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Abstract

Consider the task of reaching a goal state in a partially or completely
unknown domain. To accomplish such a task search algorithms have
to explore the domain sufficiently to locate a goal state and a path
leading to it, performing therefore what we call uninformed “treasure
hunt.” Very often prior knowledge in the form of heuristic values
estimating distances towards the goal state is readily available. A
heuristic-driven strategy can be very successful: it can significantly
outperform uninformed exploration-oriented approaches. However,
heuristic values can be misleading: if we model the domain as a graph,
the worst-case complexity of a heuristic-driven algorithm can grow
faster than linear on the weight of the graph (sum of all edge lengths).

Known exploration approaches can solve the uninformed “treasure
hunt” problem with linear performance guarantees, but they cannot
utilize heuristic values. Furthermore, their average-case (empirical)
performance is usually worse than that of heuristic-driven approaches
even for uninformed problems. In its turn, the complexity of known
heuristic-driven algorithms can be worse than linear, if heuristics are
misleading.

We develop a new algorithmic framework for the heuristic-driven
“treasure hunt,” called VECA, that combines the advantages of both
approaches. We show that VECA provides linear performance guar-
antees, and that these guarantees do not deteriorate the average-case
performance.
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1 Introduction In this paper we investigate (1) how to learn unknown
graphs efficiently, and (2) how to utilize provided heuristic values to guide goal-
directed exploration. First problem corresponds to an on-line version of the
Chinese Postman problem (OnCPP):

Consider the task of traversing all edges of an unknown
strongly connected weighted directed graph at least once and
then returning to the starting vertex. One always has a map of
all vertices that one has visited so far, can recognize the if one
sees then again, and knows how many unexplored edges leave
each visited vertex (but does not know which vertices they lead
to until one explores them too). How can one explore such graph
efficiently?

The second problem corresponds to what is known in literature as the “treasure
hunt.” It differs from OnCPP in that a goal state (goal states) is established, and
one is supposed to reach the goal. It can be also viewed as a search problem with
uncertancies.

These graph exploring problems are simple and natural optimization problems
that are often encountered in practical problems, for example, robot navigation.
In particular, it occurs in the following situations: (A) An autonomous robot is
put into an unknown office building and has to learn a topological map of its new
corridor environment; (B) A software agent has to find a World Wide Web page
of a given content by following links from its current page.

If one abstracts from low level sensing and control issues, one can reformulate
the robot exploration problem as an OnCPP, thus, making this problem amenable
to theoretical graph-learning approaches. Since corridors can be traversed in both
directions, the resulting graph is undirected. In some problems after traversing
a directed edge, an agent does not learn how to traverse an opposite edge. This
happens, for example, in secured buildings with two-side doors having different
opening codes, or in learning of a new-born when a success in learning how to
perform an action (switch off a TV) does not immediately imply a skill of undoing
the same action (turn on a TV). This fact encourages us to investigate also the
exploration of bi-directed domains.

2 Problem Descriptions We use the following notations for both explo-
ration and search problems:

����������	�

is a graph with finite number of vertices

(or states), ��
���������� � is the start state, and
�����������

is the non-empty set
of goal states.

��� � 
���	 is the set of directed edges that can be traversed from
� � � . Edge !�� ��� � 
 has positive length "#!%$'&�(*) � ! 
�+ 0, its traversal results in
successor state ,.-'/0/ � ! 
 . The goal distance &21 � � 
 of � is the smallest length of a
path in

�
following which a goal state can be reached from � . We assume that the

goal distance of every vertex in
�

is finite. We further assume that graph
�

is bi-
directed, meaning that each directed edge has an opposite edge (called the “twin”
of the edge). The weight of the graph is 34!%5#&6)7( �98;:=<=>?8A@B<�CEDF:.G "#!%$'&�(*) � ! 
 ,
the sum of the lengths of all directed edges.



