Selecting Heterogenous Team Players
by Case-Based Reasoning;:
A Case Study in Robotic Soccer Simulation

Thomas Gabel Manuela Veloso

December, 2001
CMU-CS-01-165

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

It is a vital behaviour pattern of humans, the most highly developed autonomous
agents, to make use of experiences accumulated in the past and to solve new
problems in analogy to solutions of old, yet similar problems. This report gives
an outline of our work to apply that case-based approach to an artificial agent
in the domain of Robotic Soccer simulation. We enable the online coach of a
robotic soccer team to determine the team line-up by a technique that incorpo-
rates knowledge into its reasoning process that was gained from former soccer
matches. In order to use the knowledge contained in old cases, it is indispens-
able to define a meaningful evaluation of old solutions. Moreover, it is necessary
to retrieve and adapt those solutions whose application to the current problem
situation promises to be most auspicious. For these reasons, we also concentrate
on the assessment of a team’s performance. Further, we focus on a most precise
calculation of the similarity between heterogeneous player types.

This research was performed while Gabel visited Carnegie Mellon from the Uni-
versity of Kaiserslautern, Germany. Veloso’s research was sponsored by the United
States Air Force under Cooperative Agreements Nos. F30602-00-2-0549 and F30602-
98-2-0135.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the funding sources.

Keywords: robotic soccer simulation, coach, heterogeneous players, case-
based reasoning, genetic algorithms

Contents

1

2

Q w »

Introduction

Foundations

2.1 Problem Description
2.2 Current Implementation
2.3 Basic Idea for a CBR Approach

Case Structure: Modeling the Domain
3.1 The Structureof aCase
3.2 Team Statistics« o v v v e e

Case Evaluation: Assessing a Team’s Performance

4.1 Discriminant Analysis

4.2 Choice of Significant Variables
4.2.1 Basics on variable selection
4.2.2 Algorithmic realization of variable selection

4.3 Formulation of a Meaningful Evaluation Function

Case Retrieval: Adjusting the Similarity Measures
5.1 Basic Similarity Measures oL
5.1.1 Similarity between heterogeneous player types.
5.1.2 Similarity between cases of application of heterogeneous
playertypeso
5.2 Learning Feature Weights
5.2.1 Basics
5.2.2 Sample data generation
5.3 Similarity Teacher and Learner
5.3.1 The Learning Framework
5.3.2 The Learner: Usage of Genetic Algorithms
5.4 Experimental Results.00,

Implementation of the CBR Framework

6.1 The Overall Class Structure
6.2 Case-based Reasoning Routines (CBRSupport)
6.3 Module ModCaseBaseManagement
6.4 Module ModCBRHeterogeneousPlayers

Conclusion and Future Work
DTD of a Case
Description of Available Team Statistics

Introduced Coach Parameters

11
12
14
14
16
18

20
20
21

22
23
23
25
26
26
29
32

35
35
36
39
39

40

42

43

44

1 Introduction

It is a vital behaviour pattern of humans, the most highly developed autonomous
agents, to make use of experiences accumulated in the past and to solve new
problems in analogy to solutions of old, yet similar problems. This report gives
an outline of our work to apply that case-based approach to an artificial agent
in the domain of Robotic Soccer simulation, in order to handle heterogeneous
player types.

In this domain a team of agents plays against another team for a single,
short (typically 10-minute) period. The RoboCup Soccer Server [4], to which all
participating agents have to connect, simulates the environment. That means,
it creates a virtual soccer field and provides all players with local, incomplete,
and noisy perceptory information. A substantial characteristic of the Soccer
Server is that it creates several heterogeneous player types prior to a match.
These are player templates that differ in their simulated physical properties and
thus in their playing skills, too.

Each team is allowed to employ a further agent, the online coach, which gets
a noise-free, global view over the field. The online coach is intended to observe
the game and to provide additional advice and information to the players. One
major task for the coach is to decide which player of its team line-up is assigned
to which of the available heterogeneous player types. In this work we develop
an approach that accomplishes that task with the help of techniques known
from the research area of case-based reasoning (CBR). Our implementation
extends the online coach of Carnegie Mellon’s simulated robotic soccer team
ChaMeleons-01 [3].

The remainder of this report is organized as follows. We begin by discussing
the basics of the problem of heterogeneous player types and the intended CBR
approach. Next, we formalize and model the domain of applying heterogeneous
player types in order to pave the way for the use of CBR methodologies. In
order to use the knowledge contained in old cases, a meaningful evaluation of
old solutions must be defined. That is why, in the following section, we deal
with the assessment of the performance of a team with a particular team line-up
and player types. Furthermore, given a new problem instance, it is necessary
to retrieve those cases whose reutilization is feasible and advantageous. In this
context a meaningful definition of similarity measures is of crucial importance
because the similarity computation influences the retrieval and the adaption of
cases substantially. Hence, in the next section, we concentrate on the definition
and optimization of adequate similarity measures. Subsequently, we provide
implementation specifics of the CBR framework we developed. The last section
presents conclusion and future work.

2 Foundations

2.1 Problem Description

Each time a new robotic soccer simulation match is about to take place, the
Soccer Server randomly generates a set of player types. Those different player
types differ in their basic characteristics, such as maximum speed, size or inertia
moment, depending on specified ranges for each property. Thus, the overall
abilities of a single player type can vary greatly.

A team can make use of those heterogeneous player types created by the
Soccer Server through the online coach that may decide which player types to
use for which player. In particular it has to determine which player types are
assigned to defenders, midfielders or forwards, for example!. Furthermore, the
coach is allowed to do a limited number of substitutions during the match, i.e.
changing the player type of a specific player. If there is no online coach for a team
or the online coach does not deal with the application of heterogeneous player
types at all, the Soccer Server will endow all players with the characteristics of
a default player type.

There are several configuration parameters of the Soccer Server which affect
the use of heterogeneous player types:

e team size: number of players in a team (by default 11)

e player_types: number of player types generated by the Soccer Server (by
default 7)

e subs_max: number of maximally allowed substitutions during a match (by
default 3)

e pt_max: number of maximally employable players per player type (by
default 3)2

Initially, all players are of the default player type. That is why the coach
is permitted to undertake as many substitutions of player types as desired be-
fore the match starts. Obviously, a team can take advantage of the superior
properties of some player types over other ones or over the default player type.
Consequently, there is the need to judge which player types should be preferred
to other ones and for which player roles to employ which player type.

2.2 Current Implementation

The online coach of Carnegie Mellon’s simulated robotic soccer team
ChaMeleons-01 consists of several modules (as shown in Figure 1), each dealing
with different aspects of guiding a team through the progress of a simulated

1Each player may act as a goalkeeper, sweeper, defender, midfielder or forward. Through-
out this text we refer to these roles as “player roles”.

2Except for the default player type: A team is even allowed to use the default player type
for all of its players.

soccer match. That modular structure simplifies the adding of new functional-
ity and permits to change the coach’s behaviour easily. Therefore new modules
were added in order to solve the heterogeneous player problem CBR-based.

Player 1 Team 1
Soccer))
Monitor) .
Player n
The Coach
Soccer

Server |e¢ N [ModPlayerTypes | [ModEventsequence]

and
several | .| Global |, 7
other Memory
moduleg ™
Team 2 VA
ModFormation ModGoalWatch

Figure 1: The role of the online coach

The previous solution to the heterogeneous player problem is realized in
module ModPlayerTypes. It includes a rather simple evaluation of player types
that basically tries to ascertain which player types are most valuable as a de-
fender, midfielder or forward and makes use of them correspondingly. Those
evaluation values of single player types were created on the basis of isolated
training situations. Each type got an evaluation score for its abilities in shoot-
ing on the goal or intercepting a ball, for instance. Those evaluation scores were
combined heuristically for each player role, so that a decision could be made
whether a player type should be used as a defender, midfielder, or forward.

One deficiency of the named solution is represented by the fact that it does
not take into account possible synergy effects that may occur due to interaction
between several player types. Moreover, the continued performance of a player
with its chosen player type during an actual game is not regarded.

2.3 Basic Idea for a CBR Approach

According to [14], “Case-based reasoning is reasoning by remembering.” And
in [17] it is stated that a “case-based reasoner solves new problems by adapting
solutions that were used to solve old problems.” Utilizing that basic idea to
the problem of applying heterogeneous players in a robotic soccer match, old
problems can be represented as the set of available player types in games of the
past. Whereas old solutions are considered as the choice of player types that
was made in those solutions and new problems as available player types for the
upcoming match.

A main advantage of a CBR approach is the avoidance of a high effort for
knowledge acquisition. Plenty of old solutions are available in the form of past
games’ logfiles. The experience may be exploited by a case-based reasoner.

Case

new use of
player types

new Solution

Adaption

Similari_ty_

new Problem

available player types this time

Figure 2: Using CBR for the problem of heterogeneous players

Moreover, knowledge maintenance becomes manageable easily if old problems
and solutions are stored in a case base. For example, cases that we do not
consider significant, representative, or good enough may be removed from the
case base, thus excluded from the reasoning process, and substituted by other
or newer cases. As a consequence, a main goal of our work was to implement a
framework that analyzes existing logfiles of matches and extracts the relevant
information in order to generate cases that represent a summary of a match with
respect to the use of heterogeneous player types. As sketched in Figure 2, each
case is supposed to correspond to a “problem” in form of available player types
and to one or more “solutions” in form of taken applications of heterogeneous
player types.

More details on case-based reasoning in general can be found in [2, 13, 17]
and on its application to the problem in hand in Section 3.

An important concern is that the cases stored in a case base should contain
some kind of assessment of their goodness. That assessment has to express how
good the team performed in that case with the specific player types used. Cases
with a higher evaluation value can be preferred in the retrieving phase of the
CBR cycle [2]. A straightforward evaluation function might, for instance, be
based just on the score of the game. Function e; and ey represent two very
simple evaluation functions that are not meaningful enough.

e1(z) = scoreourTeam — SCOT€theirTeam (1)

SCOT€oyrTeam (2)

ex(z) =
SCOT€ourTeam + SCOTEtheirTeam

We will discuss the problem of finding a more sophisticated evaluation func-
tion in more detail in Section 4.

3 Case Structure: Modeling the Domain

A major step in applying CBR to the heterogenous player problem is to con-
struct a model of the domain and to decide on a specific structure of the cases.

In this section we first introduce the representation of a single case describing
an application of heterogeneous player types. Then, we present a way to obtain
significant, summarizing, and representative information on a match in the form
of statistics of that match. We need this statistical information to provide a
meaningful evaluation value.

In the context of case-based reasoning similarity measures are sometimes
considered to be a part of the domain model. However, since we dealt with
the definition of similarity metrics in very detail, we devote a separate section
on that topic. In Section 5 we describe and refine an appropriate modeling of
similarity measures between heterogeneous player types and between cases.

3.1 The Structure of a Case

In an object-oriented case representation a case consists of a set of objects. These
objects are characterized by a fixed set of attributes, and they are composed
by subsuming attributes, that belong together, to object descriptions. Each
attribute may embody a more or less complex object itself.

We decided to define an object-oriented case representation for cases that
depict an application of heterogeneous player types. Hence, cases in our domain
consist of a multitude of objects that jointly represent a summary of a match
(or a group of matches) during which certain player types were used.

In Figure 3 the overall structure of a single case is illustrated.

According to [2] a case consists of at least a problem and a solution part.
Moreover, it may contain additional or alternative solutions and information on
these solutions’ goodness. A case in the domain presented here does contain
exactly those parts plus some further information that makes it easier under-
standable and readable.

