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ABSTRACT
This paper introduces a new domain for believable agents
(BA) and presents novel methods for dealing with the unique
challenges that arise therein. The domain is providing im-
provisational companionship to a specific musician/user, trad-
ing real-time solos with them in the jazz/blues setting. The
ways in which this domain both conflicts with and benefits
from traditional BA and interactive computer music system
approaches are discussed. Band-out-of-the-Box (BoB), an
agent built for this domain, is also presented, most novel
in that unsupervised machine learning techniques are used
to automatically configure BoB’s aesthetic musical sense to
that of its specific user/musician.

1. INTRODUCTION
Imagine an agent who is your own personal musical com-
panion: someone who can play music with you, trade licks
with you, improvise with you. This companion gets to know
you and your musical personality, listening and interacting
with you in such a way that, to paraphrase the drummer
Keith Copeland,

the agent answers you halfway through your phrase,
bringing you to the point where you can actually
sing what its going to play next, and then, in-
stead of playing that, it’ll play something against
it which compliments what you’re singing in your
head. [5]

The goal of this research is to build an agent like this, some-
one that is actually fun to play with, to build a believable
improvisation music companion (IMC).

This paper describes the experience of building an IMC that
automatically configures its aesthetic musical sense to that
of its specific user/musician. The agent’s task is to trade
“musically appropriate” short solos with its improvising mu-
sician in the jazz/blues setting. The activity is improvising
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melody – spontaneously generating a succession of notes,
i.e., a note-sequence – like the kind one might play on a
saxophone.

This agent’s goal, to engage the user in an evolving musical
conversation between two soloists, is called Band-OUT-of-
the-Box (BoB) in tribute to the commercial software product
Band-in-a-Box (BiB) [16]. Whereas BiB is non-interactive –
during playback it does not listen to nor respond to what its
user plays in real-time – BoB’s central focus is user-specific
live melodic interaction.

IMCs are a new application for believable agents (BA) and
for interactive computer music systems research. Earlier
systems developed in both fields did not address the special
challenges that arise when creating a musical companion.
For example, BA typically focus on interactive story telling,
where success depends on how well artists can author their
character’s personalities within the confines of a particular
BA architecture, e.g., [15]. Musical improvisation, an elusive
and poorly-understood creative process, cannot be authored
in this controlled way.

Similarly, most interactive computer music systems fall into
one of two camps [24]. In the first, the composer is the
author of the program, e.g., [18], and it is assumed that
the composer will successfully author an appropriate musical
aesthetic. In the second, the author attempts to build an
aesthetically neutral system that can be tailored by the end-
user: a composer and/or performer, e.g., Max [17]. While
generality means that users can realize their own aesthetic
ideas, to do so requires programming, or at best, the hand-
tuning of many parameters. Altering the interactive task to
one of musical companionship makes it paramount that the
agent automatically configure itself so as to reflect its user’s
particular and momentary style. Simply put, composition –
the notion of setting down fixed ideas in advance – makes
less sense.

From a BA point of view, a main contribution of this work is
to use machine learning to automate (rather than interfere
with) the authoring process. Specifically, BoB watches the
user improvise and uses what it sees to configure itself in
a musically appropriate manner. Musically and creatively
speaking, it is the mechanisms for automated configuration
that are of interest. Specifically, BoB learns to perceive
its user in musically appropriate ways. A key aspect of
this research is to then reverse this process, enabling this



customized perception to control the agent’s generation of
melodic response.

The remainder of this paper examines the IMC domain and
addresses the ways in which this application both conflicts
with and benefits from traditional BA and interactive com-
puter music system approaches. Next, design principles for
building an IMC agent are formulated, and their realization
in the architecture of BoB are examined. BoB’s performance
and limitations are also described. This work is presented
in conjunction with a live real-time demonstration of BoB.