If ! � ��� � 
 is unexplored, then " !.$'& (*) � ! 
 and ,.-'/0/ � ! 
 are unknown. To
explore an edge, the algorithm has to traverse it. We assume that this reveals
only "#!%$'&�(*) � ! 
 and ,.-'/0/ � ! 
 , but no additional information. Initially, heuristic
knowledge about the effects of actions is available in form of estimates of the
goal distances. Classical AI search algorithms attach heuristic values to states.
This would force us to evaluate an unexplored edge ! � ��� � 
 according to
the heuristic value of , , since both "�!.$'&=(*) � ! 
 and ,%- / / � ! 
 are not yet known.
We therefore attach heuristic values ) � ! 
 to edges instead; they are estimates
of "#!%$'& (*) � ! 
 � &21 � ,%- /0/ � ! 
�
 , the shortest path from � to a goal state when first
traversing ! . If all ) � ! 
 are zero, then the algorithm is uninformed.

The problem of learning an unknown graph and the goal-directed exploration
problem can now be stated as follows:

The Problem of Learning an Unknown Graph: Explore
all edges of graph

�
and return to the starting vertex � 
�� ��� ��� � .

The Goal-Directed Exploration Problem: Get an agent
from , 
�� �B��� to a state in

�
if all actions are initially unexplored

in all states, but heuristic estimates ) � , ���2
 are given.
In both problems, we use the length of the exploration walk to measure the

complexity of an algorithm and are interested in how this length depends on the
weight of the graph (the sum of all edge lengths). This is a realistic measure,
because the cost of moving often significantly prevails the cost of deliberation.

3 Previous Approaches Various exploration approaches has been dis-
cussed in the literature. They can be divided into two main groups: uninformed
exploration approaches and heuristic-driven search approaches.

3.1 Uninformed Exploration Approaches Uninformed exploration ap-
proaches explore all edges. They have no notion of goal states and do not use
heuristic values to guide the exploration process. However, they can be used for
“treasure hunt”, because they visit all vertices of the graph. One can just stop the
exploration when one hits a goal state. The following algorithm has been used
earlier as part of proofs on Eulerian tours, for example by Hierholzer[2]. Recently
it was re-considered by several researchers as a graph learning algorithm [1, 4]:

Building a Eulerian Tour Algorithm (BETA): Traverse unex-
plored edges whenever possible (ties can be broken arbitrarily).
If all edges emanating from the current vertex have been ex-
plored, execute the initial sequence of edge traversals again,
this time stopping at all vertices that have unexplored emanat-
ing edges and apply the algorithm recursively from each such
state.

Note, that any exploration algorithm that operates on a Eulerian domain and
traverses unexplored edges whenever possible, can be stuck (find no emanating
unexplored edges available at a current vertex) for the first time only at the starting
vertex. Therefore, retracing its initial traversals is possible for such exploration.



The same argument is true for all recursive procedures. BETA is similar to Depth-
First Search in some sense, but – instead of backtracking its latest moves when it
gets stuck – it repeats the initial walk, because backtracking is not always possible
on arbitrary Eulerian graphs. BETA executes every action at most twice (see, for
example [1]) which implies the following theorem:
Theorem 1 BETA explores any Eulerian unknown graph with the complexity of
at most two weights of the graph.

Since BETA can be applied to the “treasure hunt” problem too, it solves the
problem with the complexity that is linear on the weight of the graph. The first
example of an unknown graph in Figure 1 shows that two weights of the graph is
the tight bound for BETA: it can traverse a pair of directed edges with length 3 , at
which point it gets stuck at its starting vertex. BETA has then to re-traverse both
edges with length 3 again in order to explore edges of length 1 and come back
to the starting vertex. The complexity of BETA is 4 3 �

2 and the weight of the
graph is 2 3 �

2. The ratio of the two quantities approaches 2 for large 3 . Thus,
the complexity of BETA does not improve, when one considers bi-directed graphs
instead of arbitrary Eulerian graphs. The second example in Figure 1 shows that
the complexity of BETA also asymptotically approaches two weights of the graph
in the “treasure hunt” problem.
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Figure 1: Two Worst-Case Examples for BETA

BETA cannot utilize heuristic values to guide the search process towards a
goal state, although heuristics can cut down search time. However, BETA provides
a gold standard for evaluating “treasure hunt” algorithms, since no uninformed
algorithm can do better in the worst case.