The Problem Part

The problem part consists of two main members. First, there are heterogeneous
player types with their specific characteristics as they were created by the Soccer
Server.

In version 7.x of the Soccer Server those player types differ from each other
in the following eleven properties. Each of these properties is realized as an
attribute of an instance of a heterogeneous player type object:

e maximal player speed (MPS)

e maximal stamina increment (MSI)
e player’s decay (PD)

e inertia moment of a player (IM)

e dash power rate (DPR)

e player’s size (PS)

CASE characteristics PROBLEM PART
=

(application HeterogeneousPlayerType 1
of het erogeneous S
pl ayers) o
[] numbers of
L actually used
characteristics [] playyers
of each type
i HeterogeneousPlayerType n
>
(SOLUTION PART h
5 z assignment ®
used formation assig . N
[I | [—~——— -

(single) SOLUTION N

used formation assignment

player =
. R #B 1 |

° ° J
player -
o [| @mmm)—[%
. X_2
o o © S

[S ik
[) N
main strate opponent player o o
[anee 39)’] [tengl)1 name] . playerp — J|-- E
SCORE EVALUATION: SIGNIFICANCE ..
sl: 52 evaluation 5|gn|f|cance
team statistics for our team I team statistics for opponent team I [—
\ J

C

Figure 3: The case structure

e kickable margin (KM; defining the area around the player in which he has
control of the ball)

e randomization of the player’s kicks (KR)

e extra stamina (ES)

e maximal effort for player’s actions (MAXEF)
e minimal effort for player’s actions (MINEF)

For a more detailed description of those player characteristics see the Soccer
Server Manual [4].

Formalizing the concept of a player type, we now give the following defini-
tions:

Definition 1 (Heterogeneous Player Type)
Let o denote the number of characteristics each player type features. A

heterogeneous player type h is defined as a vector of real numbers corresponding
to its characteristics c;:

h=| : with ¢! € R and o € N.
CZ
The set of all heterogeneous player types is defined as H.

Definition 2 (Query)
Let Q = {q1,...,qn} be a set of heterogeneous player types, i.e. q; € H for each
i€ {1,...,n}. Then, Q is called a Query.

The other half of the problem part contains the information how many play-
ers of each player type were used. It is crucial to put that piece of information
into the problem part, because it is a decisive factor for the computation of the
similarity between a case and a given query®. To understand that, we must
realize that it is the overall goal of the CBR process to make use of old cases
and solutions by adapting them and applying them to the current problem.

Hence, the calculation of the similarity value between currently available
player types and cases in a case base has to consider which player types were
actually used in those cases. Otherwise, it may happen that the CBR retrieval
picks a case out of the case base whose similarity to the given player type set
mainly comes from player types that were not used at all.

Definition 3 (Problem Part p of a Case C)
Let T be the number of player types generated by the Soccer Server, and let o
be the size of a soccer team. A case’s problem part is defined as a matrix

c C
P p
by My o o 1
=1 : : with Vi, k! € H, m! €N, and E:mf =o.
(e} (e} =0
p p
he oy mz_y

The Solution Part

As visualized in Figure 3 the solution part of a case consists of a non-empty
set of single solutions. Fach of those solutions may have its own characteristics;
in particular those solutions can also show different kinds of applications of
heterogeneous player types. When speaking about a particular solution in the
course of this text, we will usually mean the actual simulated soccer match that
corresponds to that solution.

3The similarity between a new problem and a case is always computed to the case’s problem
part. Furthermore, the similarity between two cases is computed between their problem parts
as well.

Each solution features descriptive elements as well as evaluating attributes.
Pertaining to the descriptive part of a solution, the “used formation” tells which
player formation was used during that match. Formations were already part
of the existing coach implementation and mainly describe the players’ home
regions, i.e. regions where each player is considered to stay most of the time the
match. The “main strategy” is an attribute that can be chosen as a filtering
parameter for the retrieval process (see Appendix C). It is inferred directly from
the used formation and specifies how many players were deployed as defenders,
midfielders or forwards. A further descriptive attribute is represented by the
name of the opponent team.

The evaluating attributes involve the score of the match that corresponds to
the solution in hand and a significance value which is proportional to the game’s
length. Furthermore, each solution includes a listing of values that give statisti-
cal information on a team’s performance in a match, such as its ball possession
time or pass success rate. Those team statistics are used to compute an evalu-
ation value that tells how well the team performed in the current solution. In
Section 3.2, we will describe the generation of those statistics and in Section 4,
we show how they are used to compute a meaningful evaluation value.

Definition 4 (Single Solution s¢ of a Case C)
Let Form be the set of all possible team formations, Opponents the set of all
teams, and V. C RV the number of team statistics that are available on a
match.

A case’s single solution is defined as an 8-tuple:

s¢ = (form, mstrat, assign, opp, score, signif, stat, eval)
with:
form € Form the used formation
mstrat € N° the main strategy (numbers of defenders,

midfielders, forwards)
assign € [0,1,...,7]” the assignment of player types, with T as the number
of available player types and o as the team size

opp € Opponents the opponent team

score € N? the score of the match

signif € R the significance of this solution
stat € RV x RIV! the team statistics of both teams
eval € [0,1] the solution’s evaluation value.

After having introduced several definitions, we are now also able to formalize
the concept of a case in the domain of heterogeneous players:

Definition 5 (Case of Applying Heterogeneous Player Types)
A case C in the domain of heterogeneous player types is defined as a tuple of a
problem part p© and a non-empty set of solutions s :

C = (9% {s¢,..,s¢}) with 1 > 1.

3.2 Team Statistics

As we already said in Section 2.3 the evaluation value of a case’s solution is of
high importance, since it summarizes a team’s overall performance. Thus, on
the one hand it indicates which assignment of player types should be preferred
over other ones. And on the other hand it suggests which cases’ solutions are
presumed to result in a better team performance (when adapted and applied to
the current problem), even if those cases’ similarities to the current query are
not as high. To obtain a meaningful evaluation value we rely on statistical data
on the regarding match.

The Coach
4 N\
coach module
ModProxyServer
statistics
- for case
Z%%Lég? Proxy creation
- Client
Server
. J
controlling statistical
. data data
info from
messages logfile

C_Communicator D Client Handler

Statistics Proxy Server

Figure 4: Using the Statistics Proxy Server to gain team statistics

For the generation of team statistics on a match we used the tool Statistics
Proxy Server v1.0 [7, 8]. This client-server based software was developed to
give easy access to real-time, in-depth statistics on soccer games. The Proxy
Server provides statistics of three groups: team statistics, player statistics, and
other, miscellaneous statistics. However, for the purpose of evaluating a team’s
performance we are just interested in statistical values on a team. In total, there
are 33 team statistics; the complete list of those is given in the Appendix B,
together with a short explanation of what each statistic means.

The proxy server is designed to generate team statistics online while a soccer
match is taking place and to receive its data from the Soccer Server in real-time.
Since we are interested in analyzing logfiles of past matches and in creating a
case base out of them, we need an interface to the Proxy Server that imitates
the run of a real match while parsing a logfile. The existing implementation
of the online coach already provides such an interface. It has a module called
ModProxyServer that establishes a pseudo soccer server which hands postpro-
cessed information from a logfile to the proxy server as if they originated from a

10

match taking place at the moment. Moreover, it contains an instance of a Proxy
Client — a stand-alone software module that is part of the Statistics Proxy Server
software package and which is designed to make the retrieval of data from the
proxy server as simple as possible.

In Figure 4 we summarize the way we used the Statistics Proxy Server and
the module ModProxyServer to generate team statistics, that we included into
cases’ solutions which we created from existing logfiles. Since an instance of
a proxy client is part of ModProxyServer, we can get direct access to all the
statistic values and store them for further processing.

4 Case Evaluation: Assessing a Team’s Perfor-
mance

The result of a match reflects only in part the performance of a team that was
really achieved in that game. For example, a team may have played “really
good”, but lost anyway. Or it may have won by fortune, although actually
having played “rather poorly”. Hence, just relying on the information “score”
is not sufficient for a sensible match evaluation.

We assume that each game is characterized by a “genuine result” that mirrors
the actual achievements of both teams and that in general is not identical to
the match’s result. Thus it is our goal to find a good approximation of that
“genuine result” which we intend to use to give an evaluation value on a team’s
performance.

average average
score difference: | standardized score: |
-0.933 I -0.375 | I
| | |
. | |
| 1 |
| 1 o
. | 11 |
| | [| |
. I 0L 1 i
L
4 -3 -2 -} eol 1 2 0 | 05 1
. e
(score difference) (standardized score)

Figure 5: Distribution of match evaluation values as calculated by the simple
evaluation functions e; and e,

In Figure 5 we show that the use of match end scores alone is insufficient for
the construction of a precise evaluation function. Both charts refer to 30 matches
between two teams that used exactly the same configuration throughout that
series of games. Consequently, all those games should show not too different
scores and quite similar evaluation values for the performance of both teams.

The main drawback of the score-based evaluation function e; is that this
metric is not standardized and that it is very coarse with its range of values of

11

only 7 discrete numbers. In contrast to that, es supports a continuous range of
values within [0, 1], but obviously a lot of match evaluation values deviate very
much from their expected value €5 = 0.375: About 47% of the samples (14 out
of 30 matches) have an evaluation value whose distance to €5 exceeds the value
of the standard deviation (se, = 0.326).

Accordingly, e; as well as e2 as instances of purely score-based evaluation
functions are not meaningful enough. Instead of just relying on the score, we
employed the 33 team statistics on a match, as created by the Statistics Proxy
Server, in order to:

e construct an evaluation function that approximates the “genuine result”
of a match

e assess the performance of a considered team and the goodness of its
achievements as accurately as possible

e provide a numerically more stable basis for the computation of the evalu-
ation value.

4.1 Discriminant Analysis

It is not reasonable to include the whole set V' of available team statistics into
the construction of an evaluation function, since that would complicate that
function unnecessarily. Apart from that some of the team statistics are not at
all helpful for the prediction of the game’s result. In order to find out which
statistics are most significant, i.e. which variables out of V' contribute most
to the success or failure of a team, we analyzed past soccer matches’ logfiles.
First, we randomly chose about 200 matches out of our logfile base. Then, we
generated team statistics on those matches using the techniques described in
Section 3.2. Finally, we conducted a discriminant analysis on these data sets.

Discriminant function analysis [12] is used to find out which variables dis-
criminate between two or more naturally occuring groups*. That means, it
dissects pre-classified data samples in order to determine and linearly combine
variables to a discriminant function so that the group membership of new sam-
ples can be predicted as good as possible (classification task). Qur pre-classified
data samples are represented by the mentioned 200 past soccer matches that
either were won or lost.

In the two-group case, which is relevant for our purposes, discriminant func-
tion analysis can also be thought of as (and is analogous to) multiple regression
[21]; the two-group discriminant analysis is also called “Fisher linear discrim-
inant analysis” after Fisher [6]. Computationally all of these approaches are
analogous.

Definition 6 (Discriminant Function, Model)
Let x = (21, ...,x5) be a data sample with z; as predicting variables and y the
target variable representing the group membership of x.

4In our case these two groups are: matches that were won and matches that were lost. The
term “variables” refers to the available team statistics.

12

Discriminant analysis finds a vector 8 = (Bo, ..., Bn) € R*1 of discriminant
coefficients so that the disciminant function

gﬁ(x) =Yy = BO + /81371 + ...+ ,ann

predicts the group membership of x.
The vector 3 is also called model.