2. BELIEVABLE AGENTS
The concept of a BA, originally developed by the Oz Project,
focused on building interactive virtual worlds whose charac-
ters and story-line were believable [4]. While the nature of
BA are debated, a central theme is creating interactive, au-
tonomous agents that exhibit rich, emotional personalities
[15] [10] [11] [7]. IMCs both combine and extend current
BA and interactive computer music systems research. This
section addresses the ways in which BA methodology maps
and does not map into the IMC domain.

2.1 Compatibilities
A fundamental reason why the BA approach maps into the
IMC domain has to do with its audience and artist-centric
viewpoint, whereby the “building a new kind of cultural
experience: engaging, compelling, and hopefully beautiful
and profound” [15] is embraced. Of enormous benefit here is
the belief that artistic goals are at least as valuable as purely
technical ones, the idea being that good art (transformed
into a computational setting) will breed good science (but
that the converse is not necessarily true).

In creating autonomous interactive characters that have the
same rich personalities as those created by artists, many BA
researchers attempt to understand the reflections of practic-
ing character artists, and to integrate these insights into
their design approach. In building BoB, the reflections of
practicing improvisors have proven similarly useful [2][5][19].

BA research is also an inherently artistic pursuit. Emphasis
is on building interactive characters. As such, a common goal
is to provide character artists with the same level of artis-
tic control that, for example, animators have. With BoB, a
similar goal takes precedence. Artistic control involves cou-
pling BoB tightly enough to the improvisor so as to make
it seem like a musical conversation is taking place, while at
the same time keeping BoB sufficiently decoupled so as to
allow the generation of sufficiently novel new material.

Other frequently employed principles in BA research that
map directly into the IMC domain include:

1. Stress specificity. Whereas traditional AI systems
seek to capture the general theory of some domain,
IMCs seek to capture notable aspects of a specific mu-
sician’s improvisations. Bailey further emphasizes this
point [2]: “There is no general widely held theory of
improvisation and I would have thought it self-evident
that improvisation has no existence outside of its prac-
tice.” Since rule/grammar based jazz systems, e.g.,

[14], usually derive from someone’s theory of jazz, this
paradigmatic shift is a significant departure.

2. Success is measured in terms of audience per-
ception. Whereas classical AI systems seek some form
of objective measure, with IMCs one must first build
the agent and then observe how engaging the experi-
ence is that it provides to its improvisor.

3. Have strong affinities to behavioral AI. In par-
ticular, prefer the broad, shallow capturing of musical
capabilities. Fortunately, this makes the IMC domain
a more feasible one. Whereas classical AI-based music
research attempts to build a musical expert, we merely
want an agent that provides a modicum of musical ap-
propriateness in the solo trading context.

4. Assume the audience is willing to suspend their
disbelief. This assumption also makes the task of
building BA more feasible. In BoB, this assumption
falls directly out of the fact that it is going to be used
by musicians who want the computer to facilitate a mu-
sically engaging conversation with them. As a result,
the user is more likely to overlook an agent’s short-
comings (such as performing a solo without expressive
dynamics or articulation). BiB’s success is also in part
due to this fact; many of its accompaniment styles are
somewhat canned, yet the experience of playing with
this “cheesy” band, versus playing with no band, is a
powerful one.

2.2 Distinctions
That some BA philosophies do not map into the IMC do-
main are a direct result of the fact that activities involv-
ing interactive story telling and/or character development
are fundamentally different from those involving interactive
musical improvisation. “The difference between composi-
tion and improvisation is that in composition you have all
the time you want to decide what to say in fifteen seconds,
while in improvisation you have fifteen seconds” – jazz sax-
ophonist Steve Lacy [2]. The important point is that since
improvisation is not composed, what does it mean to author
it?

While the specific details of an interactive story/character
are also not decided until “the last fifteen seconds,” their
literal meaning enables more constraints to be specified up-
front (e.g., a frightened woggle always quivers, except per-
haps when the fear is so great that it causes paralysis). An-
other critical difference between BA and IMCs is that the
“author,” that is to say she who decides what is musically
appropriate, is the audience/user.

