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Where We Are and Outline

* Planning
— Deterministic state, preconditions, effects
— Uncertainty

» Conditional planning, conformant planning, nondeterministic

» Probabilistic modeling of systems with
uncertainty and rewards

* Modeling probabilistic systems with control, i.e.,
action selection

» Reinforcement learning




Axioms of Probability

Let A be a proposition about the world
P(A) = probability proposition A is true

0<=P(A) <=1

P(True) =1

P(False) =0

P(AorB)=P(A) + P(B) - P(Aand B)

Random Variables

* Random Variables: variables in probability
to capture phenomena

 Arandom variable has a domain of values
it can take on.

 Probability distribution function represents
probability of each value




Example -

Pick Fruit from Basket

apple (a)

« Random variable: F
* Domain: a, o

O O
orange (0) O O O . PDF:
\OOO o p(F=a)="%
F =0) =%
I > P(F=0)=%
Expectation

* The expected value of a function of a random
variable is the weighted average of the probability
distribution over outcomes

» Example: expected time of wait for elevator

Time:
Probability:

5mn 2mn 0.5mn
02 07 014 =

5x0.2+2x0.7+0.5x0.1=2.45mn




Example — Markov System with Reward
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- States

* Rewards in states

* Probabilistic transitions between states

» Markov: transitions only depend on current state

Markov Systems with Rewards

* Finite set of n states, s,

* Probabilistic state matrix, P, p;

« “Goal achievement” - Reward for each state, r,
» Discount factor - y

* Process/observation:

— Assume start state s,

— Receive immediate reward r,

— Move, or observe a move, randomly to a new state
according to the probability transition matrix

— Future rewards (of next state) are discounted by y




Solving a Markov System with Rewards

* V*(s,) - expected discounted sum of future rewards
starting in state s,

o V) =1yl Vi(sy) + ppV(sy) + o pVE(s,)]

Value Iteration to Solve a Markov System
with Rewards

« V(s,) - expected discounted sum of future rewards
starting in state s, for one step.

« V2(s,) - expected discounted sum of future rewards
starting in state s, for two steps.

« VX(s;) - expected discounted sum of future rewards
starting in state s, for k steps.

o Ask— =Vks,) — V(s,)

« Stop when difference of £ + 1 and k& values is smaller
than some &




3-State Example
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3-State Example: Values y = 0.5

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 5.0 -1.0 -10.0
3 5.0 -1.25 -10.75
4 4.9375 -1.4375 -11.0
5 4.875 -1.515625 | -11.109375
6 4.8398437 | -1.5585937 | -11.15625
7 4.8203125 | -1.56791016 | -11.178711
8 4.8103027 | -1.5895996 | -11.189453
9 4.805176 | -1.5947876 | -11.194763
10 4.802597 | -1.5973969 | -11.197388
11 48013 -1.5986977 | -11.198696
12 4.8006506 | -1.599349 | -11.199348
13 4.8003254 | -1.5996745 | -11.199675
14 4800163 | -1.5998373 | -11.199837
15 4.8000813 | -1.5999185 | -11.199919




3-State Example: Values y = 0.9

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 5.8 -1.8 -11.6
3 5.8 -2,6100001 | -14.030001
4 5.4355 -3.7035 -15.488001
5 4.7794 -4.5236254 | -16.636175
6 4.1150985 -5.335549 -17.521912
7 3.4507973 | -6.0330653 | -18.285858
8 2.8379793 | -6.6757774 | -18.943516
9 2272991 -7.247492 -19.528683
50 -2.8152928 | -12.345073 | -24.633476
51 -2.8221645 | -12.351946 | -24.640347
52 -2.8283496 | -12.3581295 | -24.646532
86 -2.882461 -12.412242 | -24.700644
87 -2.882616 -12.412397 | -24.700798
88 -2.8827558 | -12.412536 -24,70094