In our domain the predicting variables z; are represented by the available
team statistics®. As target variable y, which is assumed to be dependent on
the statistic values, we use the final result of a match: victory or defeat of
the considered team. Since the outcome variabel is binary it holds that y <
0 corresponds to a team’s victory and y > 0 to a defeat, respectively. The
discriminant coefficients’ absolute values §; in conjunction with the variance of
feature z; give us an idea of how important the statistic z; is for the prediction
whether a team wins or loses.

For the computation of a discriminant analysis we employed the tool
logdiscr V2.0 [16]. That software performs logistic discriminant analysis
whose methodological background is Polytomous Logistic Regression [12]. The
program expects as input a set of pre-classified data samples as well as a de-
scription their format. The output of logdiscr consists of

e a model § containing the discriminant coefficients j;, B2, ..., B, according
to Definition 6

e associated standard errors SFg (4) for each discriminant coefficient £;
e associated Wald test statistic values Ws(j) = 8; / SE3(j)

e associated significance values pg(j) (p-values)

5When working with the Statistics Proxy Server, we recognized several inconsistencies in
the way the server generated the statistics. A first indication for one or more mistakes in
the proxy server was represented by the fact that the team playing on the left side of the
field played much less passes than the right team on average. On the contrary, the team
playing on the right half reached a much lower pass success rate and an extraordinary high
ball possession share. In order to determine whether there is a misbehaviour in the Statistics
Proxy Server or not, we generated a second logfile La from an existing one Lj, in which both
teams had switched sides. Accordingly, the statistics generated from logfile L; for team A
should have been exactly the same as the statistics generated from logfile La for team B. But
our experiment revealed considerable discrepancies so that we started searching for mistakes
in the programming of the Statistics Proxy Server. On the one hand, we found that the
statistics server makes the decisions which player is responsible for a movement of the ball
in an unfair and unbalanced way (players of the team playing on the left side are favoured).
That unfairness leads to falsified statistics on the ball possession time, the number of steals,
dribblings and passes as well as on the pass success rate. On the other hand, the server includes
the ball’s position into the computation of the players’ average x and y positions. Thus, the
corresponding statistics were fudged, too. After having found and corrected the problems in
the source code of the Statistics Proxy Server, we verified that it worked accurately now: The
proxy server generated correct, i.e. “mirrored”, team statistics for the logfiles L1 and Ls.
Both problems in the code of the Statistics Proxy Server were reported to the authors.

13

e for each variable v; € V the sample mean and the sample standard devi-
ation

The general method that logdiscr uses to estimate the parameters j3; is
called mazimum likelihood. In a very general sense the method of maximum
likelihood yields values for the unknown parameters 3; which maximize the
probability that the observed values of the outcome y deviate as little as pos-
sible from the predicted values (based upon the model 8 and computed by the
discriminant function gg).

In order to apply this method we need a function that expresses the prob-
ability of the observed data as a function of the unknown parameters. That
function is called likelihood function. The mazimum likelihood estimators of
these unknown parameters are chosen to be those values that maximize this
function. Thus, the resulting estimators are those which agree most closely
with the observed data.

We now do not describe how to construct a likelihood function and how to
infer the values for the unknown parameters. Instead, we just give a definition of
that function without further explanation. For more details on this topic see [12,
21].

Definition 7 (Likelihood Function)
Let the outcome variable y be coded as 0 or 1, n be the number of samples, and
p the number of predicting variables. The likelihood function is defined as

18) = [w0 (1 = ma)

gg(m)
€ 5y and gz as discriminant function.

with 7T(.CL') = W

However, it is easier mathematically to work with the logarithm of {(3). The
expression L(3) = In (I(B)) is called the log likelihood.

4.2 Choice of Significant Variables
4.2.1 Basics on variable selection

The traditional approach to statistical model building involves seeking the most
parsimonious model that still explains the data. The rationale for minimizing
the number of variables in the model is that the resultant model is more likely
to be numerically stable, and is more easily generalized.

In particular, in times when the outcome being studied is not so well-
understood and the important variables and their associations with the out-
come may not be known a stepwise variable selection is auspicious. Employing
a stepwise selection procedure can provide a fast and effective means to screen
a large number of variables. Any stepwise procedure for selection or deletion of
variables from a model is based on a statistical algorithm that checks for the
“importance” of variables, and either includes or excludes them on the basis of

14

a fixed decision rule. The “importance” of a variable is defined in terms of a
measure of the statistical significance of the coefficient for the variable.

In the following we make use of the “Algorithm for Forward Selection Fol-
lowed by Backward Elimination” as introduced in [12].

The algorithm comprises a forward and a backward phase that are intercon-
nected as illustrated in Figure 6.

START
Forward Backward
Selection Elimination
, Phase

A
may remove the
least significant variable

from the model
stop()

Figure 6: Schematic depiction of the “Algorithm for Forward Selection and
Backward Elimination”

A
may add the #ost significant
variable to the model

We summarize the modes of operation of both phases in the following;:
Forward Selection Phase
Input: — set C' C V of already chosen variables, initially empty
— set R =V \ C of remaining variables, intially R =V
— significance threshold pg for variables to enter the model
Output: — variable ¢ € R to be added to C or STOP
Processing: — For each r € R fit a model 3, that includes the variables of
the set C' U {r}. Thus, we get |R| different models S,.
— Choose the model 8. with Vi € R, L(8.) < L(8;), c € R.
— If pg, (¢) < pE, then add variable ¢ to C and remove it from
R. Otherwise: STOP.
Backward Elimination Phase
Input: — set C' C V of already chosen variables
— significance threshold pgr for variables to be removed from

the model
Output: — variable r € C to be removed from C
Processing: — Fit a model v that includes all variables from set C.

— Find the variable r € C with Ve € C, py(r) > py(c).
— If py(r) > pr then exclude r from C and add it to R.

The choice of parameters pg and pg is crucial for the complexity of the resulting
model, since it determines how many variables eventually are included in the
model. The search for meaningful significance thresholds has been the focus of
many research works [1, 5]. In [15] the issue of the significance level for forward
stepwise logistic regression is examined. The results of this research have shown
that the traditional choice of pg = 0.05 can be too stringent in certain appli-

15

cation domains, often excluding important variables from the model. Choosing
a value for pg in the range from 0.15 to 0.20 is highly recommended, in [12] a
value of pg = 0.25 or even larger is suggested. Whatever the choice of pg, a
variable ¢ is judged important enough to enter a model J if its p-value pg(c) is
less than pg.

The second significance threshold pg indicated some minimal level of a vari-
able’s continued contribution to the model. Whatever value we choose for pg, it
must exceed the value of pg to guard against the possibility of having the algo-
rithm enter and remove the same variable at successive steps. If we do not wish
to exclude many variables once they have entered, then we might use pr = 0.9.
A more stringent value should be used, if a continued “significant contribution”
is required. Anyway, if the maximal p-value, i.e. the p-value of variable r with
the highest p-value, exceeds pg, then r will be removed from the model.

4.2.2 Algorithmic realization of variable selection

We excluded the statistics on the score, number of shots, and the shoot success
rate from the discriminant analysis since the score as well as the combination of
the number of shots and the shoot success rate relate directly to the response
variable y (victory or defeat of a team).

Number of observations: 218

Number of numerical attributes: 12

Number of response categories: 2

-2 LogLikelihood: 81.294035

Parameter ESTIMATE BETA Std.Error Z-Value P-Value Sample Sample Std.
Constant -112.2292 31.8202 -3.527 0.000 Mean Deviation
XAverage 97.3558 37.5968 2.589 0.010 0.441 0.030
XVariance 140.2145 64.8077 2.164 0.030 0.491 0.014
YAverage 88.5449 40.9599 2.162 0.031 0.504 0.013
PassNumber 40.1776 10.4576 3.842 0.000 0.679 0.127
PassSuccess -27.7523 15.1261 -1.835 0.067 0.570 0.066
DribbleNum 6.6747 3.4504 1.934 0.053 0.598 0.115
Compactness 101.2510 36.3555 2.785 0.005 0.495 0.031
BallP1DistAvr 89.5401 40.5247 2.210 0.027 0.514 0.019
BallP1DistVar -291.4076 76.1467 -3.827 0.000 0.507 0.015
WinPassPattern -11.3242 1.9162 -5.910 0.000 0.686 0.365
CornerKicks 2.0034 1.1925 1.680 0.093 0.321 0.332
KickIns -4.5449 2.2531 -2.017 0.044 0.275 0.204

Table 1: Resulting model 3, of a discriminant analysis using stepwise variable
selection

Applying the algorithm described in Section 4.2.1 to the statistical data that
we generated from 200 soccer matches, we obtained the following results. Using
pe = 0.25 and pr = 0.30 as thresholds controlling the run of the algorithm,
several variables (re-)entered the model and were removed later due to p-values
larger than 0.3. The algorithm terminated after 18 iterations and generated a
progressive model (3, as shown in Table 1.

16

100

Number of Corner Kicks

[IPass Success Rate

1 Variance of X Position

[Average Ball Player Distance

O Variance of Pass Length

O Average X Position

& Variance of Ball Player Distance
W Average Y Position

O Average Distance Covered by a Player
£ Ball Possession

@ Average Length of Pass Chains
JNumber of Pass Chains

& Number of Passes

80 +

60

40 1

Significance Share of Variable (%)

. Average Compactness
C1Number of Dribblings
B Number of Kick Ins
Winning Pass Patterns

20 4

1 2 3 4 5 5 6 7 8 9 10 11 12 12a 12b 12c 12d 12e
Number of the Fitted Model

Figure 7: Stepwise variable selection with the “Algorithm for Forward Selection
Followed by Backward Elimination” using parameters pg = 0.25 and pr = 0.30.
In this figure we illustrate the relative importance of variables at successive steps
of the algorithm.

It is important to mention that the absolute value of a discriminant coeffi-
cient cannot be equated with the “importance” of the corresponding variable.
In fact, a statistic’s influence on the model can only be estimated in correlation
with the standard deviation around its mean.

In Figure 7 we give an assessment of the relative importance of statistics in
a model, based on the product of the calculated discriminant coefficient with
the standard deviation of the respective statistic. Furthermore, we illustrate the
stepwise progress of the “Algorithm for Forward Selection Followed by Backward
Elimination”. We can see that, for example, in model 37, which contains 7
variables, the statistic of winning pass patterns gets the highest importance with
about 36%. However, the algorithm for stepwise variable selection considered
further variables significant and added them to the model while removing others.
After the final step 12e of the algorithm the average compactness of a team gets
the highest importance with about 19%.

In a second application of the algorithm for stepwise variable selection we
used the more conventional value pg = 0.10 as a significance threshold to control
the algorithm. The parameter for backward elimination pr was set to 0.15.
Using these parameters, we gained the results (model 8.) shown in Table 2.

Although all p-values of model 3, are less than 0.10 its ability to predict
whether a team wins or loses, given certain team statistics on independent test
data sets, is not better than the classification goodness® of model 3.. This is

6Both model, 3, as well as B¢, showed a classfication error rate of about 25% on independent
test data sets.

17

Number of observations: 218

Number of numerical attributes: 4
Number of response categories: 2
-2 LogLikelihood: 113.43654

Parameter ESTIMATE BETA Std.Error Z-Value P-Value Sample Sample Std.

