15-887 Planning, Execution, and Learning
Deep Reinforcement Learning

Devin Schwab

November 3, 2016
Outline

Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary
Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary
Binary Perceptron

- The simplest unit in a neural network is a perceptron
- Perceptrons are made up of:
 - a set of inputs, X
 - a weight for each input, w_i
 - a threshold, b
 - an activation function, $\begin{cases} 1 & \text{if } \sum x_i w_i + b \geq 0 \\ -1 & \text{otherwise} \end{cases}$

Figure: Binary Threshold Perceptron
Perceptron Decision Surface

Despite having a non-linear activation, the decision surface is still a hyper plane.

Figure: Example perceptron decision boundary
Limits of Perceptrons

- The decision boundary of a single perceptron is still linear, so the data must be linearly separable.
- Even simple functions like XOR cannot be learned.

Figure: XOR data
Limits of Perceptrons

- The decision boundary of a single perceptron is still linear, so the data must be linearly separable
- Even simple functions like XOR cannot be learned

How do we solve this?

Figure: XOR data
Limits of Perceptrons

- The decision boundary of a single perceptron is still linear, so the data must be linearly separable
- Even simple functions like XOR cannot be learned

How do we solve this?
Use multiple perceptrons
Multilayer Perceptrons (MLPs)

- A single perceptron has a linear decision boundary
- The composition of non-linear functions leads to non-linear decision boundaries
- So stack layers of perceptrons to get a non-linear decision boundary.
Neural Network Architecture

- Networks are constructed from multiple layers of perceptrons
- Networks have an input layer, an output layer and one or more hidden layers
- This architecture is very general
 - Connectivity between layers can vary
 - Activation functions in each layer can vary
 - Number of units in each layer can vary

Figure: Multilayer Perceptron with a single hidden layer. This particular network is fully connected.
XOR Network
What makes it a deep network?

- Deep Learning really just means a neural network with more than one hidden layer
 - Nowadays, many, many more hidden layers
 - More layers, and more neurons means more representation power
- Why have deep neural networks only recently become popular?
 - Better optimization techniques
 - Better regularization
 - Better computing power (i.e. GPUs)
Example Network - MNIST Dataset

- **Input:** 28x28 black and white images of digits

- **Output:** The digit shown in the image
What is needed for training?

- Training data \((X^{(i)}, t^{(i)})\)
 - \(X^{(i)}\) are the data dimensions
 - \(t^{(i)}\) is a target value
- A loss function. This a positive, real-valued function where the bigger the number of the bigger the error in the classification label
 - Mean Squared Error (MSE) works:

 \[
 L = \frac{1}{N^2} \sum_i \left(t^{(i)} - y(x^{(i)}) \right)^2
 \]
 - \(y(x^{(i)})\) is the output of your neural network for input \(x^{(i)}\)
- A method for optimizing a continuous, non-convex function (usually a gradient descent variant)
Gradient Descent

- To update the weights and the bias terms use the gradients
 - $w_i \leftarrow w_i - \alpha \frac{\partial L}{\partial w_i}$
 - $b_i \leftarrow b_i - \alpha \frac{\partial L}{\partial b_i}$
 - α is a learning rate, and L is the loss function.

- How do you actually compute these gradients? **Chain Rule!**
 - $\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_k} \frac{\partial z_k}{\partial z_{k-1}} \ldots \frac{\partial z_i}{\partial w_i}$
 - where z_k is the output of the k-th layer
Backpropagation

- To compute the partials with respect to each layer’s parameters, the partial derivatives of the layers all the way to the output are needed
 - i.e. all of the $\frac{\partial z_k}{\partial z_{k-1}}$ terms for k greater than the current layer)
- It would be very expensive to compute these partial gradients every single time for every single parameter
 - So keep the partial derivatives as you go back through the layers.
XOR Network

\[
\begin{align*}
&\text{XOR} \\
&1 \\
&1 \\
x1 \\
x2
\end{align*}
\]
Activation Functions

- The binary perceptron is not usually used in neural nets.
- The only constraint on activation functions is that they must be non-linear.
- However, there are some desirable properties:
 - Large gradients
 - Differentiable (at least over most of the domain)
 - Easy to compute gradients
 - Some activation functions have a probabilistic interpretation
 - Sometimes, having a fixed output range is desirable.
Common Activation Functions

- **Sigmoid**: \((1 + e^{-z})^{-1}\)
- **Hyperbolic Tangent**: \(\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}\)
- **Rectified Linear Units (ReLu)**: \(\text{relu}(z) = \max\{z, 0\}\)
- **Leaky ReLu**: \(\begin{cases} z & z > 0 \\ \epsilon z & \text{otherwise} \end{cases}\), where \(\epsilon \ll 1\)

\[
\begin{align*}
\text{Sigmoid} & \quad \text{tanh} & \quad \text{ReLu} & \quad \text{Leaky ReLu}
\end{align*}
\]
Summary

