
Algorithm Evolution for Face Recognition:
What Makes a Picture Difficult

Astro Teller and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

astro@cs.cmu.edu mmv@cs.cmu.edu

ABSTRACT

One of the classic problems in computer vision is the face recognition problem. In general
this problem can take on a wide variety of forms, but the most common face recognition problem
is “Who is this a picture of?” Evolutionarycomputation has, in the past, been applied indirectlyto
this problem through techniques like learning Neural Networks. This paper introduces a Genetic
Programming style approach to learning algorithms that directly investigate face images and are
coordinated into a face recognition system. Through a series of experiments, we will show that
evolved algorithms can accomplish the face recognition task. We will also highlight several
pitfalls and misconceptions surrounding face recognition as a learning problem.

1. Introduction

Face recognition has been recognized for years now
as an important task in computer vision and an excel-
lent area in which machine learning can participate.
In the past, works like [2] and have used evolution-
ary computation to help another learning technique
learn face recognition. The purpose of this paper
is three fold. First, we aim to show that genetic
programming can be used to learn algorithms that
directly discriminate among face images for a face
recognition application. Second, we will show that
images that appear to be extremely difficult to clas-
sify, can have underlying and unwanted simplicity.
And third, we will suggest, through the fourth of
our four experiments, that the traditional method of
removing this unwanted underlying simplicity can
also remove part of the interest of the problem.

These goals stem from two basic beliefs of ours.
The first is that computer vision can, in many cases,
benefit from the aid of machine learning. We believe
this both because machine learning has made signifi-
cant advances in computer vision problems (e.g., [7])
and because there seem to be more problems with
more task specific details than humans will ever
be able to understand and write individual specific
programs to conquer. Filling in such non-intuitive
details is exactly the sort of way machine learning
can be of help to the field of computer vision. Our
second belief is that machine learning, especially

in the service of computer vision, has not yet well
explored a wide variety of learning techniques on
problems where the learning ramifications are well
understood. For example, the overwhelming ma-
jority of past work in learned face recognition has
been images cropped to just the face and recognized
by a Neural Network. Both of these choices, while
not wrong, have other options. These two beliefs
gave birth to this paper subject: the application of a
GP-variant called PADO to a face recognition study
across several related databases.

This paper reports on experiments using a rel-
atively new database of face images developed at
CMU. Face databases such as the Olivetti, Usenix,
or MIT image sets are publicly available and have
all been the topic of multiple papers. A good mosaic
address for getting both the data and related papers
is http://www.cs.rug.nl/~peterkr/FACE/face.html. In
our work, none of these “older” databases were used
because the faces they contain have a restricted set
of head movements and facial expressions. The new
CMU face images have a broader range. In addi-
tion, most of the “older” face databases need to be
preprocessed in order to make appropriate learning
experiments. This point will be discussed more in
Section 4. For the rest of this paper, the MIT face
database will be used as the dominant example of an
established database. It was chosen for this purpose
only because it has probably been the heaviest source



of face recognition papers in the last 5 years.
Our face recognition work is done in our PADO

learning architecture. PADO (Parallel Algorithm
Discovery and Orchestration) is a learning architec-
ture that incorporates a form of Genetic Program-
ming(GP) [11]. Section 2 describes PADO’s process
of algorithm evolution and algorithm orchestration
for signal understanding. There have been some
examples of GP applied to bitmaps (usually font
bitmaps) in order to do classification (e.g.,[1, 5]).
In between bitmaps and full resolution images are
projects like [4] that applied GP to a subset of black
and white silhouettes of a person and tried to learn
where one of the hands was. Even in the domain of
full video, learned aids to object recognition can be
seen in works like [6] and [9].

This paper is organized as follows: Section 2
sketch PADO’s process of algorithm evolution and
orchestration. Section 3 gives a few details on the
language in which PADO algorithms are evolved.
Section 4 proceeds through a series of 4 experiments
using PADO to accomplish face recognition in full
video images. Finally, Section 5 draws conclusions.

2. The PADO Architecture

Pictures of faces are image signals. Classification can
be done by algorithms that analyze signals. PADO
learns these algorithms through evolution. The pur-
pose of this section is to provide formal explanation
to support the following experiments. We will first
sketch the PADO architecture and its extension of ge-
netic programming (GP). Then, Section 3 will detail
exactly what kind of programs PADO is evolving and
what access these programs have to the experimental
signals.