Constant -32.4288 9.3550 -3.466 0.001 Mean Deviation
PassNumber 9.6963 3.3867 2.833 0.005 0.6798 0.127
DribbleNum 5.5254 2.3109 2.348 0.019 0.5986 0.115
Compactness 59.4315 17.319 3.426 0.001 0.4953 0.031

WinPassPattern -9.8190 1.4803 -6.633 0.000 0.6866 0.365

Table 2: Resulting model 3. of a discriminant analysis using stepwise variable
selection

an indication that 3, may be overfitted. This means it may contain too many
variables and is too specialized on the training data samples. Nevertheless,
it provides interesting insights into the importance of single team statistics.
Furthermore, a progressive model including more variables may be made more
reliable by using more than “only” 200 training data samples. However, in the
following we use the more conventional model 8. for our purposes.

4.3 Formulation of a Meaningful Evaluation Function

With means of data mining we found a classifying function in the previous sec-
tion that is able to decide whether a team is likely to have won or lost, given
certain team statistics on the match. Now we describe how to use that discrim-
inator for the construction of a function that evaluates a team’s performance.

Consider an arbitrary model 8 (as the outcome of a discrimination analysis)
and the corresponding discriminating function y = gg(z) = fo+B121+-..+ BpTp-
Since we make use of team statistics x; that are standardized to values within
[0,1] and because the signs of the coefficients §; are known we can find out the
minimal and the maximal values ymin and ymqe, that may be assigned to the
outcome variable y. As a matter of course, values near to Ymin and ymqez advert
an obvious victory or defeat of the considered team, respectively. On the other
hand values near zero indicate a rather balanced match. Accordingly, it is easy
to map the value of the outcome variable y to a team performance evaluation
value egyq; within the interval [0, 1].

In Section 4.2.2 we mentioned that it is necessary to omit the team statistics
that relate to shots and to the score from the process of variable selection within
the scope of discriminant analysis. However, if we want to define a meaningful
and comprehensive team evaluation function, we cannot completely ignore a
team’s abilities in shooting onto the opponent goal. Therefore, we determined
to amalgamate the team evaluation value eg, gained from the team statistics
with a value egpo0t measuring a team’s abilities in shooting. Thus, we allow the
statistics on a team’s number of shots and on a team’s shoot success rate to
enter the computation of the overall team performance.

A single discriminant analysis fitting a model that only contained these two

18

discrimination - —
function using (_ team

model beta __ Statistics

WIN

_

T " "measureon)
' shoots and shoot !

team performance evaluation value ey ! success rate €spoor |

Figure 8: Mapping the discriminator’s result to an team evaluation assessment

statistics revealed that the shoot success rate is about three times as valueable
in predicting the match’s outcome as the number of shots onto the opponent
goal. Hence, we compute egp0,¢ with the equation egpoor = %wshootSuccessRate +
ixshomum. The weights wstqr and wspeer to amalgamate egyqr with egnoor are
currently choosen heuristically. We use wgiqr = % and Wgpoot = é Thus, our
evaluation function e is defined as follows:

Definition 8 (Team Performance Evaluation Function e)

Let B. denote the model according Table 2, x = (z1,...,2p) be a sample of
statistic values on a match, wgi; be set to %, and Wgpoot 0 % Furthermore, let
Ymin 0N Ymaey denote the minimal and mazimal value of function gg,. Then
the team performance evaluation function is defined as follows:

6(.’11') :wstatestat(x) + wshooteshoot(x)

= 2¥Umas=9s.(®) t€shoot(T)

3 Ymaz—Ymin
2
- §(]- - 0-1537passNumber - 0-08xdTibbleNum - 0-92xcompactness
1
+0-15$winPassPattern) + 3 (0-75$3h00tSuccessRat6 + 0-25$shotNum)

In Figure 5 we gave a frequency distribution of the purely score-based eval-
uation function e;. When applied to 30 matches between the same two teams
it showed an average evaluation value (standardized score) of 0.375 with a stan-
dard deviation of 0.326.

The high deviation resulting from too many extreme assessments of 0.0 and
1.0 represented one main drawback of e;. Using our evalutation function e as
given in Definition 8 for the team performance estimation for those 30 games,
we obtained an reduced standard deviation of 0.129 around while the average
evaluation value grew slightly to 0.431.

19

In Figure 9 we compare the frequency distribution of e; and e for the named
set of matches. The chart in the lower left corner of that figure shows the
frequency distribution of es. The second chart, however, corresponds to the
distribution of e, where we grouped the actual real-numbered evaluation values
for the 30 matches into categories with a width of 0.07 for the purpose of better
illustration. With different shades of gray we emphasize which evaluation values
assigned by e, correspond to values that are assigned to a certain match by e.

frequency of
occurence 7+

frequency of
occurence

0.94 €
evaluation

value

0.70 0.82

%
€;

010 022 034 046 058 070 082 094 Standardized score

Figure 9: Comparison between the score-based evaluation function es and the
newly introduced evaluation function e

5 Case Retrieval: Adjusting the Similarity Mea-
sures

5.1 Basic Similarity Measures

According to [20] defining adequate similarity measures is one of the most im-
portant tasks when implementing case-based applications.
In this section we introduce similarity measures

e between heterogeneous player types
e between cases of application of heterogeneous player types

The latter similarity measure makes use of the first one, upon whose refine-
ment we focus in Section 5.3.

20

5.1.1 Similarity between heterogeneous player types

The current implementation of the Soccer Server randomly influences the abil-
ities of the player types it creates: Apart from the default player type each
player type distinguishes oneself from other types by characteristics that vary
from their default values. In Figure 10 we show the attribute “kickable margin”
as an example illustrating that circumstance. The kickable margin represents
the area around a player in which he has control of the ball. That means, if a
ball is inside a player’s kickable margin, he is able to pass, shoot, or intercept
the ball.

Soccer Server
creates player
types with
kickable margin
in

[0.7;0.9]

Figure 10: Different characteristics for a heterogeneous player type. Here: vari-
ability of attribute “kickable margin”

The other player characteristics are influenced randomly as well. However,
the deviation from their default values may in some cases impair the player
type’s abilities instead of improving them. For example, the “maximum effort”
of the player types’s actions is decreased randomly (compared to the default
value) by the Soccer Server when it creates a new player type. And a reduction
of its maximal effort definitely affects a player’s abilities negatively.

The flat attribute-value based implementation of heterogeneous player types
suggests the utilization of a weighted similarity measure to compute the simi-
larity between them. In so doing we first compute a similarity value for each
of the characteristics, weight them appropriately, and finally amalgamate them
to obtain a global similarity between heterogeneous player types. For the at-
tribute similarities’ calculation we decided to make use of a simple distance
metric within the given range of the respective real-value attribute’.

Definition 9 (Player Attribute Similarity simy4)

Let I4 = [mina, maz 4] C R denote the interval of possible values for attribute
A. Furthermore, be vy € I and v, € I the query’s and the case’s real attribute
value. The player attribute similarity for attribute A is defined as follows:

2
sima(vy,vc) 1= (1 - M)

mars — ming

"During testing we found that squaring that distance-based similarity measure leads to
more representative similarity values.

21

With the help of Definition 9 we define a similarity measure between het-
erogeneous player types:

Definition 10 (Similarity Between Heterogenous Player Types simpgpr)
Let hy € H and he € H be two heterogeneous player types. Moreover, be
(w1, ...,wp) a vector of weights with w; € R, where o denotes the number of
characteristics each player type features. Then, the similarity between hy and
ho is defined as follows:

Q ; hi ho
-1 Wi S1i\C; ~,C;
S'imHPT(hl,hQ) = Zz_l 2 > Z(7 v)
i=1 Wi

The vector w of feature weights influences the overall similarity between
player types on a grand scale. Accordingly, the definition of adequate feature
weights is crucial for the performance of the CBR retrieval. We describe a way
of finding meaningful feature weights w; in more detail in Section 5.3.

5.1.2 Similarity between cases of application of heterogeneous player
types

When defining a top-level similarity measure in the domain presented here, we
have to decide what we want to connote with the similarity between a new
query and an old case. In order to answer that question we have to settle how
retrieved solutions are utilized.

The adaption phase of the CBR cycle comprises the adaption of an old
solution to a new problem. Thus, the system has to decide which player types,
that were used in that old solution can be substituted by which player types
that are available at the moment. That means, the system should try to replace
formerly used player types in such a manner that preferably very similar ones
come into operation. Pursuing that substitution strategy, it is expectable that
the new (adapted) solution matches the original one very well. While doing
that adaption, the software module that makes these replacement decisions has
to regard the constraint that only a certain number (Soccer Server parameter
ptmax) of players of each type can be employed.

Function pt* represents an operator that picks that player type out of the set
of available ones which matches a given player type in the problem part of an old
case best. While doing so pt* takes into consideration that those player types
which were used more frequently in the old case should be emulated as good as
possible. Accordingly, those types, that were used less often, are regarded with
less priority. Moreover, this operator pays attention that the maximal number
of players, that can be used of a specific player type, is not exceeded.

Definition 11 (Substitutional Operator pt*)
Let 7 € N be the number of heterogeneous player types and ;.. € N the

22

number of players that can mazimally be used of one type.

Given @Q — a query (a set of available player types),
p — a problem part of a case, comprising hY and m¥ for
i € {0,...,7 — 1} according to Definition 3,
h - a player type with 3i with h = ht,

the substitutional operator pt* represents a greedy algorithm that assigns an
element h* € Q to any given player type hY within the problem part p of a case.
The operator pt* is realized as follows:
o beue N with Vi€ {0,...,7}, u; =0
o while Ik with m% > 0
— choose j € {0,...,7} so that m? is mazximal
— choose hq € () so that
1. simeT(hq,h;’) is mazimal and
2. ug +mf < Umag
— Uy = ug +mh
— setm? :=0
— if hg = hY then return h,
o return nil

It is obvious that it would be a mistake if the similarity measure to be defined
here determined the similarity just syntactically by comparing the sets of player
types that were available in the case and in the query, respectively. In fact, it
is necessary to integrate knowledge about the actual use of player types into
the similarity’s computation. Thus, player types that were not applied in the
matches corresponding to the case in hand are not to exert influence on the
computation of the overall similarity value. We fulfill that requirement by using
the numbers of used players of a particular player type as weights in a weighted
similarity measure:

Definition 12 (Case Similarity Sim)
Let Q = (h?, weey h9) with h? € H be a query and p® the problem part of case
C. Then, the similarity between query and case is defined as follows:

Sim(Q,C) = % imfc simmgpr (hfc, pt* (Q,pc,hfc))
i=1

C
izt my

5.2 Learning Feature Weights
5.2.1 Basics

In the last sections we have defined similarity measures that are necessary to
solve the problem of heterogeneous player types with a CBR-based approach.
On the one hand these metrics are sufficient to make the whole CBR framework
(see Section 6) work properly. On the other hand there is still a big margin for
possible improvements.

23

In this section we focus on improving the similarity measure between hetero-
geneous player types simgpr as defined in Definition 10. It is our goal to learn
the feature weights w;, that correlate to features of player types, automatically.
Apart from optimizing the similarity metric simgpr, we thus get a measure for
the importance of specific player attributes.

A simulated soccer match with a team playing against itself should result in
a draw, provided that it is of sufficient length. Furthermore, the team statis-
tics should converge to well-balanced values: for each team, the same number
of passes, dribbles, etc. Consequently, the standardized team statistic values
should gather around 0.5 and the overall team performance value e as defined
in Section 4.3 will be computed to 0.5 as well. Hence, our basic assumption to
realize the learning of feature weights can be summarized as follows:

Proposition 1
Let team D be o team using the default player type d € H for all of its players.
Let a,b € H be heterogeneous player types with a,b # d. Further, team A is
using player type a only and B is using type b only.

