Planning, Execution & Learning: Heuristic Search Planning I

Manuela Veloso
Reid Simmons

Search

- Uninformed
 - Depth-first
 - Breadth-first

- Informed (Heuristic)
 - Hill-climbing
 - Best-first
 - A*
Introduce a function \(h(s) \) to estimate the unknown distance from state \(s \) to the goal. Our best guess is that \(A \) is closer to \(GOAL \) than \(B \) so maybe it is a more promising state to expand.

\(h(A) = 3 \)
\(h(B) = 6 \)
\(h(B) = 10 \)

Heuristics – Correct or Incorrect

- \(h(s) = \) Euclidean distance to \(GOAL \) – an heuristic.
Heuristic Search Strategies

- **Hill-Climbing**
 - Rationale: Heuristics tend to be better discriminators amongst local alternatives than as global (absolute) estimate
 - Random “restarts” when stuck

- **Best-First** \(f(s) = h(s) \)

- **A\(^*\)** \(f(s) = g(s) + h(s) \)

- **Weighted A\(^*\)**
 - \(H(s) = \text{cost-so-far}(s) + W \times \text{estimated-cost}(s) \)
 - Not admissible, but tends to perform much better than A\(^*\)

Search Heuristics

- **Admissible**
 - *What?*
 - *Why Important?*

- **Informed**
 - *What?*
 - *Why Important?*
Heuristic Search Planning

- **Basic Idea**
 - *Automatically Analyze Domain/Problems to Derive Heuristic Estimates to Guide Search*

- **Decisions**
 - How to evaluate search states
 - How to use the evaluations to guide search
 - How to choose which part of plan to work on next

- **Resurgence in Total-Order, State-Space Planners**
 - Best such planners (FF, FD, LAMA) dominate other types
 - Still an ongoing topic for research

How to Generate Heuristics

- **Domain-Specific**
 - Program in (or *learn*) heuristics specifically for that domain

- **Domain Analysis**
 - Preprocess domain to generate meta-control knowledge

- **On-Line**
 - Solve a *relaxed* form of the problem
 - Use as estimate for original problem
Types of On-Line Heuristics

• Assume complete subgoal independence

• Assume no negative interactions

• Assume limited negative interactions

HSP (Bonet & Geffner, 1997)

• Heuristic State-Space Planner
 – Can do either progression or regression

• Relax Problem by Eliminating “Delete” Lists
 – Essentially compute transitive closure of actions, starting at initial state
 • “Reachability” analysis
 – Cost of literal is stage/level at which first appears
 – Continue until no new literals are added
 – Similar to GraphPlan’s forward search
Computing Costs of Literals

- **On(C, A)**
- **On(A, Table)**
- **On(B, Table)**
- **Handempty**
- **Clear(C)**
- **Clear(B)**

- **Pick(C, A)**
- **PickT(B)**
- **1 Holding(C)**
- **1 Holding(B)**
- **1 Clear(A)**

- **PutT(C)**
- **Put(C, A)**
- **Put(C, B)**
- **PutT(B)**
- **Put(B, A)**
- **Put(B, C)**
- **PickT(A)**

- **2 On(C, Table)**
- **2 On(C, B)**
- **2 On(B, A)**
- **2 On(B, C)**
- **2 Holding(A)**

- **PickT(C)**
- **Pick(C, B)**
- **Pick(B, A)**
- **Pick(B, C)**
- **Put(A, B)**
- **Put(A, C)**

- **3 On(A, B)**
- **3 On(A, C)**

- **On(A, B) & On(B, C)** **Estimate:** 5 **Actually:** 6
- **On(A, C) & On(A, B)** **Estimate:** 5 **Actually:** 4

HSP Heuristics

- **Max**
 - Cost of action is *maximum* over costs of preconditions
 - Focus on cost of *most difficult* goals
 - Admissible, but not very informed

- **Sum**
 - Cost of action is *sum* of precondition costs
 - Combines *all* goals
 - Informed, but not admissible

- **H^2**
 - Solve for *pairs* of literals
 - Take maximum cost over all pairs
 - Informed, and claimed to be admissible
Computing and Estimating Cost

- Cost of achieving an atom \(p \) from state \(s \):

 \[
g_s(p) = \begin{cases}
 0 & \text{if } p \in s \\
 \min_{o \in O(s)} [1 + g_s(Precc(op))] & \text{otherwise}
\end{cases}
\]

- Computation of cost by Forward Chaining:
 - Initialize

 \(g_s(p) \) are initialized to 0 if \(p \in s \) and to \(\infty \) otherwise
 - Update – operator applied to state adds \(p \)

 \[
g_s(p) := \min \left(g_s(p), 1 + g_s(Precc(op)) \right)
 \]
 - Continue until no change.