- Stack lots of perceptrons in layers to make a neural network
- Use backpropagation to train the weights in the network
- Network learns a non-linear function approximation
Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary
Basic Definitions

▶ The world is modeled as a Markov Decision Processes (MDPs).
Defined as a tuple: \((S, A, P, R)\)
 ▶ \(S\): Set of all states
 ▶ \(A\): Set of all actions
 ▶ \(P\): Transition Function. \(P : S \times A \times S \rightarrow [0, 1]\)
 ▶ \(R\): Reward Function. \(R : S \times A \rightarrow \mathbb{R}\)
▶ Policy: \(\pi : S \rightarrow A\). Maps states to actions.
Q-Learning

▶ We don’t know the model so learn it!
▶ After each action, use the observed \((s, a, r, s')\) to update the estimate of the Q-function

\[
\hat{Q}^*(s, a) \leftarrow (1 - \alpha)\hat{Q}^*(s, a) + \alpha \left(r + \gamma \max_{a' \in A} \hat{Q}^*(s', a') \right)
\]

▶ What if:

▶ There are an infinite number of states, or the states are continuous?
▶ Many states are all similar and should have similar actions?
Q-Learning

- We don’t know the model so learn it!
- After each action, use the observed \((s, a, r, s')\) to update the estimate of the Q-function

\[
\hat{Q}^*(s, a) \leftarrow (1 - \alpha)\hat{Q}^*(s, a) + \alpha \left(r + \gamma \max_{a' \in A} \hat{Q}^*(s', a') \right)
\]

- What if:
 - There are an infinite number of states, or the states are continuous?
 - Many states are all similar and should have similar actions?

Create a function that maps \((s, a) \rightarrow Q(s, a)\)
Neural Networks as Function Approximators

Idea
Approximate the Q-function with a neural network
Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary
Deep Q-Network DQN

- **Basic idea:** Approximate with a deep neural network\(^1\)
- Neural Nets had been tried before, with some success
- Major contributions
 - Network architecture that requires one pass for each state
 - The loss function used with the network
 - The use of replay memory
 - The use of a target network

URL: http://dx.doi.org/10.1038/nature14236, arXiv:1312.5602, doi:10.1038/nature14236
Naïve Network Architecture

\[Q(s, a) \]
Network Architecture

\[Q(s, a_1) \quad Q(s, a_2) \quad Q(s, a_3) \]

\[\begin{array}{c}
Q(s, a_1) \\
\uparrow \\
Q(s, a_2) \\
\uparrow \\
Q(s, a_3) \\
\uparrow \\
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{array} \]
DeepQ Loss Function

- In order to perform back-propagation on the DeepQ network, a loss function $L(\theta)$ is needed.
- Use the mean-squared error of the Bellman Equation for Q-functions

 \[L_i(\theta_i) = \mathbb{E} \left[\left(y - \hat{Q}(s, a; \theta) \right)^2 \right] \]

 - Where the target value y is $y = r + \gamma \max_{a'} Q^*(s', a')$
DeepQ Loss Function

- In order to perform back-propagation on the DeepQ network, a loss function $L(\theta)$ is needed.
- Use the mean-squared error of the Bellman Equation for Q-functions
 \[L_i(\theta_i) = \mathbb{E} \left[(y - \hat{Q}(s, a; \theta))^2 \right] \]
 - Where the target value y is $y = r + \gamma \max_{a'} Q^*(s', a')$
- Unfortunately, $Q^*(s', a')$ is not known apriori, so y cannot be computed
DeepQ Loss Function

- In order to perform back-propagation on the DeepQ network, a loss function $L(\theta)$ is needed.
- Use the mean-squared error of the Bellman Equation for Q-functions
 \[L_i(\theta_i) = \mathbb{E} \left[(y - \hat{Q}(s, a; \theta))^2 \right] \]
 Where the target value y is $y = r + \gamma \max_{a'} Q^*(s', a')$
- Unfortunately, $Q^*(s', a')$ is not known apriori, so y cannot be computed

How do we solve this?
DeepQ Loss Function

In order to perform back-propagation on the DeepQ network, a loss function $L(\theta)$ is needed.

Use the mean-squared error of the Bellman Equation for Q-functions

$$L_i(\theta_i) = \mathbb{E}\left[\left(y - \hat{Q}(s, a; \theta)\right)^2\right]$$

Where the target value y is $y = r + \gamma \max_{a'} Q^*(s', a')$

Unfortunately, $Q^*(s', a')$ is not known apriori, so y cannot be computed.