Let e, be the team performance evaluation value for team A resulting from
a match between A and D, and ey be the evaluation value for team B for its
match against team D.

It holds:

(a) An “ideal” match between team D and a second identical instance of
team D results in an evaluation value of 0.5.

(b) If e, < 0.5, the player type a is considered to be less capable than the
default player type. If e, > 0.5, the player type a is more performant
than d.

(¢) The bigger e, — 0.5, the less similar are the player types d and a.

(d) If ey > e,, player type b is considered to be more capable than type a.
Otherwise, player type a is the more performant one.

(e) The distance |ey—e,| is an indicator for the similarity between the player
types a and b.

Especially the last three parts of Proposition 1 are of crucial importance for
feature weight learning for simpgpr. We intend to infer the similarity between
two player types a and b from the difference in performance they® yield in a
game against a team employing the default player type only. By adjusting the
feature weights w; with a learning algorithm, we optimize the similarity metric
simgpr in such a manner, that for each two player types hy and hs, which yield
roughly the same performance, it holds:

s:=simgpr(hi,hs) = 1, with s <1 (3)

8Here we mean a team that makes use of player type a or b only.

24

If on the other hand one of the teams obtains much better or much worse
achievements than the other one, it has to hold:

SimeT(hl,hQ) <<1 (4)

5.2.2 Sample data generation

In order to fulfill equations 3 and 4 and to apply a learning technique to learn
the feature weights for player type attributes a sufficient number of training
data sets has to be available. Thus, we need to generate sample data on as
many heterogeneous player types as possible.

As mentioned in Section 5.1.1 each player type distinguishes oneself from any
other type by 11 specific characteristics. However, due to its current implemen-
tation, the Soccer Server generates the parameter values of these 11 attributes
by only 5 degrees of freedom. That means, only 5 player type properties are
influenced independently: Four random variables influence two attributes’ de-
viations from their default values at a time. A fifth random variable biases the
deviation of the three remaining attributes from their defaults.

runs a match between a team
using type h only and a second
team using d only,

foreachh stores a logfile

on each match

Training
Data

analyzes logfiles @
to create cases Module > Case
CaseBaseManagement
Base

Figure 11: Proceeding to generate training data sets

Under these conditions it becomes easier to handle the whole, infinite space
H of possible heterogeneous player types. Indeed, it is possible to build a player
type pool P that covers a comprehensive subset of H and that contains a finite
number of player types. In doing so, we have to make the range of each player
type characteristic discrete. For the task of feature weight learning we decided
that it is sufficient to discretize each attribute’s range to 4 steps. Applying that
kind of discretization to each independent pair or trio of player type attributes,
our player type pool thus contains 45 = 1024 different heterogeneous player
types (number of discretization steps to the power of degrees of freedom). That
way it is guaranteed that we can find a player type hp € P for each arbitrary
player type h € H, so that it holds for each of its attributes A: The difference
between h’s value for attribute A and hp’s value for A is maximally % of A’s
value range (worst case). On average, however, we are able to assign a player
type hp € P to any given player type h € H while the difference between

25

each of their attribute values is only % of the respective attribute’s value range
(average case).

Regarding the similarity between heterogeneous player types, the default
player type, which is an element of the 1024 player types contained in the
player type pool, can be considered as an extremum. All its attributes are set
to extremal values — either at the upper end or at the lower end of the attribute’s
value range, depending on the particular attribute. On the other hand, how-
ever, the default player type represents a median concerning its abilities and
prerequisites for performing well throughout the run of a soccer match.

With the help of the CBR framework that we developed and which is de-
scribed in Section 6 we generated a training case base G. Each case in that base
corresponds to a match between two teams Ty and T}, employing only the default
player type d and the player type h, respectively. Figure 11 shows the way that
this case base was created. It is important to note that the process of creating
a training data case base was implemented iteratively: For each player type out
of the player type pool we ran a soccer match using the Soccer Server, analyzed
the resulting logfile, extracted the important information, packed them into a
case and stored that case to the training data case base®.

5.3 Similarity Teacher and Learner
5.3.1 The Learning Framework

In [20] a framework for learning similarity measures is presented. It makes use
of case order feedback and an abstract concept, the so-called similarity teacher
in order to realize the learning. We have adopted that approach, modified it to
our needs, and applied it to learn the feature weights of the similarity measure
simeT.

We now do not want to explain the basics and foundations of the mentioned
approach. For more details we refer to the paper “Learning Feature Weights
from Case Order Feedback” [20]. Instead we focus on our modifications of that
learning framework.

The learning approach’s starting point is represented by the sample data
whose generation we described in the previous section. We now presume the
existence of two case bases of identical size: the player type pool P and a base
of sample games G. Each of those games corresponds to one element A € P and
represents a match between a team using player type h only and a second team
using just the default player type.

Since it is our goal to optimize the retrieval of heterogeneous player types, we
are mainly interested in the result of a retrieval, i.e. the similarity computation
between a particular player type as query and a set of player types in a case

9Due to computational limitations we could not create a case for each player type in the
player type pool. Our training data case base contained 100 cases appertaining to 100 out of
the 1024 player types in the player type pool. We stress that the learning results (see Section
5.4) may be improved by increasing the number of training data sets.

26

base of heterogeneous player types. For that reason we give a definition for the
result of a player type retrieval:

Definition 13 (Result of Player Type Retrieval)

Given a case base P = (h1,...,hs) C H of heterogeneous player types, a player
type query q € H, and the similarity measure between heterogeneous player types
simgpr. The corresponding retrieval result is defined as a vector of player types:

HSiMHPT (q,P) = (Tla ---,Ts)

where Vi, j with 1 <i < j<s, r; € P and simupr(g,7i) > simupr(g,7;).

."Case Base of Sample Games Player Type Pool \:

CORRESPONDING

1 Similarity Measure
:all player types

4 » » A I
choose _L ’ S m-PT

randomly

single query g

sample

update
weights

evaluation |r1‘r2‘l’3‘ s o o ‘fs
values 1 e T
+ Result of Player Type Retrieval ; 1 A R
: Y anayme Similarity

__________________________________ index error Learn er

! Correct Player Type Order
Cl‘cz‘(n‘ .. ‘Cs

~ Similarity |
Teacher

Figure 12: Framework for Learning the Feature Weights of simgpr

The case order in a result of a player type retrieval is determined by
the similarity measure simgpr. But because we proceed on the assumption
that simgpr is imperfect and needs to be adjusted, we can conclude that
HsimurT (g P) is faulty as well. The correct case order, however, i.e. the
correct order of player types for a particular query, is known by the so-called
similarity teacher. We define the teacher’s teaching paradigm, the correct player
type order, as follows:

Definition 14 (Correct Player Type Order)

Let xp, q be the tuple of team statistics on Team A resulting from a match where
Team A employed player type h only, while Team B used the default player type
d only. Then the function

ea: H— [0,1]
h = e(xh,d)

assesses the performance of a player type h € H compared to the default player
type. Further, let P = (hy,...,hs) C H be a case base of heterogeneous player
types and q € H a single player type that is used as query. The correct player
type order is defined as a vector of player types:

Heorreel(q, P) = (c1, -y C5)

27

where i € {1,...,s}, ¢; € P. And it holds
Vi,j with 1 <i<j<s, lea(c:) —ealq)] < leale;) — eal(q)| (5)

Hence, the similarity teacher defines the correct player type order subject to
the distance of the evaluation values of query ¢ and other player types in P. In
the following we assume that the relation given in 5 is transitive.

The goal of our similarity learner is to optimize the simgpr in such a way
that the case order H*"™#77 (g, P) in the result of a player type retrieval matches
the correct player type order He°""¢¢t(q, P) given by the teacher as good as
possible.

In order to measure the difference between HS™HPT and HeT"e°t we have
to define an appropriate error function.

Definition 15 (Index Error)

Consider ¢ € H as query, a case base of player types P, and simmgpr as sim-
tlarity measure between heterogeneous player types. The index error between a
result of a player type retrieval and the corresponding correct player type order
is defined as follows:

Eindew(Q) = index (Hsimmpr (QaP)a HCOTTeCt(Qa P))
=30 | i — indexOf(ri, He*q, P)) |

where indexOf : Hx H® - R

 if ey =
(href; (hl,...,hs)) — {Z Zf f

1T else
returns the position of a player type within a vector of player types.

The index error computes the total deviation of the elements in a result of a
player type retrieval from their positions in the correct player type order. These
deviations are squared!® in order to stress that bigger deviations of elements
from their correct position are much worse than smaller ones. Hence, the index
error can be understood as a measure for the “disorder” in the result of a player
type retrieval H**™#PT compared to the correct player type order Heormeet,

If it is possible to adjust the weights of simgpr in such a way that
Eindes (H™muPT (g P), HeTTe¢t (¢, P)) = 0 for a given query ¢, then our overall
learning goal is reached — but only for that specific query q. However, we intend
to optimize simpgpr in a more global manner, i.e. we want to improve (mini-
mize) Eipger for any arbitrary h € H. To reach that goal we need the following
definitions:

Definition 16 (Training Example, Training Data)
Let ¢ € H be a heterogeneous player type, called a query. Moreover,

10We set a = 2 in the following.

28

Hsimurr (g P) be the affiliated result of a player type retrieval and H°""°(q, P)
be the corresponding correct player type order. Then, the tuple

T(q) = (g, H*™#7(q,P), H"**(q,P))

is called a training example.
Let Q5 = {h1,...,hs} C H be a set of heterogeneous player types, then

TQs = {T(h1)7 - T(hs) }
is called training data.

Definition 17 (Average Index Error)
Given a training data Tg, on query set Qs = {h1,...,hs} C H, the average index
error for T, is defined as:

- 1 <)
Eindew(TQs) = g Z Eindea:(HS'l”TLHPT(hi’P)’ Hcorrect(hi’P))

i=1

After having defined the average index error, we now can concretize our
learning goal: If we have a training data T available, we will try to find a
similarity measure simgpr so that Eindes (T') is minimized. That optimized
similarity measure contains weights which cause a result of a player type retrieval
to be very close to the respective correct player type order.

In Figure 12 we give an overview of the learning framework described so far.

5.3.2 The Learner: Usage of Genetic Algorithms

The crucial module within our learning framework is represented by the learner.
Its task is to minimize the average index error Eindes (Tq, for a given query set.
The starting situation for the learner can be characterized by the following
available input:

e case base of player types: the player type pool P
e a query set Qs = {h1,...,hs} C H with Vi, h; € P
o similarity measure sim¥ py with an initial weight vector w

e 3 similarity teacher, providing the correct player type order and the aver-
age index error computation (see Section 5.3.1)

We make use of a genetic algorithm (GA) that performs an evolutionary
search for a minimum of the error function Ej,ge,. Genetic algorithms are search
algorithms based on the mechanics of natural selection, natural genetics, and
the basic principle of the “survival of the fittest”. According to [9], they combine
survival of the fittest among string or bit structures (called the genome) with
a structured yet randomized information exchange to form a search algorithm
with some of the innovative flair of human search.