3.2 Heuristic-Driven Algorithms AI researchers have long realized that
heuristic knowledge can be a powerful tool to cut down search effort. It can
be utilized effectively to guide the search process towards a goal state. One of
the most efficient heuristic-driven algorithms is based on the combination of the
nearest neighbor principle and one the most appealing search methods for classical
Search-in-Memory problems A*[7]. Various versions and approximations of
this algorithm has been repeatedly re-discovered under different names. This
represents the idea behind such algorithms as Incremental Best-First Search[8] and
the Dynamic A* algorithm[11]. The Learning Real-Time A*[5] and Prioritized
Sweeping[6] are fast approximations of similar algorithms.



Agent-Centered A* Algorithm: Consider all paths from the
current vertex to an unexplored edge ! . Among these paths,
select one with minimal cost, where the cost of a path is defined
as the sum of the path’s length plus the heuristic value ) � ! 

(break ties arbitrarily). Traverse the path from the current state
to an unknown edge, explore the edge, and repeat the process
until a goal state is reached.

AC-A* is very versatile: It can be used to search completely known, par-
tially known, or completely unknown domains, it is able to perform goal-directed
exploration efficiently in “dynamic” environments that experience occasional
changes. Algorithms using the nearest neighbor (greedy) heuristic have good
empirical complexity, they often outperform algorithms with better worst-case
complexity in average over a series of runs both for the regular off-line Trav-
elling Salesman problem [9] and for the on-line Chinese Postman Problem [3].
However, the worst-case complexity of uninformed and informed AC-A* is at
least

���
log � � � � log log � � � 
 times the weight of graph

����� � ��	�

, while BETA

guarantees
� � 34!%5#&6)7( � ��
 
 [3, 10].

3.3 Our Results We develop an algorithmic framework, the parameterized
Variable Edge Cost Algorithm (VECA), that solves both exploration problems,
can accommodate a variety of exploration and search strategies on undirected or
bi-directed domains, but is able to guarantee that every pair of opposite edges
is traversed only a certain number of times. VECA can be implemented easily,
make the same optimal performance guarantees as BETA for the lowest possible
parameter, and allows one to trade-off smoothly more freedom of the exploration
or search strategy against a smaller worst-case complexity. Empirical evidence
suggests that VECA does not deteriorate average-case complexity of exploration
or heuristic-driven “treasure hunt”, but to the opposite often outperforms other
strategies in sparely connected domains, and when heuristic values are misleading.

4 Variable Edge Cost Algorithm We have developed a framework for
goal-directed exploration, called the Variable Edge Cost Algorithm (VECA), that
can accommodate a wide variety of uninformed and heuristic-driven exploitation
algorithms (including AC-A*). VECA relies on the exploitation algorithm and
thus on the heuristic values until they prove to be misleading. It monitors the
behavior of the exploitation algorithm and uses a parameter � to determine when
the freedom of the exploitation algorithm should get restricted. If an action and its
twin together have been executed � times or more, VECA restricts the choices of
the exploitation algorithm on that part of the state space, thus forcing it to explore
the state space more. As a result, VECA switches gradually from exploitation to
exploration and relies less and less on misleading heuristic values.

The same framework can be applied to OnCPP without significant changes.
One has just to choose an appropriate exploitation algorithm for step 3 or 3’, for
example uninformed AC-A*. In this case the algorithm stops exploring and returns



Input:
a goal-directed exploration problem,

the value of VECA’s parameter
�

(a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

Basic-VECA uses three variables for each edge �������	��

� : �����	��������� keeps track of how often the action has
been traversed, ������������������� is its reserved VECA cost, and ������������� is its actual VECA cost.