3-State Example: Values y = 0.2

[teration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 4.4 -0.4 -8.8
3 4.4 -0.44000003 -8.92
4 4.396 -0.452 -8.936
5 4.3944 -0.454 -8.9388
6 4.39404 -0.45443997 | -8.93928
7 4.39396 -0.45452395 | -8.939372
8 4.393944 -0.4545412 | -8.939389
9 4.3939404 | -0.45454454 | -8.939393
10 4.3939395 | -0.45454526 | -8.939394
11 4.3939395 | -0.45454547 | -8.939394
12 4.3939395 | -0.45454547 | -8.939394




Markov Decision Processes

Finite set of states, s,,..., s,
Finite set of actions, a,..., a,,

Probabilistic state,action transitions:
pi/; = prob (next =, | current = s, and take action a, )

Markov assumption: State transition function only
dependent on current state, not on the “history” of how
the state was reached.

Reward for each state, r,..., r,
Process:

— Start in state s,

— Receive immediate reward r,

— Choose action g, € 4

— Change to state s, with probability pj; .
— Discount future rewards

Nondeterministic Example
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Reward and discount factor to be decided.
Note the need to have a finite set of states and actions.
Note the need to have all transition probabilties.




Solving an MDP

Find an action to apply to each state.
A policy is a mapping from states to actions.

Optimal policy - for every state, there is no other action
that gets a higher sum of discounted future rewards.

For every MDP there exists an optimal policy.
Solving an MDP is finding an optimal policy.

A specific policy converts an MDP into a plain Markov
system with rewards.

Value lteration

I*(s;) - expected discounted future rewards, if we start
from state s; and we follow the optimal policy.

Compute 7* with value iteration:

— V¥(s,) = maximum possible future sum of rewards
starting from state s, for & steps.

Bellman’ s Equation:
N

yr (Sz')= max, {r; + 72 p;Vn (SJ' )}
o

Dynamic programming




Policy Iteration

Start with some policy m,(s;).

Such policy transforms the MDP into a plain Markov
system with rewards.

Compute the values of the states according to the
current policy.

Update policy:
n,(s,)=argmax, {r; + 2 (s, )3
J

+

Keep computing

Stop when w,, = m,.

Nondeterministic Example
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Nondeterministic Example

n*(s) =D, for any s= S1, S2, S3, and S4, y=0.9.

V*(s2) = r(sS2,D) + 0.9 (1.0 V*(S2))

V*(s2) = 100 + 0.9 V*(S2)

V*(s2) = 1000.

V*(sl) = r(sS1,D) + 0.9 (1.0 V*(S2))

vV*(sl) = 0 + 0.9 x 1000

V*(sl) = 900.

V*(S3) = r(sS3,D) + 0.9 (0.9 v*(s2) + 0.1 V*(S3))
V*¥(s3) =0+ 0.9 (0.9 x 1000 + 0.1 V*(S3))

V* (S3) = 81000/91.

V*(s4) = r(sS4,D) + 0.9 (0.9 v*(s2) + 0.1 V*(S4))
V*(s4) = 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4))

V* (S4) = 85000/91.

Markov Models

* Planis a Policy
— Stationary: Best action is fixed
— Non-stationary: Best action depends on time

» States can be , continuous, or
Passive Controlled
Fully Observable Markov Systems MDP
with Rewards
Hidden State HMM POMDP
Time Dependent Semi-Markov SMDP
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Tradeoffs

+ MDPs
+ Tractable to solve
+ Relatively easy to specify
— Assumes perfect knowledge of state
« POMDPs
+ Treats all sources of uncertainty uniformly
+ Allows for taking actions that gain information
— Difficult to specify all the conditional probabilities
— Hugely intractable to solve optimally
+ SMDPs

+ General distributions for action durations
— Few good solution algorithms

Summary

Markov Models with Reward
Value iteration

Markov Decision Process
Value lteration

Policy Iteration
Reinforcement Learning
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