Because musical conversation does not have the literal mean-
ing and interpretable context that language does, notions
of personality and character either break down or become
nearly impossible to operationalize. Musicians that do speak
of personality usually do so in frustratingly vague terms:

“I would like ideally to express my, I don’t know,
personality or whatever, musically, to the limits
of my ability. [... to ...] play in such a way that
it would be recognizable as me, and it would ex-
press something to people about the way I feel
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Figure 1: Trading Fours. Each staff shows a different player’s spontaneous performance. The accompaniest’s
chords are shown on top. The first four bars of the musician’s solo are shown in the middle (“|” divides
bars), at which point the agent is listening. The agent then responds by playing another four bars while the
musician listens (bottom).

about things” – Jazzist Ronnie Scott [2], empha-
sis added.

It is also not clear that an improvisational experience makes
sense outside of the physical context within which it is played,
making the task of evaluating IMCs even more elusive and
subjective. For example, while it may make sense to fo-
cus on a user’s engagement with a personality post-facto –
similar to the way that it makes sense to ask a reader to sum-
marize a movie’s plot after viewing it – it is not clear that
anything but an improvisor’s transitory, immediate musical
experience is worthy of attention. On this point, Yes gui-
tarist Steven Hicks noted that, with respect to the success
or failure of his improvisations [2]: “It’s either good or bad
but if you listen to an improvisation over and over again it
just gets worse. [...] It’s something that should be heard,
enjoyed or otherwise, and then completely forgotten.”

Ultimately, while Bailey acknowledges that improvisors may
get to know each other well enough for a common language
to have come into being, he also points out that [2]:

“...the improvisors I spoke to, in almost all cases,
did not find any sort of technical description ad-
equate. It wasn’t that they weren’t interested in
technical matters. They just did not find them
suitable for illuminating improvisation. They fi-
nally chose to describe it in so-called ‘abstract’
terms. And it became clear that, whatever its
deficiencies, this is the best method available.”

In other words, while there is inherent structure to be had
in spontaneous melodic conversation, it is unlikely to expect
that the burden of specifying this process can be successfully
pawned off onto the improvisor.

For this reason, perhaps the best we can do to consort with
the improvisor is to let an IMC attempt to automatically
configure itself based on the musical appropriateness that it
finds embedded within the user’s improvisational example.
Given the infeasible nature of explicit technical specification,
BoB uses unsupervised learning techniques to do this task.

3. RELATED WORK
While I am unaware of any other interactive computer mu-
sic system that focuses on both believable and companion-
able improvisation, much related work has been done. The
systems outlined below were chosen because they address

the specific issue of generating sequences of notes/chords
(in contrast to other issues being researched, like expressive
performance).

Walker’s Improvisation Builder (IB) uses techniques from
conversation analysis in order to build a system that trades
solos and/or accompanies its user [24]. Group interaction
is not specified up-front. IB is most notable in that it con-
stantly infers its current role in the evolving conversation –
to solo and/or to accompany. While mechanisms do exist
for parsing and generating solos, Walker’s papers do not de-
tail these aspects. It appears that an expert-systems style
approach has been used to configure the system, specifying
what musical transformations are acceptable, how to derive
new solos from what the user plays in real-time via cut-and-
paste methods, etc. The agent-like aspects of IB are not
discussed.

The goal of Bryson’s interactive system is to provide real-
time accompaniment to a folk melodist without the benefit
of a score [8]. This work is most agent-like in that Brook’s
subsumption architecture was used. Most relevant here is
that machine learning was used to configure the system’s
chord generator. In particular, a neural network was trained
on a set of accompaniment examples, learning to predict
what chord should be played given a recent window of acous-
tic melodic input. Lower-level issues, like how to realize a
particular musically appropriate, user-specific note-sequence
for a given chord/context, were not addressed.

