c o l − coord

? s p a c e c r a f t 2 − s p a c e c r a f t ? s2−row − coord
? from−row − coord ? to−row − coord )

: p r e cond i t i on ( and
( at ? s p a c e c r a f t 1 ? from−row ? c o l )
( at ? s p a c e c r a f t 2 ? s2−row ? c o l )
( one−greate r−than ? s2−row ? to−row )
( greate r−than ? to−row ? from−row )
( f o r a l l (? s p a c e c r a f t 3 − s p a c e c r a f t ?row − coord )

( not ( and
( at ? s p a c e c r a f t 3 ?row ? c o l )
( g reate r−than ?row ?from−row )
( greate r−than ? s2−row ?row ) ) ) ) )

: e f f e c t ( and ( at ? s p a c e c r a f t 1 ? to−row ? c o l )
( not ( at ? s p a c e c r a f t 1 ? from−row ? c o l ) ) ) )

( : a c t i on move−down
: parameters (? s p a c e c r a f t 1 − s p a c e c r a f t ? c o l − coord

? s p a c e c r a f t 2 − s p a c e c r a f t ? s2−row − coord
? from−row − coord ? to−row − coord )

: p r e cond i t i on ( and
( at ? s p a c e c r a f t 1 ? from−row ? c o l )
( at ? s p a c e c r a f t 2 ? s2−row ? c o l )
( one−greate r−than ? to−row ? s2−row )
( greate r−than ? from−row ? to−row )
( f o r a l l (? s p a c e c r a f t 3 − s p a c e c r a f t ?row − coord )

( not ( and
( at ? s p a c e c r a f t 3 ?row ? c o l )
( g reate r−than ? from−row ?row )
( greate r−than ?row ? s2−row ) ) ) ) )

: e f f e c t ( and ( at ? s p a c e c r a f t 1 ? to−row ? c o l )
( not ( at ? s p a c e c r a f t 1 ? from−row ? c o l ) ) ) ) )
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Listing 2: Problem 1 specification

( d e f i n e ( problem lunar−lockout−b−probone )
( : domain lunar−lockout−b)
( : o b j e c t s red ye l low purple orange green − s p a c e c r a f t

ze ro one two three four − coord )
( : goa l ( at red two two ) )
( : i n i t
( at red zero four )
( at ye l low one three )
( at orange four four )
( at green three two )
( at purple two one )

( greate r−than one zero )
( g reate r−than two zero )
( g reate r−than three zero )
( g reate r−than four zero )

( g reate r−than two one )
( greate r−than three one )
( greate r−than four one )

( greate r−than three two )
( greate r−than four two )

( greate r−than four three )

( one−greate r−than one zero )
( one−greate r−than two one )
( one−greate r−than three two )
( one−greate r−than four three ) ) )

Means-Ends Analysis

a)

Sussman’s anomaly was a popular solution. The idea here is to point out a situation where the
resulting solution requires more options than the optimal solution. This is different from a solution
that requires backtracking. The idea is to show that means-ends resolves one goal at a time and
may repursue a goal that it undoes in the process of achieving another goal. This results in lengthier
plans than necessary.

b)

op2, op1, op3.
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c)

Adapted from the answer by Devin Schwab.
Prodigy starts with an empty head and tail plan as shown in Figure 1. In other words the set

of relevant operators is empty. The initial state is g2, g3 and the goal is g1, g2. Goal g2 is satisfied
by the starting state, so according to Means-Ends Analysis, only g1 is in the set of pending goals
G. There are no relevant operators because the tail plan is empty. Therefore, at this decision point
we must choose the goal g1 to expand.

Figure 1: Initial head and tail plan

The only operator relevant to goal g1 is op1, so we add it to the tail plan. The head and tail
plan now look like the one shown in Figure 2.

Figure 2: After expanding g1

Now goal g1 is satisfied by an operator in the tail plan, and goal g2 is still in the state resulting
from the current head plan. So G = ∅. Of the operators in the tail plan op1 is applicable. So this
time we will apply op1. This leads to the head and tail plan shown in Figure 3.

Figure 3: After applying op1

By applying op1, the current state C becomes C = {g1}. So the goal g1 is satisfied by the
current state, but g2 is not. The tail plan is now empty so there are no relevant operators to
consider applying. Therefore the goal g2 is expanded.

The only operator relevant to goal g2 is op3, which has preconditions g4, which is unsatisfied.
The head and tail plan now look like Figure 4

Figure 4: After adding op3

Now g1 is satisfied by the state in C and g2 is satisfied by the op3 in the tail plan. This leaves
only the g4 goal unsatisfied. op3 is the only relevant operator, and it is currently not applicable
because C does not contain g4. So we expand g4.

