Learning in Planning

Opportunities and improvements along several dimensions:

- **Search Efficiency**: Learn control knowledge to guide the planner through its search space.
- **Domain Specification**: Learn the preconditions and effects of the planning actions.
- **Quality**: Learn control knowledge for high quality plans.
Choices... The Need for Learning!

• Inductive methods
 – Data-intensive
 – Extract a general description of a concept from many examples
• Deductive methods
 – Knowledge-intensive
 – Explain and analyze an example
 – Identify the explanation as the sufficient conditions for describing the concept
 – Generalize instantiated explanation to apply to other instances

Explanation-Based Generalization – EBG, (Mitchell ’80s)

Inputs:
• Target concept definition
• Training example
• Domain theory
• Operationality criterion

Output:
Generalization of the training example that is
• sufficient to describe the target concept, and
• satisfies the operationality criterion.
The SAFE-TO-STACK Example

Input:

• **target concept**: SAFE-TO-STACK(x, y)

• **training example**:

 - ON(OBJ1, OBJ2)
 - ISA(OBJ1, BOX) ISA(OBJ2, ENDTABLE)
 - COLOR(OBJ1, RED) COLOR(OBJ2, BLUE)
 - VOLUME(OBJ1, 1) DENSITY(OBJ1, 0.1) ...

• **domain theory**:

 1. NOT(FRAGILE(y)) or LIGHTER(x, y) \(\rightarrow\) SAFE-TO-STACK(x, y)
 2. VOLUME(x, v) and DENSITY(x, d) \(\rightarrow\) WEIGHT(x, v*d)
 3. WEIGHT(x1, w1) and WEIGHT(x2, w2) and LESS(w1, w2)
 \(\rightarrow\) LIGHTER(x1, x2)
 4. ISA(x, ENDTABLE) \(\rightarrow\) WEIGHT(x, 5)
 5. LESS(0.1, 5) ...

• **operationality criterion**:

 learned description should be built of terms used to describe examples directly, or other “easily” evaluated, such as LESS.
The SAFE-TO-STACK Example

- Explain why \(\text{obj1} \) is SAFE-TO-STACK on \(\text{obj2} \).
 - Construct a proof.
 - Do Goal regression: regress target concept through proof structure.
 - Proof isolates relevant features.

Generating Operational Knowledge

- Generalize proof:
 - Sometimes simply replace constants by variables.
 - Prove that all identified relevant features are necessary in general (hard! -- may need a lot of “extra” knowledge, domain axioms).

Output:

\[
\text{VOLUME(x,v1) and DENSITY(x,d1) and ISA(y,ENDTABLE) and}
\text{ and LESS(v1*d1,5) \rightarrow SAFE-TO-STACK(x,y)}
\]
EBL: A Deductive Learning Method

Why are examples needed?
- Domain theory contains all the information: simply operationalize target concept.
- Examples focus on the relevant operationalizations: characterize only examples that actually occur.

Actual purpose of EBL:
- not to “learn” more about target concept,
- but to “re-express” target concept in a more operational manner (=efficiency).
- control learning.

EBL in PRODIGY (Minton 87)

Goal: -- improve the efficiency of the planner
 -- learn control rules.

Control rules:
- Apply at individual decisions.
- Antecedent matches the state of the planner at decision making time.
- Antecedent is operational -- planner can match its state using control rule language.
- Consequent selects, rejects or prefers particular alternatives.
Target Concepts

Identify the choices of the particular planner:

- Select goal $goal$
- Select operator op for achieving $goal$
- Select bindings for operator op and goal $goal$
- Decide subgoal if op is applicable
- Decide apply op

Examples of Control Rules in PRODIGY

(CONTROL-RULE SELECT-OP-UNSTACK-FOR-HOLDING
 (if (and (current-goal (holding <x>))
 (true-in-state (on <x> <y>))))
 (then select operator UNSTACK))

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-HOLDING
 (if (and (current-goal (holding <x>))
 (current-ops (UNSTACK))
 (true-in-state (on <x> <y>))))
 (then select bindings ((<ob> . <x>) (<underob> . <y>))))

(CONTROL-RULE SELECT-OP-PUTDOWN-FOR-ARMEMPTY
 (if (and (current-goal (arm-empty))
 (true-in-state (holding <ob>)))
 (then select operator PUT-DOWN))

(CONTROL-RULE SELECT-BINDINGS-PUTDOWN
 (if (and (current-ops (PUT-DOWN))
 (true-in-state (holding <x>))
 (then select bindings ((<ob> . <x>))))
Discussion

- Very successful in a variety of domains.
- Learned rules are applied as other rules, i.e. if their antecedent **totally** matches planning situation.
- Utility problem: The more rules learned, the slower the deliberation.
 - Matching cost (cost of utilization)
 - Frequency of application
 - Savings every time it is applied
 - Organization of learned rules!
- If EBL system is eager to learn provably correct, the explanation effort is really large, requiring a *complete* domain theory for generalization.
 - Incremental refinement of learned rules

HAMLET: Deduction and Induction
(Borrajo & Veloso 94)

- Extend the basic EBL approach developed for linear problem solving
 - Define new learning opportunities
 - Consider solution quality
- Reduce the explanation effort
 - No need to acquire extra domain knowledge
- Incrementally refine control knowledge
 - Converges towards an experience-supported correct set of rules
A Typical Search Tree

What are the learning opportunities?