1. Set �����	��������� : ��������������� : � 0 for all � �"! . Set # : � 0 and � : �$�&%�')(+*�' .
2. If �"�-,
.0/21 , then stop successfully.
3. Consider all cycle-less paths starting at � and ending with an unexplored edge. Select one with minimal

VECA cost from these paths, using the heuristic-driven exploitation algorithm to break ties.
4. Consider all actions in the action sequence, one after another. For each action 3 in the sequence, do:

(a) Traverse � . Let ��4	����
 �����5��! be the twin of �
���)�6��

� .
(b) Set �����	���7����� : �������	�8�������69 1.
(c) If �����	���7�����:9;�����	�8����� 4 �<� 1, then set # : �=#59 1 and afterwards �+����������������� : �
����������������� 4 � : � 2 >@? .

(d) If �����	���������@9A�����	�8����� 4 �CB �
and ��������������� 0, then set ������������� : �=����������� 4 � : �

������������������� .
(e) If �����	���7�����69D�����	�8����� 4 �5E � , then set �������7����� : ��F .
(f) Set � : ��������������� . (

5. Go to step 2.
Alternatively, step 3 can be replaced by:

3’ Consider all cycle-less paths starting at � and ending with an edge whose VECA cost is zero. Select one
with minimal VECA cost from these paths, using the heuristic-driven exploitation algorithm to break
ties.

G
According to our notations H�I�J�J�K�L�MONAP .

Figure 2: The Basic-VECA Framework

to the starting vertex after all edges have been explored, as indicated by the absence
of unexplored edges emanating from visited vertices. Since it appears that the same
framework is applicable to both problems, the rest of the discussion is devoted
exclusively to the more intriguing problem of the heuristic-driven “treasure hunt”.

We describe VECA in two stages. We first discuss a simple version of VECA,
called Basic-VECA, that assumes that traversing an edge also identifies its twin.
Later, we drop this assumption. Basic-VECA is described in Figure 2. It maintains
a cost for each edge that is different from its length. These VECA costs guide
the search. Initially, all of them are zero. Whenever Basic-VECA traverses a pair
of twin edges for the first time (i.e. it explores one of the two edges for the first
time and has not yet traversed the other one), it reserves a VECA cost for them,
that will later become their VECA cost. The first pair of twin edges gets a cost of
1/2 reserved, the second pair a cost of 1/4, the third pair a cost of 1/8, and so on.
Basic-VECA assigns the reserved cost to both twin edges when it traverses the pair
for the Q th time (or, if Q�R 0, when it explores an edge of the pair for the first time).
Whenever the pair is traversed again, Basic-VECA assigns the just traversed edge
(but not its twin) an infinite VECA cost, which effectively removes it. The VECA
costs are used as follows: Basic-VECA always chooses a sequence of edges with
minimal VECA cost that leads from the current vertex to an unexplored edge (step
3) or, alternatively, to an edge with zero VECA cost (step 3’). The exploitation
algorithm is used to break ties. Initially, all VECA costs are zero and there are
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Figure 3: A Simple Example of Graph Exploration

lots of ties to break. The more edges Basic-VECA assigns positive VECA costs
to, the fewer ties there are and the less freedom the exploitation algorithm has.

To gain an intuitive understanding of the behavior of Basic-VECA, consider a
simple case, namely a tree-shaped state space, and assume that Basic-VECA uses
step 3. Figure 3 shows a pair of twin edges, � and ��� , that connect two components
of the tree, X and Y. The exploitation algorithm can traverse � R �����	��


freely
until it and its twin ��� R ���
����


together have been traversed a total of Q times.
Then, Basic-VECA assigns both edges the same positive VECA cost. At this
point in time, the algorithm is located in X (the component that contains the start
state), since Q is even and the algorithm alternates between both components. If
Y does not contain any more unexplored edges, neither � nor ��� will be traversed
again. Otherwise there is a point in time when Basic-VECA traverses � again to
reach one of those unexplored edges. When this happens, Basic-VECA prevents
the exploitation algorithm from leaving Y until all edges in Y have been explored
(this restriction of the freedom of the exploitation algorithm constitutes a switch
from exploitation to exploration): Because Y can only be entered by traversing � ,
this edge was explored before any edge in Y. Consequently, its reserved VECA
cost, which is also its current VECA cost, is larger than the reserved VECA
cost of any edge in Y. The reserved VECA costs are exponentially decreasing:
2 � #������ E5# 2 � � for all finite � ����� 0. Thus, any path that does not leave Y has a
smaller VECA cost than any path that does, and Basic-VECA cannot leave Y until
all of Y’s edges have been explored. When Basic-VECA has finally left Y, the
VECA costs of � and ��� are infinite, but there is no need to enter or exit Y again.

