15-887
Planning, Execution and Learning

Learning in Planning: Learning Cost Function
Maxim Likhachev
Robotics Institute
Carnegie Mellon University
A bit of terminology

- Imitation Learning/Apprenticeship Learning/Learning from Demonstrations/Robot Programming by Demonstrations

 - Methods for programming robot behavior via demonstrations [Schaal & Atkeson, ‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

- Major classes of Imitation Learning:

 - Learning policies directly from demonstrated trajectories or supervised learning [Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

 - Learning a cost function (or reward function) from demonstrations and then using it to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], …
• Imitation Learning/Apprenticeship Learning/Learning from Demonstrations/Robot Programming by Demonstrations

 – Methods for programming robot behavior via demonstrations [Schaal & Atkeson, ‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

 – Learning policies directly from demonstrated trajectories or supervised learning [Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

 – Learning a cost function (or reward function) from demonstrations and then using it to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

Inverse Reinforcement Learning (IRL), Inverse Optimal Control
Learning a cost function

- Recover a cost function that makes given demonstrations optimal plans [Ratliff, Silver & Bagnell, ’09]
Example

- Consider a (simple) outdoor navigation example

Modeled as graph search
Example

- Consider a (simple) outdoor navigation example

Can we teach the planner to avoid slippery areas and driving close to the cliff (without manually tweaking a cost function)?

Modeled as graph search
Example

- Consider a (simple) outdoor navigation example

Can we teach the planner to avoid slippery areas and driving close to the cliff (without manually tweaking a cost function)?

= learning the “right” cost function
Consider a (simple) outdoor navigation example

Can we teach the planner to avoid slippery areas and driving close to the cliff (without manually tweaking a cost function)?

A user gives N demonstrations of what paths are good. We want a cost function for which these demonstrated trajectories are least-cost plans.
Example

- Consider a (simple) outdoor navigation example

Demonstration d_1 on graph G_1

Demonstration d_2 on graph G_2

- R
- slippery area
- cliff
Example

• Consider a (simple) outdoor navigation example

Cost function – a function of features Φ: $c(s,s') = f(\phi(s,s'))$

Why not learn edge costs directly?
• Consider a (simple) outdoor navigation example

Cost function – a function of features Φ: $c(s, s') = f(\phi(s, s'))$

What Φ would make sense in this example?
Example

- Consider a (simple) outdoor navigation example

\[\text{Demonstration } d_1 \text{ on graph } G_1 \]

\[\text{Demonstration } d_2 \text{ on graph } G_2 \]

Cost function - a function of features \(\Phi \):

\[c(s,s') = f(\Phi(s,s')) \]

**Example of \(f() \)?

- Slippery area

Carnegie Mellon University
Consider a (simple) outdoor navigation example

Example

Demonstration d_1 on graph G_1

Demonstration d_2 on graph G_2

Cost function – a function of features Φ: $c(s,s') = f(\Phi(s,s'))$

Most common example:

$f(\Phi(s,s')) = \sum w_i \Phi_i(s,s')$

Example of $f()$?

Compute cost function that makes these demonstrations optimal paths

$S \rightarrow G$

R

slippery area

R

G

G

Carnegie Mellon University
Example

• Consider a (simple) outdoor navigation example

For example:
\(\phi_0: 1/(\text{distance to slippery area}) \)
\(\phi_1: 1/(\text{distance to cliff}) \)
\(\phi_2: \text{length of the transition} \)

Need to compute (learn) \(w_0, w_1, w_2 \) based on demonstrations

Demonstration \(d_2 \) on graph \(G_2 \)
LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations \(\{d_1, \ldots, d_N\}\) on graphs \(\{G_1, \ldots, G_N\}\) and features function \(\Phi\)

Need to compute \(c(s, s') = f(\phi(s, s'))\) s.t. \(d_i = \arg \min_{\pi_i} \sum_{i=1}^{N} c(\pi_i)\)