Rowe’s Cypher system [18], notable for its strong musical
foundation, is essentially in the composer-is-author camp.
Aesthetics are specified by the composer. A fundamental
goal was to make this authoring as straightforward as possi-
ble by providing musically meaningful (hand-tuned) feature
detectors, which a composer can then configure in whatever
way they want. Cypher uses a society-of-minds based ap-
proach.

In terms of IMC, GenJam [6] is the most relevant system in
that it uses a specific listener’s preferences in order build an
improvised melody generator that is tuned to its listener’s
aesthetic musical sense. In particular, a genetic-algorithm
searches for a good melody generator, guided by the follow-
ing fitness function: how well does the user like the melodies
it generates? While GenJam has demonstrated some abil-
ity to encode a listener’s musical preferences, this approach
is ill-suited for the IMC domain because: 1) listener rat-
ing is invasive, interrupting the physical, transitory nature



of solo-trading; 2) the bottleneck is the listener’s ability to
accurately rate many improvisations; 3) GenJam is neither
interactive nor real-time.

4. BOB’S DOMAIN: SOLO TRADING
The task of building a complete IMC is enormous. In this
section, the restrictions made in order to transform BoB into
a manageable system are discussed.

The key to IMC success is to have the technology to, in
a musically-appropriate manner, perceive and generate im-
provised melody. As such, BoB’s explicit focus is melodic
content, the succession of < pitch, duration > pairs that
comprise a note-sequence. Information related to expression
(e.g., timber, articulation, dynamics) is ignored, justified by
the following observation: who cares about expressive per-
formance if the agent has nothing to express in the first
place? Furthermore, case-based reasoning techniques for ex-
pressive audio realization of note-sequences in jazz already
exist, i.e., Saxex [1].

4.1 Restrictions
Difficulties associated with real-time tempo tracking and
expressive performance are avoided by limiting the solo-
trading task as follows:

1. Only two interactive soloists are considered, the musi-
cian and BoB. There is also a non-interactivecomputer
accompanist, whose job is to provide canned, fixed-
tempo background music, guiding the soloists through
time.

2. Tempo, harmonic structure and group interaction (who
solos where and when) are fixed up-front. This infor-
mation (called the Lead Sheet) is the road map for the
conversation and is readily available to all.

3. Players take turns trading fours – soloing on top of
four bars of accompaniment (Figure 1).

4. Solos are converted into audio via MIDI (continuous
control is turned off).

4.2 Musical Appropriateness
At best, one can talk about an IMC responding to its user
in such vague terms as a musically reasonable or appropriate
manner, which depends upon harmonic context, the most
recently performed improvisations, higher-level trends that
emerge as the conversation evolves, the soloists and how
familiar they are with one another, etc. So, what is musically
appropriate behavior?

Musician’s generally agree that successful solo-trading is ac-
companied by the ability to [5]:

• Extend the music contour gracefully between parts.

• Imitate or transform, to varying degrees, precise fea-
tures of a previous player’s ideas.

• Combine operations like those listed above with the
development of ones own ideas.

Musicians also talk of becoming musically familiar with one
another’s melodic concepts, of having internalized a recur-
ring vocabulary of patterns. Perhaps most important is the
ability to stimulate conversation, as alluded to by trumpeter
Tommy Turrentine [2]: “The other night, a drummer was
just playing ’tit-a-tang, tit-a-tang, tit-a-tang, tit-a-tang,’ all
night long. Now, what in the world can that generate?” Sim-
ply put, the agent must be able to create novel ideas within
the constraints of the evolving vocabulary – to paraphrase
Jazzist John McNeil [5], “to listen to me, but not to play
my stuff back to me.”

4.3 Fundamental Requirements
These necessarily vague solo-trading abilities need to be
transformed into an operational computational strategy. The
approach taken here is based upon the hypothesis that a suc-
cessful companion must rely on non-invasive data collection
techniques – merely watch the user do what they do best:
improvise – and that a musician’s ill-defined abstractions –
the operationalizing of which are essential for an engaging
solo exchange – can be learned from the unlabelled data that
has been collected in this way.