Heuristic Value of State \(s \)

- Estimate of achieving \(G \) from a state \(s \):

 \(h(s) \overset{\text{def}}{=} g_s(G) \)

- Cost of achieving a SET of atoms

 \(g_s(G), g_s(Precc(op)) \)

- Additive heuristic

 \[
g_s^+(C) = \sum_{r \in C} g_s(r) \quad \text{(additive costs)}
\]

- Max heuristic

 \[
g_s^{max}(C) = \max_{r \in C} g_s(r) \quad \text{(max costs)}
\]
HSP Planner

- Uses the additive heuristic
- Very simple basic hill-climbing search
 - “At every step, one of the best children (minimize heuristic) is selected for expansion and the same process is reached until a goal is achieved. Ties are broken randomly.”
- Extended hill-climbing search
 - Counting number of steps without decrementing heuristic value
 - Random restart after some threshold without progress

HSP versus FF Heuristics

<table>
<thead>
<tr>
<th>name</th>
<th>(pre, add, del)</th>
</tr>
</thead>
<tbody>
<tr>
<td>opG₁</td>
<td>({P}, {G₁}, ∅)</td>
</tr>
<tr>
<td>opG₂</td>
<td>({P}, {G₂}, ∅)</td>
</tr>
<tr>
<td>opP</td>
<td>(∅, {P}, ∅)</td>
</tr>
</tbody>
</table>

- HSP additive heuristic: P value 1, G1 and G2 value 2, estimate distance from initial state (empty) to goal state (G1 and G2) is 4. But just three steps: opP, opG₁, opG₂
FF (Hoffmann, 2000)

- FF (Fast Forward) refines HSP heuristic

- Takes *positive* interactions into account
 - Avoids double-counting of actions

- Similar to *GraphPlan’s* forward search combined with a *relaxed* version of its backward search
 - Ignores negative interactions

- Admissible and Informed

FF State Evaluation Heuristic

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>On(A, C)</td>
<td>Pick(C, A)</td>
</tr>
<tr>
<td>On(A, Table)</td>
<td>Handempty</td>
</tr>
<tr>
<td>On(B, Table)</td>
<td>Clear(B)</td>
</tr>
<tr>
<td>PickT(B)</td>
<td></td>
</tr>
<tr>
<td>On(C, A)</td>
<td>Hold(C)</td>
</tr>
<tr>
<td>On(A, Table)</td>
<td>Handempty</td>
</tr>
<tr>
<td>On(B, Table)</td>
<td>Clear(B)</td>
</tr>
<tr>
<td>Handempty</td>
<td></td>
</tr>
<tr>
<td>Clear(C)</td>
<td></td>
</tr>
<tr>
<td>Clear(B)</td>
<td></td>
</tr>
<tr>
<td>PickT(B)</td>
<td></td>
</tr>
<tr>
<td>PutT(C)</td>
<td></td>
</tr>
<tr>
<td>Put(C, A)</td>
<td></td>
</tr>
<tr>
<td>Put(C, B)</td>
<td></td>
</tr>
<tr>
<td>PutT(B)</td>
<td></td>
</tr>
<tr>
<td>Put(B, A)</td>
<td></td>
</tr>
<tr>
<td>Put(B, C)</td>
<td></td>
</tr>
<tr>
<td>PickT(A)</td>
<td></td>
</tr>
<tr>
<td>On(A, C)</td>
<td></td>
</tr>
<tr>
<td>On(A, Table)</td>
<td></td>
</tr>
<tr>
<td>On(B, Table)</td>
<td></td>
</tr>
<tr>
<td>Handempty</td>
<td></td>
</tr>
<tr>
<td>Clear(C)</td>
<td></td>
</tr>
<tr>
<td>Clear(B)</td>
<td></td>
</tr>
<tr>
<td>Pick(C, A)</td>
<td></td>
</tr>
<tr>
<td>PutT(B)</td>
<td></td>
</tr>
<tr>
<td>Put(C, A)</td>
<td></td>
</tr>
<tr>
<td>Put(C, B)</td>
<td></td>
</tr>
<tr>
<td>PutT(B)</td>
<td></td>
</tr>
<tr>
<td>Put(B, A)</td>
<td></td>
</tr>
<tr>
<td>Put(B, C)</td>
<td></td>
</tr>
<tr>
<td>PickT(A)</td>
<td></td>
</tr>
<tr>
<td>On(A, C)</td>
<td></td>
</tr>
<tr>
<td>On(A, Table)</td>
<td></td>
</tr>
<tr>
<td>On(B, Table)</td>
<td></td>
</tr>
<tr>
<td>Handempty</td>
<td></td>
</tr>
<tr>
<td>Clear(C)</td>
<td></td>
</tr>
<tr>
<td>Clear(B)</td>
<td></td>
</tr>
<tr>
<td>PickT(B)</td>
<td></td>
</tr>
<tr>
<td>On(A, C, B)</td>
<td></td>
</tr>
<tr>
<td>On(A, C) & On(C, B)</td>
<td></td>
</tr>
</tbody>
</table>
“Enforced” Hill Climbing

- Used by FF to Avoid “Wandering” on “Plateaus” or in Local Minima
 - Perform breadth-first search until find some descendant state whose heuristic value is less than the current state

- Shown to be Very Effective
 - Especially when search space is pruned to eliminate actions that are “unlikely” to lead to goal achievement

Discussion

- Progression: Need to Calculate Heuristic Every Step
- Regression: Just Calculate Heuristic Once
- Heuristic Search Using Progression Generally More Robust
- HSP and FF strongly based on state-space search
- HSP and FF Heuristics Outperform Partial-Order Planners in common planning problems
 - Ground actions seem to be the big difference
 - Easier to estimate cost without variables
 - Forward search provides reachability analysis
- Similar Techniques Applicable to Partial-Order Planners
 - REPOP (Nguyen & Kambhampati, 2001)
 - VHPOP (Younes & Simmons, 2001)