While (Not Converged)

for \(i = 1 \ldots N\)

update edge costs in graph \(G_i\) using the current function \(f(\phi())\)

plan an optimal path \(\pi_i^* = \arg \min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} c(s_k, s_{k+1})\)

increase \(f(\phi())\) for edges \((u, v)\) s.t. \(\{(u, v) \in \pi_i^* \text{ AND } (u, v) \text{ not in } d_i\}\)

decrease \(f(\phi())\) for edges \((u, v)\) s.t. \(\{(u, v) \text{ not in } \pi_i^* \text{ AND } (u, v) \text{ in } d_i\}\)
LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations \{d_1, \ldots, d_N\} on graphs \{G_1, \ldots, G_N\} and features function \Phi
Need to compute \(c(s, s') = f(\phi(s, s')) \) s.t. \(d_i = \arg\min_{\pi_i} \sum_{i=1}^{N} c(\pi_i) \)

While (Not Converged)

for i=1...N

update edge costs in graph \(G_i \) using the current function \(f(\phi(,)) \)

plan an optimal path \(\pi_i^* = \arg\min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} c(s_k, s_{k+1}) \)

increase \(f(\phi(,)) \) for edges \((u, v)\) s.t. \{\((u, v)\) in \(\pi_i^* \) AND \((u, v)\) not in \(d_i \)\}

decrease \(f(\phi(,)) \) for edges \((u, v)\) s.t. \{\((u, v)\) not in \(\pi_i^* \) AND \((u, v)\) in \(d_i \)\}

Is \(\pi_i^* \) always guaranteed to converge to \(d_i \)?
Given demonstrations \(\{d_1, ..., d_N\}\) on graphs \(\{G_1, ..., G_N\}\) and features function \(\Phi\)
Need to compute \(c(s, s') = f(\phi(s, s'))\) s.t. \(d_i = \arg\min_{\pi_i} \sum_{i=1}^{N} c(\pi_i)\)

While (Not Converged)
for \(i = 1 \ldots N\)
update edge costs in graph \(G_i\) using the current function \(f(\phi(,))\)
plan an optimal path \(\pi_i^* = \arg\min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} c(s_k, s_{k+1})\)
increase \(f(\phi(,))\) for edges \((u, v)\) s.t. \\{(u, v) \in \pi_i^* \text{ AND } (u, v) \text{ not in } d_i\}\)
decrease \(f(\phi(,))\) for edges \((u, v)\) s.t. \\{(u, v) \text{ not in } \pi_i^* \text{ AND } (u, v) \text{ in } d_i\}\)

Any problem with arbitrary decrease of \(f(\phi(,))\)?

Any solutions?
LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations \{d_1,...,d_N\} on graphs \{G_1,...,G_N\} and features function \Phi
Need to compute \(c(s,s') = f(\phi(s,s')) \) s.t. \(d_i = \arg\min_{\pi_i} \sum_{i=1}^{N} c(\pi_i) \)

While (Not Converged)
for \(i=1...N \)
 update edge costs in graph \(G_i \) using the current function \(f(\phi(,)) \)
 plan an optimal path \(\pi_i^* = \arg\min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} c(s_k, s_{k+1}) \)
 increase \(\log f(\phi(,)) \) for edges \((u,v) \) s.t. \{\((u,v) \) in \(\pi_i^* \) AND \((u,v) \) not in \(d_i \}\}
 decrease \(\log f(\phi(,)) \) for edges \((u,v) \) s.t. \{\((u,v) \) not in \(\pi_i^* \) AND \((u,v) \) in \(d_i \}\}
Example

- Consider a (simple) outdoor navigation example

Suppose initial $w_0 = 0$. Any problem learning W?

Need a loss function that makes the algorithm learn harder to stay on the demonstrated paths (related to maximizing the margin in a classifier)

Demonstration d_1 on graph G_1

Carnegie Mellon University
LEARCH (LEArning to search)
[Ratliff, Silver, Bagnell, 09]

Given demonstrations \(\{d_1, ..., d_N\} \) on graphs \(\{G_1, ..., G_N\} \) and features function \(\Phi \)

Need to compute \(c(s,s') = f(\phi(s,s')) \) s.t. \(d_i = \arg \min_{\pi_i} \sum_{i=1}^{N} c(\pi_i) \)