In order for this approach to succeed in the companion-
able fours-trading domain, we argue that the following are
needed:

1. A melody’s low-level surface structure must be en-
coded by multiple viewpoints. In particular, the pitch,
intervallic and directional features described in [9] should
be used,1 for while elusive to precise technical quantifi-
cation, each viewpoint is readily perceived by humans
[13] and failure to attend to any one of them may defy
a user’s musical common sense, which in turn makes it
even more difficult for them to suspend their disbelief.

2. The ability to learn more abstract “modes of play-
ing” from the local trends exhibited by these low-level
viewpoints. For example, the agent needs to be able
to unearth the different ways in which a musician’s
prefers certain pitches, which in turn relates to the
subconscious activity of selecting a certain scale and
employing it in a particular context.

3. The ability to reverse this musical abstraction, to be
able to generate new note-sequences that exhibit a
particular playing mode. What this really means is
that we need a probabilistic learning approach, one
for which we not only learn to cluster (abstract) but
also learn the parameters that best account for the
data the musician has generated.

4. The ability to perceive and generate in real-time with
per-bar granularity. With these skills, the agent has
the ability to perceive the changes made during the
musician’s solo and generate a response that exhibits
dynamically-similar behavior.

5. Responding appropriately should improve as the user
and agent become more familiar with one another.
Provided that a larger training set improves learning,
this property is a given.

1The first and second relate to a solo’s tonality; the second
and third relate its melodic contour.



5. THE BOB ARCHITECTURE
BoB’s architecture is shown in Figure 2. BoB has been im-
plemented on the NT platform using Visual C++ . What
follows is a high-level description of BoB’s primary compo-
nents, what they do and how they interact with one another.

Note Sequence

Most Recent
Transcribed Fixed Tempo

& Structure
Note Sequence

to Play

Next

GenerationPerception History

Musician Soloist

Agent
Soloist

Lead
Sheet

Audio Out

Knowledge (OLK)
Offline Learned

Audio In

MIDI OutMIDI In

Figure 2: The BoB Architecture. BoB’s compo-
nents are inside the double-lined box; the environ-
ment and off-the-shelf interfaces are outside. Those
components that handle real-time are dashed. Our
focus is on the bold components, which are respon-
sible for IMC-related intelligence. The dotted-line
serves to remind us that OLK is musician-specific.

5.1 Representing Solos
BoB uses a novel representation for solos, namely a variable-
length tree (VLT) encoding, augmented by more abstract
features that attempt to summarize the structure found in
the tree’s leaves. An overview of the complete representation
described in [21] is provided here in part to demonstrate
the depth of musical knowledge that is embedded in BoB,
a point that is easily obscured in the presence of specific
learning details.

VLTs are perceived and generated in real-time on a per-bar
basis and handle note-sequences of different lengths. These
trees were designed to encode and constrain melody as fol-
lows. Rhythm is specified by the structure of a tree’s in-
ternal nodes, each having 2 or 3 children. Pitch content –
defined by both octave and pitch-class2 – is specified in the
tree’s leaves. As such, melodic contour is determined by
the leaves’ ordering. While VLTs are suitable for encoding
rhythm (e.g., it makes sense to obtain a novel, yet simi-
lar, rhythm by growing and/or collapsing various parts of a
tree), the in-order melodic representation is a simple “string
of notes” approach, a common computer music representa-
tion.

BoB moves beyond this typical approach in an attempt to
capture deeper structure than is available on the immedi-
ate surface. This new scheme is based on the belief that

2Pitch-class identifies which tone from the chromatic scale
corresponds to a particular note.

the most salient aspect of melodic improvisation is not the
trajectory of individual notes, but the average summary of
local contexts of notes. Specifically, BoB’s abstract repre-
sentation involves converting a tree’s in-order-walk into his-
tograms which record the frequency with which various low-
level trends occur. In particular, the multiple viewpoints
outlined in Section 4.3 motivate the use of three per-bar
histograms: Pitch Class (PC), which records the frequency
with which various pitch-classes are used, Intervallic Motion
(INT), which records the frequency of successive absolute in-
tervals between neighboring pitches, and Melodic Direction
(DIR), which records how many successive intervals retain
the same sign.