How do we solve this?
Use a target network
Target Network

- Approximate $Q^*(s', a')$ with your previous estimate of $Q^*(s', a')$
 - i.e. $\hat{Q}^*(s', a'; \theta^-)$
- Now you have two models
 - Your original model with weights θ
 - A copy of this model with a previous iterations weights θ^-
- The copy is known as the target network.
Target Network

Starting in state s, took action a, received reward r and ended in state s'

$$\text{Loss} = \frac{1}{2} \left(y - \hat{Q}^*(s, a) \right)^2$$
Target Network

After an update, copy the weights from the model to the target network

\[\text{Loss} = \frac{1}{2} \left(y - \hat{Q}^*(s, a) \right)^2 \]

\[
\begin{align*}
\hat{Q}^*(s, a; \theta^-) = & \max_{s', a'} \hat{Q}^*(s', a'; \theta^-) \\
& + \gamma y \\
& - \hat{Q}^*(s, a; \theta^-) \\
& + \hat{Q}^*(s, a; \theta^-) \\
& = \theta^s
\end{align*}
\]
Hard Target Updates

- Updating the target network weights every time you update your model weights can have some stability issues.
- Instead, only perform the copying of the weights every k steps.
Soft Target Updates

- More recent work has shown that soft target updates work better.
- Take a small step from your current target weights towards the current Q-network weights.

\[\theta^- \leftarrow (1 - \tau)\theta^- + \tau \theta, \text{ where } \tau \ll 1 \]
DeepQ Loss Function

Now we can calculate our loss at each step
To backpropagate, just take the gradient of the loss with respect to the network parameters:

$$\nabla_{\theta_i} L(\theta_i) = \mathbb{E} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a'; \theta_i^-) - Q(s, a; \theta_i) \right) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$
Replay Memory

- Instead of directly using the experience samples $e_t = (s, a, s', r)$ put each sample in a ring buffer of size N
- Now to update the θ parameters, select k samples uniformly from this buffer and treat this as a training mini-batch
- Three major benefits
 1. **Data efficiency**: Each sample is used multiple times
 2. **Reduced correlation between updates**: Most sequential samples have a lot of redundant information, which can lead the agent to over fitting
 3. **Reduces feedback loops**: on-policy samples are chosen according to current parameters, which can lead lots of similar samples, which can get the agent stuck in local minima or divergence of \hat{Q}.
Sequences of States

- Many domains are not fully Markovian or fully observable
 - For example, in an Atari game, taking a picture of a single screen means the agent cannot tell which directions the sprites are moving
- So instead of giving a single image, store the previous frames in a sequence and give all frames at once to the agent
 - Now the agent can learn the concept of velocity by looking at how the pictures have changed between frames
Preprocessor

- Many times the raw state is not in a convenient form for learning
- The DQN algorithm uses ϕ to represent a preprocessor
- The preprocessor is run on every state, and is fixed
 - i.e. the output of the preprocessor will always be the same for the same input
- Useful for operations like:
 - Converting images to gray scale
 - Down-scaling images
 - etc.
Algorithm 1 Deep Q-learning with Experience Replay

1. Initialize replay memory \mathcal{D} to capacity N
2. Initialize action-value function Q with random weights

for episode = 1, M do

1. Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

 Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation

end for

end for
DQN Atari

- Input is raw pixel values from Atari
- Reward is just the score received for an action
- Outputs represent the estimated Q-function value for the given input state and the action associated with that neuron.
Atari Games

Figure: Atari Breakout

Figure: Atari River Raid
DQN Results

- On 29 of tested games, the agent achieved better performance than human-players
 - The games varied wildly in genre (e.g. side scrolling shooter vs boxing)
 - The same architecture, and hyperparameters were used across all networks in these experiments
- In some games (like Breakout), the agent was able to learn long-term expert level strategy
DQN Results

- Video Pinball: 99.8%
- Boxing: 100%
- Breakout: 99.8%
- Star Gazer: 99.8%
- Robotank: 99.8%
- Atlantis: 99.8%
- Crazy Climber: 99.8%
- Gopher: 99.8%
- Demon Attack: 99.8%
- Name This Game: 99.8%
- Krull: 99.8%
- Assault: 99.8%
- Road Runner: 99.8%
- Kangaroo: 99.8%
- Jame Bond: 99.8%
- Tennis: 99.8%
- Pong: 99.8%
- Space Invaders: 99.8%
- Beam Rider: 99.8%
- Math Tank: 99.8%
- Kung Fu Master: 99.8%
- Freeway: 99.8%
- Time Pilot: 99.8%
- Enduro: 99.8%
- Fishing Derby: 99.8%
- Up and Down: 99.8%
- Ice Hockey: 99.8%
- Qbert: 99.8%
- H.E.R.O.: 99.8%
- Asterix: 99.8%
- Battle Zone: 99.8%
- Wizard of Wor: 99.8%
- Chopper Command: 99.8%
- Centipede: 99.8%
- Bank Heist: 99.8%
- River Raid: 99.8%
- Zaxxon: 99.8%
- Amidar: 99.8%
- Alien: 99.8%
- Venture: 99.8%
- Seaquest: 99.8%
- Double Dora: 99.8%
- Bowling: 99.8%
- Ms. Pac-Man: 99.8%
- Asteroids: 99.8%
- Frostbite: 99.8%
- Gravitar: 99.8%
- Private Eye: 99.8%
- Montezuma’s Revenge: 99.8%