HAMLET’s Architecture

HAMLET

Quality Measure

Learned Control Knowledge

Bounded Explanation Module

Inductive Module

Refinement module

Training problems

Domain

PRODIGY

ST ST’

L L’

L’’

ST ST’
HAMLET’s Algorithm

Let L refer to the set of learned control rules.
Let ST, ST' refer to search trees.
Let P be a problem to be solved.
Let Q be a quality measure.
Initially L is empty.
For all P in training problems
$$ST = \text{Result of solving } P \text{ without any rules.}$$
$$ST' = \text{Result of solving } P \text{ with current set of rules } L.$$
If positive-examples-p(ST, ST', Q)
Then $L' = \text{Bounded-Explanation}(ST, ST', Q)$
 $L'' = \text{Induce}(L, L')$
If negative-examples-p(ST, ST', Q)
Then $L = \text{Refine}(ST, ST', L'')$

Induction Module

- Why induction?
 - Bounded explanation generates possibly over-specific rules
- Inductive operators
 - Deletion of rules that subsume others
 - Intersection of preconditions. $state$
 - Refinement of subgoaling dependencies. $prior\ goal$
 - Relaxing the subgoaling dependencies. $prior\ goal$
 - Refinement of the set of interacting goals. $other\ goals$
 - Find common superclass. $type\ of\ object$
Rule Learned by HAMLET

(\text{control-rule select-bind-fly-airplane-1})
\text{(if (current-operator fly-airplane)}
\text{(current-goal (at-airplane \text{<plane1> <airport3>}))}
\text{(true-in-state (at-airplane \text{<plane1> <airport2>}))}
\text{(true-in-state (at-object \text{<package4> <airport1>}))}
\text{(other-goals \text{((at-object \text{<package4> <airport3>})))))}
\text{(then select bindings (\text{((<plane> . <plane1>)}}}
\text{(\text{<loc-from> . <airport1>}))}
\text{(\text{<loc-to> . <airport3>})))}

Inducing Over Two Rules

- Old rule:
\text{(control-rule select-unload-airplane-1)}
\text{(if (current-goal (at-object \text{<object1> <airport2>}))}
\text{(true-in-state (at-airplane \text{<plane4> <airport3>}))}
\text{(true-in-state (at-object \text{<object1> <airport3>}))}
\text{(then select operators unload-airplane))}

- New rule:
\text{(control-rule select-unload-airplane-2)}
\text{(if (current-goal (at-object \text{<object1> <airport2>}))}
\text{(true-in-state (at-airplane \text{<plane4> <airport5>}))}
\text{(true-in-state (at-object \text{<object1> <airport3>}))}
\text{(then select operators unload-airplane))}

- Induced rule:
\text{(control-rule induced-select-unload-airplane-3)}
\text{(if (current-goal (at-object \text{<object1> <airport2>}))}
\text{(true-in-state (at-object \text{<object1> <airport3>}))}
\text{(then select operators unload-airplane))}
Refining

• Why refinement?
 – HAMLET may produce over-general rules

• Negative examples: occasions in which control rules
 have been applied and should have not

Overgeneralization

• Induced rule
 (control-rule induced-select-unload-airplane-3
 (if (current-goal (at-object <object1> <airport2>))
 (true-in-state (at-object <object1> <airport3>)))
 (then select operators unload-airplane))

• New rule
 (control-rule induced-select-unload-airplane-4
 (if (current-goal (at-object <object1> <airport2>)))
 (true-in-state (inside-airplane <object1> <plane4>)))
 (then select operators unload-airplane))

• Overgeneral rule
 (control-rule induced-select-unload-airplane-5
 (if (current-goal (at-object <object1> <airport2>)))
 (then select operators unload-airplane))
Empirical Results

<table>
<thead>
<tr>
<th>Goals</th>
<th>Problems</th>
<th>Unsolvable problems</th>
<th>Better solutions</th>
<th>Solution length</th>
<th>Nodes explored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>without rules</td>
<td>with rules</td>
<td>without rules</td>
<td>with rules</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>44</td>
<td>18</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>68</td>
<td>32</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>62</td>
<td>36</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>49</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>totals</td>
<td></td>
<td>525</td>
<td>243</td>
<td>122</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>46.3%</td>
<td>25.1%</td>
<td>0.7%</td>
<td>36.9%</td>
</tr>
</tbody>
</table>

Summary – EBL in Planning

- Long-term goal of automating planning efficiency.
- Knowledge in domain theory is not usually effective.
- Explain examples to produce operational control knowledge for decisions.
- Provably correct explanations that generalize to new situations are hard to learn.
- Difficult goal and operator choice interactions can be learned through a combined deductive and inductive approach.
- User’s quality metrics can be cast in the learned knowledge.