Clearly, the generation of a musically plausible note-sequence
does depend on the temporal ordering of pitch. So, why
should one believe that a generation scheme that is based
upon histograms (which, by definition, ignore temporal or-
dering) can produce an adequate response? Fortunately,
each histogram contains some temporal information (PC
contains none, INT is based on successive note pairs, and
DIR is based on even longer sequences). By simultaneously
considering all three of these viewpoints during generation,
some level of per-bar temporal coherence is maintained.

5.2 Offline Learned Knowledge
The Offline Learned Knowledge Component (OLK) performs
the task of learning prior to real-time solo trading. To learn,
the computer first watches the musician improvise, record-
ing what they play while “warming up” on top of a desired
harmony. An unsupervised learning algorithm then uses this
training data to construct an abstract probabilistic model of
its user by arranging the corresponding histograms into dif-
ferent clusters in such a way that these clusters are most
likely to have explained how the data was generated (de-
tailed in Section 6.1).

When BoB then goes back online to trade solos, this learned
model provides a crucial, customized arsenal of musical skills:
abstract perception (what cluster or class is a histogram as-
sociated with?) and generation (generate a new histogram
for a specific cluster).3 During real-time operation, the His-
tory Component serves to define the current musical envi-
ronment. Specifically, as shown in Figure 4, history keeps
a scratch space of what cluster yi and likelihood li are per-
ceived for VLT xi. For a 4-bar solo, this corresponds to
tuples < x1, y1, l1 > through < x4, y4, l4 >.

5.3 The Perception Component
As shown in Figure 3, the Perception Component determines
what underlying mode (class) the musician is most likely to
be using in their generation of a bar. Because a probabilistic
model of the user has been built, this process involves not
only an estimate of the most likely mode y ∈ {1, 2, . . . , C}
that the musician is drawing their creative energies from, but
also identifies how likely it is l that this estimate is correct.
This latter information is of particular musical interest be-
cause it can be interpreted as a measure of how unsurprising
(expected, average) the musician’s current mode use was.

3While this approach assumes that the distribution over the
musician’s musical behavior is identical during warmup and
solo trading, this assumption can be relaxed if incremental
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Figure 3: Perceiving a Musician’s Fours

In restricting ourselves to a small number of clusters (≈ 5
per viewpoint), this mapping from note-sequences to mode
is many-to-one; thus, generalization is a given. That this
generalization captures the salient aspects of an improvi-
sor’s art form entirely depends upon how suitably both the
representation scheme for encoding solo and the learning al-
gorithm’s bias are.

5.4 The Generation Component
The Generator is responsible for finding an appropriately
constrained, yet novel and stimulating, solo response. As
shown in Figure 4, Generation (the bold ellipse) is divided
into four sub-components. The important point to note here
is that the search for BoB’s solo response, VLTs x′1 through
x′4, is constrained by both the musician’s most recent solo
and BoB’s customized abstract perception of that solo. The
Generator uses this information to control its search through
the space of possible pitch-sequences by using the goals y′j =
yj and l′j ≈ lj (note the relationship between bars j and j ′

in this figure. The rhythm chosen for this pitch-sequence is
closely related to the seed rhythm xj.

Generation is search because there is no trivial method for
inventing a pitch-sequence with a specific lj . Real-time is-
sues require that the search is tightly coupled to this goal
(per-bar, ≈ 2 seconds of computation are available). This
abstract-driven search amounts to inverting the many-to-one
perceptual mapping that was learned. BoB performs this in-
version by introducing constrained randomness. Specifically,
improvised melodic response is modelled as a spontaneous,

online techniques are incorporated.

highly constrained process – a random search through the
space of possible solos that committed practice builds [12].
In BoB, committed practice is embodied in the probabilistic
user model.