29

In every generation, a new set of artificial creatures (individuals) is created
using pieces (genes) of the genome of individuals of the previous generation.
Occasionally, mutations are introduced, sometimes leading to improved fitness
of the offspring. The general evolutionary reproduction cycle can be illustrated
as in Figure 13.

create initial
population

evaluate: compute

terminate fitness for all individuals

1 select mating partners

recombination:
[AY) creation of
offspring

selection phase
(survival of the fittest)
and individual aging

evaluate offspring (V| \Y@) mutate offspring

Figure 13: Generational loop for a GA

Genetic algorithms are theoretically and empirically proven to provide robust
search in complex spaces, since they are computationally simple, yet powerful
in their search for improvement [11].

In the following, we describe how we realized the eight fundamental steps
towards an implementation of a GA searching for optimized feature weights in
the similarity measure simgpr.

I Creation of the initial population Before creating a population of
individuals, we have to settle how to represent a single individual and its genome,
respectively: An individual corresponds to a weight vector w as used in the
similarity measure sim g pr, and each chromosome represents one single weight.
The chromosomes are implemented as bit strings that are interpreted as natural
numbers, so that the value range for the weight w; is made discrete!!.

The population our learner uses is of constant size u. At the beginning of
the learning process, the learning module generates p individuals, where the
chromosomes (and thus the initial weight weight values) of a certain number of
individuals are generated randomly. The remaining individuals are initialized
to a uniform weight vector, that means to equal chromosomes.

1The number of bits per chromosome can be specified, of course. For most of
our experiments we encoded each weight with 5 bits so that an individual with its 11
weights/chromosomes consists of 55-bit genome.

30

No. MPS MSI PD IM DPR PS KM ce fitness/Ejpdes

3 01101 10111 00100 10001 01110 11000 10000 ... 1532,4

4 00111 00111 00111 00111 00111 00111 00111 ... 1520,7
5 00101 01011 01101 00111 10010 01011 O01111 ... 1592,8

Table 3: Exemplary representation of three individuals as used by the GA

IT Evaluation: Fitness computation for a single individual The fitness
of an individual ¢ is equal to the average index error Ejnaes that results from a
retrieval with a similarity measure simjpy that uses the weight vector w, that
¢ represents. Hence, an individual’s fitness computation comprises:

e the determination of the retrieval result with the similarity measure
simypp for each query in the query set Q,

e the computation of the corresponding player type orders and respective
index errors Eipdes(q)

e the calculation of the average index error E,-ndez(Qs)

IIT Selection of mating partners In [19] it is stated that it is misleading
to define “fitness” in a sense that selection of the fittest is modelled as “mating
selection” only. That would mean, that fitter individuals produce more offspring
than the less fit ones.

Our learner randomly chooses the mating partners out of the current popu-
lation, where always exactly two parents are involved in reproduction.

IV Recombination to create offspring Our recombination operator real-
izes a uniform crossover. That means, for each chromosome w§"#? of the future
offspring the recombination operator chooses randomly either the first or the
second parent’s chromosome (w?*" ™" with j = 1,2).

V Mutation The mutation operator in our genetic algorithm weight learner
is implemented in a rather simple way and mainly depends on a globally defined
mutation rate o, which is adapted dynamically depending on the progress of the
evolution. That operator modifies a recombined individual in such a way that
each bit within the individual’s genome is flipped with a probability of o.

VI Offspring evaluation The offspring’s evaluation is done in the same
way as the evaluation of individuals created for the initial population (see II).

VII Selection phase Our selection operator follows a (u, k, A, p)-strategy
[19], which is an extension of the (u + \)-strategy [18]. The symbol p denotes
the number of individuals (and thus possible parents), appearing at a time
in a population, and can be equated with the size of the population. The

31

symbol A stands for the number of all offspring created within one (synchronized)
generation. In the (u + \)-strategy the A offspring and the u individuals of the
preceeding generation are united, before the pu fittest individuals are selected
from this set of size y + .

The p + A-strategy implies that each parent may live eternally, if no child
achieves a better or at least the same quality. The (u, &, A, p)-strategy introduces
a maximal life span of ¥ > 1 reproduction cycles (iterations) for the individuals.
Moreover, that strategy allows a free number p of parents to be involved in a
reproduction. As already mentioned in ITI, we chose p = 2 for our experiments,
as it is typical for genetic algorithms in general.

Since each individual “dies” after k iterations, a very good vector of weights
may go lost. For that reason, we store the weights of the fittest individual of
all times continuously. That way we ensure that the optimum found so far is at
hand, when the stop predicate becomes true.

VIII Stop predicate The stop predicate may become true, either if the
fitness value falls below a certain threshold or if a certain number of generations
has been reached. We implemented the stop criterion according to the latter
option.

5.4 Experimental Results

We applied the learning framework introduced so far to random query sets @
with size s = 3,5, and 10. Since we intended to obtain statistically significant
results, we repeated the learning experiment 200 times for each choice of s.

The GA learner tried to adjust the feature weights of simgpr so that the
average index error Ejnge,(Q,) was minimized. Here, we decided to let the
genetic algorithm terminate after 1000 generations. The results revealed that
almost no further improvement of the index error would have been expectable,
if we had increased the number of generations. That is to say, the population
of weight vectors reached its maximal fitness within the first 1000 generations.

A first insight we gained was that the error function’s run within the 11-
dimensional search space of feature weights can informally be characterized as
“rather flat”. That means, there are no “extreme” maxima or minima. Nev-
ertheless, the learner manages to find a minimum of the average index error
function where the error value is between 50% and 75% of the initial index
error’s value.

Using randomized initial weight vectors would have improved the initial
average index error slightly, but would neither have had an important impact
on the learning process nor on the learning results. Since the development of
the actual weight values by time can be illustrated much better when using the
same initial values for all weights, we determined to always start the learning
process with a uniform weight vector.

In Figure 14 we show the development of the average index error subject
to the number of evolutionary generations. The values shown in that chart are

32

averaged ones, averaged over the 200 times we repeated the experiments. Obvi-
ously, the index error subsides the longer the genetic algorithm runs, converging
to a minimum depending on the size of s. The improvement share is the bet-
ter, the smaller the size of the respective query sets. But even for query sets
comprising 10 randomly chosen heterogeneous player types the learner succeeds
in improving the initial average index error, reducing it to about 70% of its
starting value.

1

0,9

o
©

0.734|

—s=3
s=5
0641 [T—5=10

Relative Improvement
)
3

o
o

0.531

0,5

0,4

0 50 100 150 200 250 800 850 900 950 1000
Generations

Figure 14: Relative improvement of the average index error for different query
set sizes

A further remarkable observation regards the absolute values of the learned
weights for the player type attributes. As already mentioned in Section 5.2 the
11 characteristics of player types are created by only 5 degrees of freedom (due
to the specifics of the Soccer Server’s implementation). This fact is reflected in
the learning result, namely in the learned weights: There are five groups (four
pairs and one triple) of attributes, whose weights are approximately identical.
The attributes within one group, however, are exactly those, whose values dur-
ing player type generation are determined with the help of the same random
variable, i.e. they belong to the same degree of freedom.

In Figure 15 the percental weights for the 11 player type properties are given,
where the abovementioned grouping of attributes is intelligibly discernible. The
depiction in that chart represents the learning result for s = 10 after 1000 evo-
lutionary generations of the GA learner. According to this, the most important
player characteristics are the maximal player speed and the maximal stamina
increment, whereas the dash power rate and the player size are relatively in-
significant.

For the creation of a player type pool (see Section 5.2.2) the fact that the
heterogeneous player types are generated by 5 degrees of freedom only proved to
be advantageous, since that way the space of possible player types is confined.

33

However, the reduced number of degrees of freedom affects our leaning technique
prejudicially. Due to this, the 11 features of a player type cannot be treated
independent from each other. On the basis of our learning procedure’s results,
we can at most anticipate which of the two (or three) attributes within one
group truly features the higher significance. For instance, we may surmise that
the dash power rate has a higher significance for a player type’s abilities than its
“fellow attribute” player size because of its noticeably higher weight. Further,
we may presume the same for the kickable margin and the randomization of
kicks. Yet, the method by which the Soccer Server generates new heterogeneous
player types impedes a more accurate analysis.

16
14,61 14,58

1245 12,46

Standardized Weight Values (%)

PSM SIM PD M DPR PS KM KR ES MAXEF MINEF
Player Characteristic Weights

Figure 15: Learning result for s = 10; the final weights for the 11 player type
attributes after 1000 life cycles of the GA weight learner

But analyzing the importance of player characteristics was intrinsically only
our secondary concern. Qur main learning goal was to optimize the feature
weights of the similarity measure simgpr — and the learned weights represent
an optimization of that measure indeed, as shown in Figure 14.

For the resons mentioned above, the 11 player type properties should actually
be divided into 5 not interdepending groups:

e maximal player speed and maximal stamina increment (MPS/MSI)
e player’s decay and inertia moment of a player (PD/IM)

e dash power rate and player’s size (DPR/PS)

e kickable margin and randomization of the player’s kicks (KM/KR)

e extra stamina, maximal effort for player’s actions, and minimal effort for
player’s actions (ES/MAXEF/MINEF)

34

We illustrate the development of the standardized feature weights during
learning with our framework in Figure 16. In that picture the percental weights
of the 5 named attribute groups are shown, subject to the evolutionary run of the
genetic algorithm and averaged over the 200 times we repeated the experiment
for s = 10.

20 standardized
weights values (%):
30,7%
28,3%
—ee] 262%
15 -

——PSM/SIM
—PD/IM
===DPR/PS
=KM/KR
ES/MAXEF/MINEF

10 4

Absolute Weight Values

10,5%

4,3%

T T T T T T T T T T
0 50 100 150 200 250 775 825 875 925 975
Generations

Figure 16: Progress of learning — feature weights for the 5 attribute groups

6 Implementation of the CBR Framework

6.1 The Overall Class Structure

In Figure 1 we illustrated the overall structure of the online coach of Carnegie
Mellon’s simulated robotic soccer team and its composition of modules. For the
purposes of the present work we developed two new modules, that are realized
as C++ classes:

e module ModCaseBaseManagement
e module ModCBRHeterogeneousPlayers

Moreover, we packed all the necessary functionality to provide CBR mecha-
nisms, such as query creation, retrieval, case base handling, case adaption and
so forth into an auxiliary module CBRSupport, which cannot be considered as a
proper coach module. Instead, both new coach modules mentioned above make
use of the CBR functionality realized in CBRSupport. In Figure 17 we give an
overview of the class structure that realizes the named three modules.

35

Module
I—
i %
ModCaseBaseManagement ModCBRHeterogeneousPlayers

CBRSupport \

‘ Ci terface ‘ ‘ RetrievalResult ‘ SimilarityMeasure
I 1 I 1 }:‘
[.] [! 4
\ \ \

‘ CBRRetrieval®nit ‘ ‘ CBRAdaptionUnit
L L
[[

‘ SimMeasureBetweenPlayerTypeSets ‘
I
[

g Case_HetPlayerApplication ‘
L 1
[4 |

T

*
SingleSolutionOfCase Formation

Figure 17: Class diagram for the CBR framework

6.2 Case-based Reasoning Routines (CBRSupport)

All the classes stored in the package CBRSupport are responsible for providing
the infrastructure that is necessary to realize the main part of the functionality
of the CBR cycle [2]. CBRSupport contains classes for case representation, case
base handling, case-based retrieval and adaption, and similarity computation.

Case Representation

Class Case is the base class to represent any kind of case-based concepts. In
its current implementation, however, it does not provide any functionality.
Case HetPlayerApplicationis derived from class Case and embodies the case
structure of cases in the domain of applying heterogeneous player types. That
means, it is implemented in accordance with the domain model introduced in
Section 3.1 and it depicts the C++ realization of the case structure shown in
Figure 3. Thus, it includes a problem part in form of an array of available player
types'? and instance variables telling how many players have been used of which
player type.