In general, Basic-VECA traverses every pair of twin edges a total of at most
Q�� 2 times before it finds a goal state. This implies the following theorem:
Theorem 2 Under the assumption that an edge traversal identifies the twin of
the edge, Basic-VECA, with even parameter Q

�
0, solves any goal-directed

exploration problem with a cost of � � 1 
! "� � �$#&%(' (to be precise: with a cost of
at most

�
Q&) 2 � 1


* +� � �,#(%(' ).
Proof[Sketch]: Both Minimal Spanning Tree (MinST) and Maximal Spanning

Tree (MaxST) of the explored portion of the graph play important roles in VECA.
First, MinST of the explored portion of the graph provides the set of shortest

pairwise distances with the precision up to zero ties (zero-cost paths). In other
words: If pairwise shortest distances form a cycle -/.102.435.1- , this cycle



should be of zero VECA cost, where - . 0 denotes a path from vertex - to vertex
0 . We prove this by contradiction: Suppose that one of the cycle paths contains an
edge with non-zero cost, then pick an edge with the biggest VECA cost from the
cycle -5. 0 . 3�. - , let it be in path - . 0 . Then path - . 3�. 0 becomes
strictly cheaper than ( -".10 )-path and the algorithm cannot consider -".10 as
part of the shortest path for any pair of vertices. Thus, the set of shortest paths in
the explored portion of the graph forms a tree. However, we cannot state anything
about the relations of VECA costs for MinST-edges.

On the other hand, MaxST corresponds to edge traversals that lead to the first
visit of vertices according to VECA. For MaxST we know that paths from the root
(starting vertex) to other vertices have strictly monotone (decreasing) sequence of
VECA costs.

Let
��� ��� 


be a zero-component of vertex
�

– a maximal set of vertices
reachable from vertex

�
by paths of zero VECA cost. Basic-VECA possesses the

following properties:
1. Pairs of edges traversed Q�� 1 or Q � 2 times establish a stack behavior,

i.e. if � 1 R
� �

1
� �

1



and � �1 R � �
1
���

1



had been traversed for the Q � 1st
time before � 2 R

� �
2
� �

2



and � �2 R � �
2
� �

2



were traversed for the Q � 1st
time, then the later pair � 2 and � �2 should be traversed for the Q�� 2nd
time (in the direction opposite to the Q � 1st traversal) before the Q!� 2nd
traversal of the earlier pair � 1 and � �1.

2. If a chosen path of minimal VECA cost (step 3 or 3’) from vertex
�

to
vertex

�
does not contain pairs of edges traversed Q � 1 or Q�� 2 times,

then this path traversal leaves the algorithm within the same
��� ��� 


.
3. If edge � R ����� ��


from MaxST is included in the selected path of
minimal VECA cost with the direction towards the root (starting vertex),
it guarantees that all vertices below

�
in MaxST do not contain emanating

unexplored edges, otherwise the path from
�

to that vertices would have
lower VECA cost than ����� ' � � 
 .

Thus, the algorithm is initially located in a zero-component of the starting
vertex. It expands the current zero-component by exploring new edges, or possibly
splits it in several zero-components after traversing pairs of edges for the Q th time
and assigning them positive VECA cost. However, unless a pair of edges is
traversed for the Q
� 1st or Q
� 2nd time, the algorithm is still in the same zero-
component. It is exactly the path containing pairs of edges traversed for the Q�� 1st
or Q
� 2nd time that relocates the algorithm from one zero-component to another
one, after which the algorithm stays in the zero-component of the last vertex of the
path, until the next path of minimal VECA cost is selected which also contains pairs
of edges to be traversed for the Q � 1st or Q � 2nd time. MaxST has monotonically
decreasing VECA costs from the root (starting vertex) towards leaves. This fact
guarantees that whenever a pair of MaxST-edges is traversed for the Q*� 2nd time,
there is no need in re-traversing it again, because all vertices reachable through
this pair of edges do not have emanating unexplored (or, alternatively, zero cost)



edges.
Thus, if there are no goal states, Basic-VECA explores all the edges of

�
,

otherwise Basic-VECA stop successfully when it hits a goal state. Each pair of
twin edge is traversed at most Q � 2 times, which implies the worst-case complexity
of at most

�
Q&) 2 � 1


* "� � �$#&%(' � � 

.