The only operator relevant to goal g4 is op2, which has preconditions g3 which is unsatisfied.
The head and tail plan now look like Figure 5.

Figure 5: After expanding g4
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Now the only goal not satisfied by the state C or an operation in the tail plan is g3. So G = g3.
There are two relevant operators op2 and op3. op3 is not applicable because op2 must come before
it according to the tail plan. op2 is not applicable because g3 is not in state C. Therefore, we will
expand goal g3.

There is no operator which can satisfy goal g3. This means that this branch of the prodigy
search has failed to find a plan. However, there are no other possible branches (at no point did we
make a choice between applying or expanding and when expanding we did not make any choices
between applicable operators). Therefore, prodigy will return that no plan exists. When in reality
the plan shown in part b is a valid plan for the given starting state and goal.

d)

Adapted from the answer by Devin Schwab.

Figure 6: Expansions of the graphplan algorithm

e)

The incompleteness is due to Means-Ends Analysis. By only considering unachieved goals, Prodigy
failed to explore the possibility of op2 coming before op1. A possible solution would be to allow
Prodigy to consider all goals, including those already satisfied by the current state.

In that case, on the first decision point of the execution of the contrived example, Prodigy would
be able to expand either g1 or g2. By expanding g2 we would arrived at a solution.

This solution however, may require some sort of loop detection, to prevent Prodigy from ex-
panding the same goals over and over.
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GraphPlan

a)

An example of one reason why Graphplan can backtrack in its backward search is due to the fact that
it only considers pairwise mutex exclusion. Consider the following domain and the corresponding
planning graph for goals g1, g2, and g3:

Propositions time 1: No exclusive relations: p13 and p14 are true.

Action time 1: a11 is exclusive of a13, because a11 deletes p13, precondition of a13; a12 is
exclusive of a14, because a12 deletes p14, precondition of a14.

Propostions time 2: No pair of propositions is mutually exclusive (mutex): (i) p1 and p2 can
be added by actions (a11, a13) mutex, but also by (a11, a12) not mutex; (ii) p1 and p3 can be
added by (a11, a13) mutex, but also by (a11, a14) not mutex; and (iii) p2 and p3 can be added by
(a12, a14) mutex, but also by (a13, a14) or (a12, a13) not mutex. Note, however, that p1, p2 and
p3 cannot all be true simultaneously, because there is no valid action set that will add the three
propositions. For example, a11, a12, a13 cannot occur simultaneously because a11 is exclusive of
a13. Similarly, a11, a12, a14 cannot occur simultaneously because a12 is exclusive of a14. By
looking only at pairwise mutual exclusivity, Graphplan does not detect this.

Actions time 2: No pair of actions are mutex, but (a1, a2, a3) cannot occur simultaneously
because p1, p2, p3 cannot be true simultaneously. Graphplan stops its expansion when it finds the
goals g1, g2, and g3 at the proposition time level 3 and non-exclusive. The goals can be the result
of two sets of actions: a1, a2, a3 or a1, a4, a3. Since there are no mutex relationships in actions in
the set, Graphplan may initially pick the set a1, a2, a3 and begin a 1 backwards search for a plan.
When it reaches the actions at time step 1 however, it realizes that there is no action set it can pick
that will make the propositions p1, p2, p3 true simultaneously. It then needs to backtrack back to
the goal level and pick a different set of actions to achieve the goal conditions. It selects a1, a4, a3
whose preconditions are p1, p4, p3 which are added by the valid action set a11, a15, a14.
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b)

In the backwards search phase, Graphplan either finds a valid plan or proves that no plan can have
fewer time steps. Thus, if Graphplan does not find a valid plan during this backwards phase, it
does not mean that one does not exist. It only means that there is not a valid solution plan that
has the number of time steps expanded. Graphplan proceeds by returning to the forward expansion
until it can repeat the backwards search again, now with more time steps.

c)

Yes, it is possible. Graphplan is only optimal in the number of timesteps, not in the number of
operators.

The following example was adapted from the answer by Devin Schwab. Start state s0 and goal
state g1, g2, g3.

Figure 7: Actions, preconditions and effects

As seen in Figure 8 only one expansion level is needed before all goals propositions are present
and non-exclusive. So graphplan will search and return the plan {op1, op2, op3}.

Figure 8: Graph after one expansion

However, if Graphplan expands once more, two possible plans exist: the original and opA→ opB,
as seen in Figure 9

Figure 9: Graph after two expansions
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