While (Not Converged)
for \(i = 1 \ldots N \)
update edge costs in graph \(G_i \) using the current function \(f(\phi(,)) \)
plan an optimal path \(\pi_i^* = \arg \min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} \{c(s_k, s_{k+1}) - l(s_k, s_{k+1})\} \)
increase \(\log f(\phi(,)) \) for edges \((u,v) \) s.t. \(\{(u,v) \text{ in } \pi_i^* \text{ AND } (u,v) \text{ not in } d_i\} \)
decrease \(\log f(\phi(,)) \) for edges \((u,v) \) s.t. \(\{(u,v) \text{ not in } \pi_i^* \text{ AND } (u,v) \text{ in } d_i\} \)

Loss function penalizes being NOT on a demonstration path. For example, \(l(s,s')=0 \) if \((s,s') \) on \(d_i \) and \(l(s,s')>1 \) otherwise
Given demonstrations \(\{d_1, \ldots, d_N\} \) on graphs \(\{G_1, \ldots, G_N\} \) and features function \(\Phi \)

Need to compute \(c(s, s') = f(\phi(s, s')) \) s.t. \(d_i = \arg\min_{\pi_i} \sum_{i=1}^{N} c(\pi_i) \)

While (Not Converged)

for \(i = 1 \ldots N \)

- update edge costs in graph \(G_i \) using the current function \(f(\phi(,)) \)
- plan an optimal path \(\pi_i^* = \arg\min_{\pi_i} \sum_{k=0}^{\text{length}(\pi_i)-1} \{c(s_k, s_{k+1}) - l(s_k, s_{k+1})\} \)
- increase log \(f(\phi(,)) \) for edges \((u, v) \) s.t. \(\{ (u, v) \in \pi_i^* \text{ AND } (u, v) \text{ not in } d_i \} \)
- decrease log \(f(\phi(,)) \) for edges \((u, v) \) s.t. \(\{ (u, v) \text{ not in } \pi_i^* \text{ AND } (u, v) \text{ in } d_i \} \)

LEARCH (LEArning to search)

[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University
Given demonstrations \{d_1, ..., d_N\} on graphs \{G_1, ..., G_N\} and features function \Phi

Need to compute \(c(s, s') = f(\phi(s, s')) \) s.t. \(d_i = \arg \min_{\pi_i} \sum_{i=1}^{N} c(\pi_i) \)

While (Not Converged)

for \(i = 1 \ldots N \)

update edge costs in the graph \(G_i \) using the current function \(f(\phi(,)) \)

plan an optimal path \(\pi_i^* = \arg \min_{k} \text{length} \(\pi_i^* \{- c(s_k, s_{k+1}) - c(s_k, s_{k+1} + 1) \} \)

increase log \(f(\phi(,)) \) for edges \((u, v)\) s.t. \{(u, v) \in \pi_i^* \AND (u, v) \not\in d_i \}

decrease log \(f(\phi(,)) \) for edges \((u, v)\) s.t. \{(u, v) \not\in \pi_i^* \AND (u, v) \in d_i \}

How do we decide how to increase/decrease \(f(\phi(,)) \)?

Set \(dC \) vector as: +1 for all edges that need to be increased, and -1 for all edges that need to be decreased.

Recompute \(f(\phi(,)) \) to make a step in the direction of \(dC \)

For example, if \(f(\phi(s, s')) = \sum w_i \phi_i(s, s') = \Phi W \), then:

1. Solve for vector \(dW \) from \(\Phi dW = dC \) (e.g., \(dW = (\Phi^T \Phi)^{-1} \Phi^T dC \))
2. Update \(W \): \(W = W + \eta dW \)
Learning cost framework can be generalized to learning rewards in MDPs (typical Inverse Reinforcement Learning)

Two broad frameworks to Inverse Reinforcement Learning in MDPs:

- Max-margin [Ratliff & Bagnell, ‘06] – equivalent to the learning cost framework we just learned
- Feature expectation matching [Abbeel & Ng, ’04]
Summary

- Learning cost function is a way of learning from demonstrations

- Works by learning a cost function that makes demonstrations to be optimal solutions to planning problems

- Performance depends on the design of the features used to map states onto the cost function that is being learned