A larger Q allows the exploitation algorithm to maintain its original behavior
longer, whereas a smaller Q forces it earlier to explore the state space more. The
smaller the value of Q , the better the performance guarantee of Basic-VECA. If
Q�R 0, for example, Basic-VECA severely restricts the freedom of the exploitation
algorithm and behaves like chronological backtracking. In this case, it traverses
every edge at most once (for a total cost of

� � �,#&% ' ), no matter how misleading
its heuristic knowledge is or how bad the choices of the exploitation algorithm
are. No uninformed goal-directed exploration algorithm can do better in the worst
case even if an edge traversal also identifies the twin of the edge. However, if the
heuristic values are not misleading, a small value of Q can force the exploitation
algorithm to explore the graph unnecessarily. Thus, a stronger performance guar-
antee might come at the expense of a decrease in average-case performance. The
experiments in the section on “Experimental Results” address this issue.

VECA is very similar to Basic-VECA, see Figure 4. In contrast to Basic-
VECA, however, it does not assume that an edge traversal identifies the twin of
the edge. This complicates the algorithm somewhat: First, the twin of an edge
might not be known when VECA reserves a VECA cost for the pair. This requires
an additional amount of bookkeeping. Second, the twin of an edge might not be
known when VECA wants to assign it positive VECA cost. In this case, VECA is
forced to identify the twin: step 4(e) performs a Eulerian walk on part of the graph,
it explores at least all edges adjacent to the vertex that contains the twin (including
the twin) and returns to that vertex. This procedure is executed only rarely for
larger Q , since it is almost never the case that the twin of an edge that has already
been executed Q times has not yet been explored. Because of this step, though,
VECA can potentially traverse any edge one more time than Basic-VECA, which
implies the following result:
Corollary 1 VECA, with even parameter Q

�
0, solves any goal-directed explo-

ration problem with a cost of � � 1 
� � � �$#&%(' (to be precise: with a cost of at most�
Q&) 2 � 2


* � � �$#&%(' ).
For Q R 0, VECA traverses every edge at most twice. Thus, its worst-case

performance is at most 2
 �� � �,#&% ' and equals the worst-case performance of

BETA. No uninformed goal-directed exploration algorithm can do better in the
worst case if executing an action does not identify its twin.

5 Implementation Since the VECA costs are exponentially decreasing and
the precision of numbers on a computer is limited, Basic-VECA and VECA cannot
be implemented exactly as described. Instead, we represent paths as lists that
contain the current VECA costs of their edges in descending order. All paths



Input:
a goal-directed exploration problem,

the value of VECA’s parameter
�

(a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

VECA uses four variables for each edge � : �����	��������� keeps track of how often the edge has been executed,
�+���������6������� is its reserved VECA cost, ������������� is its actual VECA cost, and ��� � ��� ����� remembers whether it has
already been executed as part of Eulerian walk - step 4(e).

1. Set �����	��������� : ��������������� : ����� � ���+����� : � 0 for all � �C! . Set # : � 0 and � : �$�6%�')(+*�' .
2. If �"�-,
.0/21 , then stop successfully.
3. Consider all cycle-less paths starting at � and ending with an unexplored edge. Select one with minimal

VECA cost from these paths, using the heuristic-driven exploitation algorithm to break ties.
4. Consider all edges in the path, one after another. For each edge �O���)�6�7

� in the path, do:

(a) Traverse � .
(b) Set �����	���7����� : �������	�8�������69 1.
(c) If �����	�8������� � 1 and the twin of � is not yet known, then set # : � #@9 1 and afterwards
������������������� : � 2 >@? .