6. LEARNING MUSICAL ABSTRACTION
We now address the most crucial aspect of IMC – how to
learn an appropriate model of user-specific musical abstrac-
tion from these unlabelled histograms. We first detail the
unsupervised learning algorithm that is used to infer a gen-
erative model for this data, which allows both abstract per-
ception (which cluster does this histogram belong to?) and
generation (generate a new histogram from this cluster). We
then outline a method for generating a new solo (VLT) for
a given abstract cluster and likelihood.

6.1 Unsupervised Learning
We developed a mixture model of multinomials4 (vMn) whose
parameters were determined by maximizing the likelihood of
observing the training set’s local trends in surface structure
(per-bar PC, INT and DIR histograms). Note that these
histograms are necessarily sparse; there are simply fewer
counts than there are bins, the price paid for per-bar reso-
lution. For complete details regarding the algorithm and its
application to sparse histograms, see [23].

Briefly, vMn assumes that each histogram was independently
generated by one of C different component distributions (ab-
stract playing modes), where each component controls the
likelihood of seeing counts in certain bins. Because the train-
ing set’s “true” labelling is unknown, the optimization of
likelihood is non-linear; multiple local optima exist. A vari-
ant of the expectation-maximization algorithm was devel-
oped to estimate both a likely clustering for the histograms
and estimates for the model’s parameters. For each view-
point PC, INT and DIR, a separate model was built (which
assumes there is no correlation between the counts in differ-
ent views).

This algorithm was applied to the improvisations of bebop

4The multinomial is probability distribution for modelling
discrete, nominal random variables.



Step Subcomponents
Involved

Action

1 Seed VLT xj is used to seed the search and contains a corresponding number of leaves n. For simplicity,
assume that x′j is an exact copy (or slight mutation) of xj’s rhythm.

2 OLK/Goal Construct markov chain M for which component yj ’s PC, INT and DIR and parameters are used
to define the probabilities along edges.

3 Goal Construct pitch-sequences by taking n-sized random walks through M.
4 OLK/Goal Select that pitch-sequence for which l′j and lj are closest.
5 Realization Assign this pitch-sequence to the leaves of x′j.

Table 1: A Conflict Free Generative Algorithm.

saxophonist Charlie Parker [21] in order to demonstrate the
promise of our approach. Namely, very reasonable musical
behavior was embedded within both the model’s parameter
estimates and the histogram clusterings. For example, per
bar, Parker tends to select notes that correspond to relevant
bebop scales, which is impressive when one considers the sys-
tem was told nothing about bebop, especially given the fact
that these scales were invented in part to explain his play-
ing style [3]. Observing the abstract clustering of PC versus
bar, it is also evident that the system perceived Parker as
having employed different, musically appropriate scales in
different parts of the twelve-bar blues progression. To cite
another example, an analysis of INT and DIR reveals that
Parker tends to play either straight runs of distinct pitched
notes (his trademark “runs of eighth’s”) or note-sequences
with repeated (often syncopated) note-pitches.

However most important is the component generative pa-
rameter estimates themselves. Consider for a moment the
example concerning the bebop scales. Learning did not sim-
ply say “scale s was used in bar so-and-so.” Rather, scale
s is embedded in the more complex representation that de-
scribes how much individual pitch-classes were preferred by
Charlie Parker in that scalar mode. In fact, it was the re-
searcher who interpreted this complex representation as the
(simpler) corresponding scale in order to demonstrate the
power with which this approach learns musical abstraction.

6.2 Abstract-Driven Generation
A component’s estimated parameters provide important clues
that can be used in generation, namely what type of local
surface-structure a particular abstraction is expected to dis-
play. The difficulty that remains is to develop a search pro-
cedure that quickly finds a note-sequence that realizes each
aspect of these multiple viewpoints.