At human-level or above

Below human-level
Breakout Demo

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Deep Learning Tutorial
Perceptrons
Deep Networks
Training

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary
Summary

- Deep Learning can learn from data to represent complex functions
- DQN is the basis for most current DeepRL algorithms
- DQN is incredibly versatile
 - It learns a wide variety of Atari games with no domain knowledge
- Tons of open research questions
Backup
Universal Approximation Theorem

- What types of functions can this framework learn?
- Informally: a neural network can learn any multidimensional, continuous function with a single hidden layer, given the hidden layer contains enough units.
- Formally proved by the **Universal Approximation Theorem**.
- This theorem tells what types of functions neural networks can learn, but not how compact the network is, how easy the training is, or what activation functions are used.
Algorithm 1 Backpropagation Pseudocode

1: procedure BACKPROP(X, y, W, b)
2: Compute \hat{y} for the given input X \triangleright Forward Pass
3: Compute the loss function
4: Compute the partial derivative of each layer’s output with respect to its input (i.e. $\frac{\partial z_k}{\partial z_{k-1}}$) \triangleright Start backwards pass
5: Compute the partial derivative of each layer’s output with respect to its parameters (i.e. $\frac{\partial z_k}{\partial w_i}$ and $\frac{\partial z_k}{\partial b_i}$)
6: For each parameter compute the gradient $\frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_k} \frac{\partial z_k}{\partial z_{k-1}} \ldots \frac{\partial z_i}{\partial b_i}$ using the previously computed partials
7: return Parameter gradients
Feed-forward Computational Costs

- Mathematically each neuron computes the function $\text{activation}(W^TX + b)$
- Computing $W^TX + b$ takes $|X|$ multiplications and additions
- The cost of the activation depends on the function used
 - Say it adds j multiplications and k additions
- For a layer with n neurons, that is densely connected there will be $n(|X| + j)$ multiplications and $n(|X| + k)$ additions
- This is the cost of a single layer, in deep networks there can be hundreds of layers

![A single neuron](image)

Figure: A single neuron
Cost Depends on Activation Function

- The computational costs can vary a lot based on the activation functions used.
- Sigmoid and tanh activations contain exponentials in both the forward direction and in their gradients.
- On the other hand, rectified linear units add very little overhead.
 - Just a max operation in the forward direction.
 - The gradient is either zero or one depending on the sign of the input.
A Simple Example

- Consider a network with the following layers
 - A layer going from 8 inputs to 400 outputs with ReLu activation
 - A layer going from 400 units to 300 units with ReLu activation
 - A layer going from 300 units to 2 units with a tanh activation
- This small network has approximately 125,000 parameters
 - $125,000 \approx 8 \cdot 400 + 400 \cdot 300 + 300 \cdot 2$
- That means approximately 125,000 multiplications and additions plus the cost for computing the activation functions, every time this network is used
GPUs for Feed-Forward Networks

- With GPUs we can greatly parallelize this computation
- Each layer is run sequentially, but within a layer all of the neuron’s can be computed in parallel
- If multiple items are being fed through the network in succession then the network can be treated as a pipeline with layers being run in parallel on different inputs
Loss Function

- Feed-forward neural networks map an input vector X to an output vector \hat{y}
- The job of the loss function is to quantify how close the output value \hat{y} is to the true value y
- The job of the training algorithm is to adjust the weights in order to minimize the sum of the loss from all of the training examples. $\min_{W, b} \text{loss}(\hat{y}, y)$

Figure: Example network
Common Loss Functions

- **Mean Squared Error (MSE):** \(\sum_i^n \frac{1}{2n} \| \hat{y}^{(i)} - y^{(i)} \|^2 \)
 - Works well for regression problems

- **Cross Entropy:**
 \[-\frac{1}{n} \sum_i^n [y \ln \hat{y} + (1 - y) \ln (1 - \hat{y})] \]
 - This is used with a sigmoid or soft-max activation
 - Works well for classification problems