(d) If �����	�8������� � 1 and the twin of � is known, then let � 4 � �)
 ����� ��! be the twin of
� . If �����	���7��� 4 � � 0, then set # : � # 9 1 and afterwards � ����������������� : � 2 >@? , else set
�����������������+��3�� : �$����������������� 4 � .

(e) If �����	���7����� B � and the twin of � is not yet known, then perform a Eulerian walk:
i. Set � 4 4 : ��������������� .

ii. Select an edge � 4 4 � ��� 4 4 ��
 4 4 � with ��� � ��� ��� 4 4 �5� 0. If there is no such action, then
go to step 4(f) (comment: it holds that � 4 4 �$������������� ).

iii. Traverse � 4 4 .
iv. Set ��� � ������� 4 4 � : � 1.
v. Set � 4 4 : ������������� 4 4 � .

vi. Go to step 4(e)ii.
(f) If the twin of � is known, then let � 4 ����

�7� �2� ! be the twin of � and do:

i. If �����	���7�����69D�����	�8����� 4 � B � and ������������� � 0, then set ������������� : ������������� 4 � : �
� ����������������� .

ii. If �����	���7�����69D�����	�8������4 � E � , then set ������������� : ��F .
(g) Set � : ��������������� .

5. Go to step 2.
Alternatively, step 3 can be replaced by:

3’ Consider all cycle-less paths starting at � and ending with an edge whose VECA cost is zero. Select one
with minimal VECA cost from these paths, using the heuristic-driven exploitation algorithm to break
ties.

Figure 4: The VECA Framework

of minimal VECA cost then have the smallest lexicographic order. Since this
relationship continues to hold if we replace the VECA costs of the edges with their
exponent (for example, we use � 3 if the VECA cost of an edge is 1 ) 8 R 2 � 3),
we can now use small integers instead of exponentially decreasing real values,
and steps 3 and 3’ can be implemented efficiently using a simple modification of
Dijkstra’s algorithm in conjunction with priority lists.

6 Experimental Results We augment our theoretical worst-case analysis
with an experimental average-case analysis, because the worst-case complexity
of an algorithm often does not predict its average-case performance well. The
task that we studied was finding goals in mazes. The mazes were constructed
by first generating an acyclic maze of size 64

 
64 and then randomly removing

32 walls. The costs corresponded to the travel distances; the shortest distance
between two junctions counted as one unit. We randomly created ten mazes with
start location (62,62), goal location (0,0), diameters between 900 and 1000 units,



and goal distances of the start state between 650 and 750 units. For every goal-
directed exploration algorithm, we performed ten trials in each of the ten mazes
(with ties broken randomly). We repeated the experiments for different values
of VECA’s parameter Q and for heuristic values % � � � � 
 of different quality. The
heuristic values were generated by combining the goal distance # � � � 
 of a state �
with its Manhattan distance �5% � � 
 , the sum of the x and y distance from � to the
goal state. A parameter '���� 0 � 1 � determined how misleading the heuristic values
were; a smaller ' implied a lower quality:

�
	���
���������	���
���������� �"!#	��%$&�'�%	���
(�����)�*	
1 + ���,�.-/�0	��%$&�1��	���
������32

Here, we report the results for two heuristic-drivenexploitationalgorithms, namely
AC-A* and Learning Real-Time A* (LRTA*) with look-ahead one [5]. We inte-
grated these algorithms into the VECA framework as follows: AC-A* was used
with step 3 of VECA and broke ties among action sequences according to their
total cost (see the definition of AC-A*). LRTA* was used with step 3’ of VECA
and broke ties according to the heuristic value of the last action in the sequence.
These ways of integrating AC-A* and LRTA* with VECA are natural extensions
of the stand-alone behavior of these algorithms. If the heuristic values are mis-
leading, AC-A* is more efficient than LRTA* (this is to be expected, since AC-A*
deliberates more between action executions). As a result, VECA was able to
improve the average-case performance of LRTA* more than it could improve the
performance of AC-A*.