The solution part, on the other hand, is implemented as a vector of instances
of class SingleSolutionOfCase, since several solutions may correspond to one

12Class HeteroPlayerType was already part of the existing implementation of the online
coach.

36

problem part. An instance of SingleSolutionOfCase comprises those informa-
tion in its instance variables that are essential to fulfill the specification given
in Definition 4. In that definition a single solution s¢ of a case C is defined as
an 8-tuple s = (form, mstrat, assign, opp, score, signif, stat, eval). We
mapped the components of that tuple to an adequate C++ implementation as
follows:

form — instance of class Formation which is part of the existing
implementation of the online coach

mstrat — instance of class MainStrategy (see below)

assign — array telling which player type was used for which player

opp — name of the opponent team as a string

score — two unsigned integer values

signif — a float value; the length of the respective match is used as
significance value

stat — arecord of float values for each team, representing the team
statistics

eval — a float value which is computed by the team performance

evaluation function (according to Definition 8)

The class MainStrategy constitutes the representation of a main strategy,
like for instance “4-3-3”. To be accurate, the numbers of goal keepers and
sweepers are included, too, so that an instance of MainStrategy encapsulates
five unsigned integers. One important point concerning this class is that it con-
tains a constructor that accepts an instance of class Formation as a parameter
and that is able to infer the main strategy from the formation the considered
team used.

Case Base Handling

An instance of class CaseBase is a container holding a set of cases. Its elements
do not necessarily have to be instances of class Case HetPlayerApplication.
Indeed, a CaseBase may contain cases of any kind, as long as they are derived
from the case concept class Case.

To get access to a specific case base, however, one needs a
CaseBaselInterface. Instances of that class are able to manage the access
to case bases of different kinds. Such an interface to a case base provides func-
tionality such as opening and closing case bases as well as adding, removing, or
listing cases.

Since the case representation is object-oriented and attribute-value based,
the XML format [10] turned out to be very appropriate for writing out cases
to file and reading them in, respectively. Using that uniform standard format
instead of writing out cases in a proprietary binary format, the contents of a
case base may be used easily by other programs and for other purposes, too.
In Appendix A we give the XML Document Type Definition (DTD) for the
structure of a case.

37

Retrieval and Adaption

An instance of class CBRRetrievalUnit mainly provides a set of retrieval meth-
ods expecting different parameters to direct the retrieval process as desired
by the user. Internally, this class, at its current stage of development, real-
izes any kind of retrieval as linear retrieval. That means, using an instance
of CaseBaseInterface, the retrieval unit iterates linearly over all cases in the
particular case base and determines for each case the similarity to the query.
Having finished the retrieval, it returns an instance of class RetrievalResult.
An object of that container class summarizes the result of a retrieval, which of
course fundamentally depends on the parameters used during the retrieval (see
C for more details).

A CBRAdaptionUnit is able to adapt an existing solution (pertaining to an
old case) so that it can be applied to the current situation. To do so it imple-
ments the substitutional operator pt* introduced in Definition 11. Accordingly,
instances of that class are capable of generating suggestions saying which players
should be substituted for which player types.

Similarity Measures

All similarity measures we need to guarantee the correct operation of the
whole CBR framework are arranged in a hierarchical inheritance class struc-
ture. That way it is easier to change, extend, and maintain existing or to
add new similarity measures. SimilarityMeasure represents the abstract
base class to any kind of similarity measure. It provides an abstract method
getSimToQuery (case,query) whose functionality has to be (re-)implemented
in each subclass of SimilarityMeasure, depending on the semantics of the
respective similarity metric.

Class WeightedSimMeasure depicts a similarity measure whose attribute
similarities are amalgamated after being weighted. From that class we in-
herit the WeightedSimMeasureBetweenPlayerTypes which stands for a met-
ric that specifically handles the computation of the similarity between het-
erogeneous player types. Thus, it realizes the similarity measure simpgpr
as defined in Definition 10 and as optimized in Section 5.2. An instance of
WeightedSimMeasureBetweenPlayerTypes reads the player attribute weights
from a weight file that has to be specified as a coach parameter (see Appendix
C).

Another subclass of SimilarityMeasure is UserDefinedSimMeasure. That
class represents the base class for the SimMeasureBetweenPlayerTypeSets.
The latter one realizes the computation of the similarity between queries and
top-level cases in the domain of heterogeneous player types: the case similarity
Sim. The semantics of that measure is given in Definition 12.

A third subclass of SimilarityMeasure is the FloatSimMeasure. That
simple metric computes the similarity between two real values within a specified
interval. It serves to calculate the attribute similarities of a heterogeneous player
type’s characteristics as given in Definition 9 (player attribute similarity sim).

38

6.3 Module ModCaseBaseManagement

This module provides basic functionality to create new cases, to add them to
an existing case base, or to create a new case base. ModCaseBaseManagement
analyzes an existing logfile of a simulated soccer match and extracts all the
necessary information to create a summarizing case (an instance of class
Case HetPlayerApplication) that contains all the relevant information on the
match and on the use of heterogeneous player types.

The considered module as part of the online coach expects an existing logfile
as input and a case base as well. If there is no existing case base specified, it
will create a new one. Furthermore, ModCaseBaseManagement is derived from
class StatWatcher (statistic watcher). In cooperation with the already imple-
mented coach module ModProxyServer it makes use of the Statistics Proxy
Server to obtain statistical information on the match. ModProxyServer fetches
the current statistics from the Statistics Proxy Server and informs the mod-
ule ModCaseBaseManagement about changes in their values via the functionality
provided by class StatWatcher.

After having parsed the logfile, ModCaseBaseManagement integrates the team
statistics on each of the two teams, that participated in the match, into the case
to be constructed. Besides, it utilizes them to assess the respective team per-
formance, using the team performance evaluation function that we introduced
in Definition 8.

6.4 Module ModCBRHeterogeneousPlayers

This module is used to utilize heterogeneous player types for an upcoming match
in a CBR-based manner. When the game is started the specified case base will
be scanned for a case that is similar to the current situation, i.e. to the currently
available, predetermined player types.

The way of retrieving a similar case and deciding for an old solution with
an instance of CBRRetrievalUnit can be influenced by several parameters that
are described in more detail in Appendix C. If the retrieval returns a retrieval
result with more than one entry, ModCBRHeterogeneousPlayers decides for
that solution that features the maximal product of its evaluation value and its
similarity to the query, i.e. to the current situation.

After the module at hand has decided for an appropriate old solution, it is
adapted by a CBRAdaptionUnit so that it can be employed for the match at
issue. That means, the ModCBRHeterogeneousPlayers acquires a suggestion
saying which player types should be used for which players and conducts the
corresponding player type substitutions.

39

7 Conclusion and Future Work

Participating teams in simulated robotic soccer matches are permitted to employ
varying player types, i.e. types that differ from each other in their physical
attributes. The decision which of these predetermined heterogeneous player
types should be used best for the team line-up in an upcoming match behooves
the respective team’s online coach.

We have introduced an approach that enables the coach to solve that problem
by using techniques that base on case-based reasoning. Applying CBR in this
domain facilitates the reuse of experiences made during former soccer games.
Moreover, by considering team line-ups as a whole, we can indirectly also regard
synergy effects that come into existence by applying certain combinations of
player types.

We have enhanced the online coach of Carnegie Mellon’s simulated robotic
soccer team ChaMeleons-01, so that is is capable to realize the whole CBR
cycle (retrieve-adapt-reuse-retain [2]). Thus, it is able to substitute and apply
heterogeneous player types in a CBR-based way.

An integral part of this work deals with the assessment of case solutions. A
meaningful evaluation of the team performance, that is yielded with the help
of applying particular player types, is crucial for the reutilization of old cases.
Using data mining techniques, we have analyzed logfiles of past matches and
found out which factors influence the success or failure of a team, i.e. winning
or losing, primarily. Here, it was our goal to acquire a differentiated team
performance estimation, which is more sophisticated than a crude distinction
like “win—draw-lose”.

A further part of this report handles the automated learning of the similar-
ity measure between heterogeneous player types. Applying a machine learning
approach, we have focused on the question which characteristics of a player type
have a significant impact on the similarity calculation between two player types,
and which attributes are less relevant. In addition to that, this analysis partly
revealed which player characteristics have an increased influence on the player’s
behaviour in a game and on its playing skills.

The CBR framework we implemented is entirely operative and ready to use.

The successful application of CBR in general presupposes that experience
knowledge in form of cases in a comprehensive case base is available. However,
the assembling of such a case base was not part of the scope of this work. Thus,
that can be considered as one important future task.

On the one hand it is possible to build up an extensive case base by con-
ducting a large number of simulated test matches using varying settings for
the participating teams. Admittedly, that proceeding would require very much
computing time. On the other hand, there is already a collection of logfiles
resulting from the matches of the last RoboCup tournaments. However, the
majority of the participants did not make use of heterogeneous player types at
all, just relying on the default player type. As far as upcoming RoboCup events
are considered, it may be expected that more and more teams are about to

40

employ heterogeneous player types. Hence, the next tournaments might prove
to be suppliers of case knowledge.

In that context, possible future extensions may become necessary in the
range of case base maintenance, management of several case bases, and problems
concerning an efficient retrieval. In these respects our CBR framework features
only rudimentary capabilities.

At its current stage of development the online coach chooses certain hetero-
geneous player types only prior to the upcoming match. However, the coach
is also permitted to substitute a particular number of players (usually 3) dur-
ing the game, i.e. to change their player types. Consequently, another future
coach enhancement could be to determine these substitutions with the help of
the team line-ups in the case base, too, depending on the current score and the
opponents behaviour, for example.

Finishing we want to remark, that the created infrastructure can be deployed
for other purposes as well. The possibility to generate a summary on a soccer
match in form of a case, to evaluate the outcome of a game, and to export
the gathered knowledge to the XML format lay the foundations to also use
the obtained data for ulterior statistical analysis, as input for machine learning
algorithms in the context of robotic soccer, or to appraise the skills of a team.

41

A DTD of a Case

This section provides an XML Document Type Definition for the structure of a
case. Case base files as created by the coach module ModCaseBaseManagement
are XML files that comply with this DTD.