In the past, ad-hoc random hill-climbing methods were em-
ployed to encourage pitch-sequences to have certain proper-
ties [20]. Unfortunately, when stochastic change to a pitch
was made, there was no explicit attempt to reconcile the
conflicts that arose from the multiple, often conflicting his-
togram viewpoints. For example, whereas interval-based
events depend on successive note pairs, pitch class depends
on single notes. While one stochastic choice for pitch may
improve intervallic likelihood, it might also decrease pitch-
class likelihood.

We are now developing a generation algorithm for which
these conflicts are resolved. In particular, as long as we

are willing to assume that the parameters that control one
viewpoint do not affect the others, we can directly sample
pitch-sequences from a distribution that, on average, pro-
duces sequences that exhibit all of the desired tendencies.
This sampling scheme merely requires a particular set of
PC, DIR and INT generative parameters, and it is efficient
(computation time is proportional to sequence length).

We only have space here to briefly highlight the components
of this generative algorithm, shown in Table 1 and detailed
in [22]. In this table, the closeness of lj and l′j is used to
estimate the “fitness” of a given pitch-sequence. We then
assume that a constant number of random walks through
M (≈ 100) provides an acceptable range of likelihoods from
which to choose l′j.

Figure 5 is provided to give insight into how this algorithm
reverses the many-to-one perceptual mapping. While there
are many note-sequences that belong to a specific mode,
by restricting oneself to a specific rhythm, one narrows the
range of possibilities. Restricting oneself to pitch-sequences
within a certain range of likelihoods narrows the range even
further.

..

.

Desired Liklihood l_j

Desired Class y_j

Seed: Rhythm

Figure 5: Abstract Generation: Search

6.2.1 Evaluation
When this algorithm is complete, the interesting empirical
work will begin. Specifically, attempts will be made to quan-
tify the degree to which BoB appears to realize the differ-
ent playing modes employed by it’s user. For example, this
pursuit could involve: measuring the degree to which the
user can identify the different modes in BoB’s improvisa-
tions; observing the effect that C has on on identifiability
and novelty; etc.



6.2.2 Limitations
One assumption made by this approach is that an ade-
quately stimulating response will result when BoB reuses
the musician’s most recent abstractions to guide the search
for response. Creatively speaking, this is BoB’s biggest lim-
itation. After all, is not the agent’s role reduced to one of
imitating, rather than complimenting, the musician?

Yes and no. On the one hand, perhaps accommodating the
musician’s intent, even if they are not a particularly good or
interesting improvisor, may provide them with a more be-
lievable and engaging experience than they would have had
had BoB chosen to ignore their behavior, instead responding
like some virtuoso. On the other hand, aside from generat-
ing previously unheard of note-sequences for abstraction y,
this algorithm does not initiate its own distinct aesthetic
agenda. A straight forward extension to OLK may amelio-
rate this drawback: add an additional layer of learning. For
example, learn to predict a new sequence of goals y′1 through
y′4 from the previous sequence of goals y1 through y4.

7. CONCLUSION
In this paper, a new domain for agents, that of improvisa-
tional melodic companionship – in particular, interactively
trading four bar solos – has been presented. Because success
in this domain is measured by how fun the agent is to play
with, the agenda in BA research is immediately relevant.
However, as music personality does not support operational
authoring, methods for inferring musical personality from a
user’s unlabelled musical examples were developed.

Most important, we have built a real agent, BoB, who shows
promising ability to aesthetically configure itself to its musi-
cian in an unsupervised manner. Soon BoB will be complete
– all loops between the musician, perception and generation
closed – at which point the most interesting part of this ex-
periment begins. With a working model, those aspects of
the architecture which best provide an illusion of musical
companionship can be investigated. Ultimately, BoB’s mea-
sure of success will be how well it plays with (rather than
for) its user. Or, is the band really OUT of the box?
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