Figure 5(a) shows the average-case performance of AC-A* with and without
VECA (including 95 percent confidence intervals). The x axis shows 100

 ' , our
measure for the quality of the heuristic values, and the y axis shows the average
travel distance from the start to the goal, averaged over all 100 trials. All graphs
tend to decrease for increasing ' , implying that the performance of the algorithms
increased with the quality of the heuristic values (as expected). AC-A* without
VECA was already efficient and executed each action only a small number of
times. Thus, VECA did not change the behavior of AC-A* when Q was large.
For example, for Q R 10, the behavior of AC-A* with VECA (not shown in the
figure) was the same as the behavior of AC-A* without VECA. The graphs for
Q R 4 suggest that AC-A* with VECA outperforms AC-A* without VECA if
the heuristic values are of bad quality and that it remains competitive even for
heuristic values of higher quality.

Figure 5(b) shows the average-case performance of LRTA* with and without
VECA. As before, the performance of the algorithms increased with the quality of
the heuristic values. The graphs show that, most of the time, LRTA* with VECA
outperformed or tied with LRTA* without VECA. For misleading heuristic values
(small ' ), LRTA* with VECA worked the better, the smaller the value of VECA’s
parameter Q was. However, for only moderately misleading heuristic values ( '
between 0.3 and 0.5), a larger value of Q achieved better results and LRTA* without
VECA even outperformed LRTA* with VECA if Q was small. This was the case,
because the heuristic values guided the search better and a small value of Q forced
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Figure 5: AC-A* and LRTA* with and without VECA

LRTA* to explore the state space too much.
We obtained similar results for both experiments when we generated the

heuristic values differently, for example as the combination of the goal distance
and the Euclidean distance or the goal distance and the larger coordinate difference
between a state and the goal. We also performed experiments with other heuristic-
driven exploitation algorithms, such as biased random walks or an algorithm
that expands the states in the same order as the A* algorithm. Since both of
these algorithms are inefficient to begin with, VECA was able to achieve large
performance improvements for misleading heuristic values.

7 Extensions In this paper, we have assumed that a goal-directed explo-
ration algorithm learns only the effect of the executed action, but not the effects of
any other actions. However, Basic-VECA and VECA can be used unchanged in
environments in which action executions provide more information (such as, for
example, complete information about the effects of all actions in some neighbor-
hood of the agent) and Theorem 2 and Corollary 1 continue to hold.

8 Conclusion We introduced an application-independentframework for ex-
ploration and heuristic-driven “treasure hunt”, called VECA, that addresses a va-
riety of exploration and search problems within the same framework and provides
good performance guarantees. VECA can accommodate a wide variety of ex-
ploitation strategies and allows to use heuristic knowledge to guide the search
towards a goal state. VECA monitors whether the heuristic-driven exploitation
algorithm appears to perform poorly on some part of the state space. If so, it
forces the exploitation algorithm to explore the state space more. This combines
the advantages of pure exploration approaches and heuristic-driven exploitation
approaches: VECA is able to utilize heuristic knowledge, but provides a better
performance guarantee than previously studied heuristic-driven exploitation algo-
rithms (such as the AC-A* algorithm): VECA’s worst-case performance is always
linear in the weight of the state space. Thus, while misleading heuristic values
do not help it to find a goal state faster, they cannot completely deteriorate its



performance either. A parameter of VECA determines when it starts to restrict
the choices of the exploitation algorithm. This allows one to trade-off stronger
performance guarantees (in case the heuristic knowledge is misleading or because
of bad choices of the exploitation algorithm) and more freedom of the exploita-
tion algorithm (in case the quality of the heuristic knowledge is good). In its
most stringent form, VECA’s worst-case performance is guaranteed to be as good
as that of BETA, the best uninformed goal-directed exploration algorithm. Our
experiments suggest that VECA’s performance guarantee does not greatly deteri-
orate the average-case performance of many previously studied heuristic-driven
exploitation algorithms if they are used in conjunction with VECA; in many cases,
VECA even improved their performance.

References
[1] X. DENG AND C. PAPADIMITRIOU, Exploring an unknown graph, in Pro-

ceedings of the Symposium on Foundations of Computer Science, 1990,
pp. 355–361.
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