<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT

<!ELEMENT

CASE_HET_PLAYER_APPLICATION
(
AVAILABLE_PLAYER_TYPES,
NUMBER_OF __USED_HET_PLAYER_TYPES,
NUMBERS_OF_USED_PLAYERS_QOF _TYPE,
SOLUTIONS
) x>
AVAILABLE_PLAYER_TYPES, (HETERO_PLAYER_TYPE) + >
HETERO_PLAYER_TYPE
(

INDEX,
PLAYER_SPEED_MAX, STAMINA_INC_MAX, PLAYER_DECAY, INERTIA_MOMENT,
DASH_POWER_RATE, PLAYER_SIZE, KICKABLE_MARGIN, KICK_RAND,
EXTRA_STAMINA, EFFORT_MIN, EFFORT_MAX

) >

INDEX (#PCDATA) >

PLAYER_SPEED_MAX (#PCDATA) >

EFFORT_MIN (#PCDATA) >

NUMBER_OF __USED_HET_PLAYER_TYPES (#PCDATA) >
NUMBERS_OF _USED_PLAYERS_OF_TYPE NUM_OF_PLAYER_TYPE >
NUM_OF_PLAYER_TYPE (#PCDATA) >

NUM_OF_PLAYER_TYPE

index CDATA [REQUIRED | 0] >

SOLUTIONS (SOLUTION) + >

SOLUTION

(
FORMATION, MAINSTRATEGY,
EVALUATION, OUR_TEAM_STATISTICS,

THEIR_TEAM_STATISTICS, USED_PLAYER_TYPES_FOR_PLAYERS,
INFERRED_PLAYER_ROLES, OPPONENT,

OUR_SCORE, THEIR_SCORE
) >
FORMATION (#PCDATA) >
MAINSTRATEGY

(
NUMBER_OF_GOALTENDERS, NUMBER_OF_SWEEPERS, NUMBER_OFDEFENDERS,
NUMBER_OF_MIDFIELDERS, NUMBER_OF_FORWARDS

) >

NUMBER_OF _GOALTENDERS (#PCDATA) >

NUMBER_OF_FORWARDERS (#PCDATA) >
OUR_TEAM_STATISTICS
(

TXAvr, TYAvr, TXVar,

TOffSideNum

) >
TXAvr (#PCDATA) >
TOffSideNum (#PCDATA) >

42

<!ELEMENT THEIR_TEAM_STATISTICS
(
TXAvr, TYAvr, TXVar,

TOffSideNum

) >
<!ELEMENT TXAvr (#PCDATA) >
<!ELEMENT TOffSideNum (#PCDATA) >

<!ELEMENT USED_PLAYER_TYPES_FOR_PLAYERS
(#PCDATA) >
<!ATTLIST USED_PLAYER_TYPES_FOR_PLAYERS
index CDATA [REQUIRED | 0] >
<!ELEMENT INFERRED_PLAYER_ROLES (#PCDATA) >
<!ATTLIST INFERRED_PLAYER_ROLES
index CDATA [REQUIRED | 0] >

<!ELEMENT OPPONENT (#PCDATA) >
<!ELEMENT SIGNIFICANCE (#PCDATA) >
<!ELEMENT OUR_SCORE (#PCDATA) >
<!ELEMENT THEIR_SCORE (#PCDATA) >

B Description of Available Team Statistics

In total, the Statistics Proxy Server generates 33 team statistics on a match. In
the following, we give a listing of these statistics together with a short explana-
tion.

The preceding “I” in each statistic’s name relates to the fact that these are
team statistics, in contrast to player and correlative statistics that the proxy
server can also generate.

— TXAuvr: average X-location of all players

— TYAvr: average Y-location of all players

— TXVar: deviation of all players’ X-location

— TYVar: deviation of all players’ Y-location

— TPosession: ball possession rate of a team

— TPassNum: total number of passes

— TPassLenAvr: average length of passes

— TPassLenVar: deviation of pass lengths

— TPassLongNum: total number of “long” passes; the Statistics Proxy Server

determines what kind of passes are to be consideres as “long” ones

— TPassBackNum: total number of backward passes

— TPassSuccessRate: average pass success rate

— TShotNum: total number of shots onto the opponent goal

— TDribbleNum: total number of dribbles

— TStealNum: total number of steals

— TScore: the team’s score

— TShootSuccessRate: percentage of successful shots on the opponent goal

— TDistanceAvr: average distance covered by one player

— TPassChainNum: total number of pass chains

— TPassChainPlayerNumAvr: average number of players that are involved

in a pass chain

— TPassChainLenAvr: average length of pass chains

43

C

TDribbleLenAvr: average length of dribbles

TInactivePlayerNum: number of players making no passes at all
TCompactnessAvr: average X-distance between the team’s front-most and
its rear-most player (excluding the goalkeeper)

TCompactnessVar: deviation of the team compactness
TBallPlayerDisAvr: average distance of ball and players
TBallPlayerDisVar: deviation of the distance between ball and players
TWinningPassPatternNum: total number of winning pass patterns
TBallAtEachSide: territorial advantage; time shar during which the ball is
in the opponent half of the field

TCornerKickNum: total number of corner kicks

TGoalKickNum: total number of goal kicks

TFreeKickNum: total number of free kicks

TKickInNum: total number of kick ins

TOffSideNum: total number of offsides

Introduced Coach Parameters

The coach’s modules are controlled via a set of parameters that are specified
in the coach configuration file coach.conf. For the two new coach modules we
implemented we had to add several new parameters.

The following coach parameters are associated with the module
ModCaseBaseManagement.:

do_case_base_management: off / on

General parameter to switch the use of this module on or off.
use_case_base_management_menu: off / off

This menu with its basic functionality shall help maintaining cases within
a case base.

case_base_fn: string

This parameter specifies the name of the case base in which to store the
cases or from which to read cases. When the referenced file does not
exist, a new case base will be created.

case_equality_threshold: float € [0,1], (default value: 1.0)

This parameter defines a threshold that determines when cases are con-
sidered to be equal. If the similarity of the case ¢,¢q, that is about to be
added to a case base, to a case ¢4 in the case base exceeds this threshold,
the information extracted from the logfile will be added as a new solution
of ¢,;q instead as being added as a whole new case.

side_to_analyze: left / right

This parameter decides which of the both teams that joined the game
has to be anylzed. A new case will be created for that team.

The following coach parameters are associated with the module
ModCBRHeterogeneousPlayers:

use_player_types_cbr_based: off / on
General parameter to switch the use of this module on or off.
case_base_fn: off / on

44

This parameter specifies the name of the case base in which to search for
old cases and solutions.

e sim_measure_between_ptypes_weights_fn: string
This represents the name of the file in which the weights for the similarity
measure between player types are specified. Since the similarity measure
between heterogeneous player types is a weighted similarity measure, a
weight for each property of a player type has to be specified (as a float
value).
In case that there is no weight file specified or that the weight file cannot
be opened, default weights (uniform weight vector) will be used.

e cbr_pt_case_min_sim: float
This parameter influences the retrieval behaviour of this module. When
searching the case base for cases that are similar to the current situa-
tion, only those ones will be considered that have at least a similarity of
cbr_pt_case_min_sim.

e cbr_pt_solution min_eval: float
This parameter influences the retrieval behaviour of this module. When
searching the case base for cases that are similar to the current situation,
only those solutions will be taken into consideration that have at least an
evaluation value of cbr_pt_solution_min_eval.

e cbr_pt_solution_min significance: float
This parameter influences the retrieval behaviour of this module. When
searching the case base for cases that are similar to the current situation,
only those solutions will be taken into consideration that have at least a
significance value of cbr_pt_solution_min_significance.

e cbr_pt_retrieval result_max size: float
This parameter influences the retrieval behaviour of this module. When
retrieving the case base for cases that are similar to the current situa-
tion, a retrieval result will be returned that maximally contains the most
similar cbr_pt_retrieval result_max_size cases.

e cbr_pt_desired_main strategy: format string
This parameter influences the retrieval behaviour of this module. When
retrieving the case base for cases that are similar to the current situ-
ation, only those old solutions will be taken into consideration whose
corresponding match was lead by using a main strategy that matches
cbr_pt_desired_main_strategy.

e cbr_pt_opponent_team name: string
This parameter influences the retrieval behaviour of this module. When
retrieving the case base for cases that are similar to the current
situation, only those old solutions will be taken into consideration
whose corresponding match represented a game against a team named
cbr_pt_opponent_team_name.

13The format string is a 5 digit number in which each digit stands for the number of players
of a player role (first digit for number of goalies, second for number of sweepers, third for the
number of defenders, fourth for the number of midfielders and the fifth digit for the number
of forwarders. ”10433”, for example, represents a very typical main strategy.

45

References

[1]

[2]

[3]

[10]
[11]

[12]

[13]

R.B. Bendel and A.A. Afifi. Comparison of Stopping Rules in Forward
Stepwise Regression. Journal of the American Statistical Association 72,
pp. 46-53, 1977.

R. Bergmann. Grundlagen fallbasierter Systeme. Lecture Notes on Uni-
versity Lecture 89-186, University of Kaiserslautern, 2000. At URL:
http://wwwagr.informatik.uni-kl.de/ bergmann

P. Carpenter, P. Riley, G. Kaminka, M. Veloso, I. Thayer, and R. Wang.
In A. Birk, S. Coradeschi, and S. Tadokoro, editors. RoboCup-2001: The
Fifth RoboCup Competitions and Conferences. Springer Verlag, Berlin,
2002, forthcoming.

M. Chen, E. Foroughi, F. Heintz, Z. Huang, S. Kapetanakis, K. Kos-
tiadis, J. Kummeneje, I. Noda, O. Obst, P. Riley, T. Steffens, Y.
Wang, and X. Yin. Users Manual — RoboCup Soccer Server — for Soc-
cer Server Version 7.07 and later. RoboCup Federation, 2001, at URL
http://www.ida.liu.se/ frehe/publications/manual-7.ps.gz

M.C. Costanza and A.A. Afifi. Comparison of Stopping Rules in Forward
Stepwise Discriminant Analysis. Journal of the American Statistical As-
sociation 74, pp. 777-785, 1979.

R.A. Fisher. Statistical Methods for Research Workers (6th ed.). Oliver
and Boyd, Edinburgh, 1936.

I. Frank, K. Tanaka-Ishii, and K. Arai. The Statistics Proxy Server. Fourth
International Workshop on RoboCup, Melbourne, Australia. Springer-
Verlag, Lecture Notes in Computer Science - Artificial Intelligence series,
2000.

I. Frank, K. Tanaka-Ishii, K. Arai, and H. Matsub-
ara. Statistics Proxy Server Manual v1.0. At URL
http://www.etl.go.jp/ ianf/Mike/ProxyManual.ps.gz, 2000.

D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning, pp- 1-88. Addison Wesley, New York, 1989.

E.R. Harold. XML Bible. IDG Books Worldwide, Foster City, 1999.

J.H. Holland. Adaption in Natural and Artificial Systems. The University
of Michigan Press, 1975.

D.W. Hosmer, and S. Lemeshow. Applied Logistic Regression: 2nd Edi-
tion, pp. 31-128. Wiley, New York, 2000.

J. Kolodner. Case-Based Reasoning. Morgan-Kaufmann Publishers, 1993.

46

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Leake. Case-Based Reasoning, Experiences, Lessons € Future Direc-
tions. American Association for Artificial Intelligence Press, 1996.

K.I. Lee and J.J. Koval. Determination of the Best Significance Level in
Forward Stepwise Regression. Communications in Statistics: Simulation
and Communication 26(2), pp. 559-575, 1997.

T. Lim. User’s Guide for logdiscr Version 2.0. At URL http://recursive-
partitioning.com/logdiscr /guide.pdf, 1999.

C.K. Riesbeck, and R.C. Schank. Inside CaseBased Reasoning. Lawrence
Erlbaum Associates, Cambridge, 1989.

H.P. Schwefel. Numerical Optimization of Computer Models. Wiley,
Chichester, 1981.

H.P. Schwefel, and T. Bck. Artificial Evolution: How and Why? In D.
Quagliarella, C. Pariaux, C. Poloni, and G. Winter (ed): Genetic Algo-
rithms and FEvolutionary Strategies in Engineering and Computer Science,
pp- 1-19. Wiley, Chichester, 1998.

A. Stahl. Learning Feature Weights from Case Order Feedback. Proceed-
ings of the 4th International Conference on Case-Based Reasoning (IC-
CBR), Vancouver, 2001.

StatSoft Incorporated. Electronic Statistics Textbook. At TURL
http://www.statsoftinc.com/textbook /stathome.html, 2001.

47