The goal of the PADO architecture is to learn to
take signals as input and output correct class labels.
When there are

�
classes to choose from, PADO

starts by learning
�

different “systems”. System � is
responsible for taking a signal as input and returning a
confidence that class � is the correct label. System �
is built out of several programs learned by PADO.
Each of these programs does exactly what the system
as a whole does: it takes a signal as input and returns
a confidence value that label � is the correct label.
PADO performs object recognition by orchestrating
the responses of the � programs within each system
and then the

�
systems. System � is built from the

� programs that best (based on the training results)
learned to recognize the instances of class � . The
� responses that the � programs return on seeing a
particular image are all weighted and their weighted
average of responses is interpreted as the confidence

that System � has that the signal in question contains
an object from class � . How these orchestration
weights (also used to orchestrate the

�
systems) are

actually changed and used can be seen in [11]. Fig-
ure 1 summarizes the main functionality of PADO’s
evolutionary learning of signal understanding algo-
rithms.

function PADO(Pop, signals, � , � )
inputs:

Pop, a set of � randomly generated algorithms
signals, a set of training signals
� , the number of classes
� , # of algorithms from each class to return

Repeat
Loop over signals

EvaluateFitness(Pop,signal� )
Split Pop into � distinct subpools of size �
	��

based on fitness
Loop � from 1 to �

MatingPool ��
 Reproduce � SubPool� )
NewSubPop��
 Recombine � MatingPool � )

population 
�� NewSubPop�
Until return requested

return the most fit � algorithms from each subpool

Fig. 1: PADO’s algorithm evolution learning process.

PADO evolves programs in a PADO-specific
graph structured language. At the beginning of a
learning session, the main population is filled with �
programs that have been randomly generated using a
grammar for the legal syntax of the language. All
programs in this language are constrained by the
syntax to return a number that is interpreted as a confi-
dence value between some minimum confidence and
some maximum confidence. Crossover and mutation
in PADO are more complicated than their standard
forms in genetic algorithms or GP. Both the crossover
and mutation operators are “SMART” operators that
are co-evolved with the main population, as we de-
scribe in [10, 11].

3. PADO Program Language

Figure 2 sketches the structure of a PADO program.
Each program is constructed as an arbitrary directed
graph of nodes. As an arbitrary directed graph of�

nodes, each node can have as many as
�

out-
going arcs. These arcs indicate possible flows of
control in the program. In a PADO program each
node has two main parts: an action and a branch-
decision. Each program has an implicit stack and an
indexed memory. All actions pop their inputs from



this implicit stack and push their result back onto
the implicit stack. These actions are the equivalent
of GP’s terminals and non-terminals. For example,
the action “6” simply pushes 6 onto the parameter
stack. The action “Write” pops arg1 and arg2 off
the stack and writes arg1 into Memory[arg2] after
pushing Memory[arg2] onto the stack. Evaluating
a GP tree is effectively a post-order traversal of the
tree. Because there are many arcs coming into a
particular node in the PADO language we evaluate
a part of the graph (indeed, the whole graph) as a
chronological, not structural, post-order traversal of
the graph.

L11

L91
L17

X

Main Program
q

mq

mX

Private ADF(s)

A

A

A

Indexed Memory

Fig. 2: The general structure of a new PADO program.

After the action at node
�

is executed, an arc is
taken to a new node. The branch-decision function
at the current node makes this decision. Each node
has its own branch-decision function that may use the
stack top, the temporally previous node action type,
the memory, and constants to pick an arc.

There are several special nodes shown in Fig-
ure 2. Node � is the start node. It is special in
no other way than it is always the first node to be
executed when a program begins. Node � is the
stop node. When this node is reached, its action
is executed and then the program halts. When a
program halts or is halted at the time-threshold, its
response is considered to be the current value residing
in some particular memory location (e.g., response =
Memory[0]). If a program halts sooner than a pre-
set time threshold, it is started again at its start node
(without erasing its memory or stack) to give it a
chance to revise its confidence value. A weighted
average of the responses that the program gives on a
particular execution is computed and interpreted as
the answer.

Node � executes the private ADF program (start-
ing at ��� ) as its action. It then executes its branch-
decision function as normal. The ADF programs
associated with each Main program bear similarity
to the concept of ADF’s (automatically defined func-
tions) [5]. However, PADO ADFs do not take a

specific number of arguments but evolve to use what
it they need from the incoming argument stack. In
addition, they have internal loops and recursion.

Here is a brief summary of the language primi-
tives and their effects:
Algebraic Primitives: � + - * / NOT MAX MIN �
Memory Primitives: � READ WRITE �
Branching Primitives: � IF-THEN-ELSE PIFTE �
PIFTE is a probabilistic conditional that takes 3 ar-
guments. A random number is chosen and if it is less
than arg1 then arg2 is returned, else arg3 is returned.
Signal Primitives: � PIXEL, LEAST, MOST, AVER-
AGE, VARIANCE, DIFFERENCE �
These are the language functions that can access the
signals. In order to demonstrate PADO’s power and
flexibility, these same primitives were used for both
image and sound data [12]. PIXEL returns the inten-
sity value at that point in the image (or sound). The
other five “signal functions” each pop the top four
values off the stack. These four numbers are inter-
preted as (X1,Y1) and (X2,Y2) specifying a rectangle
in the image. If the points specify a negative area
then the opposite interpretation was taken and the
function was applied to the positive area rectangle.
LEAST, MOST, AVERAGE, VARIANCE, and DIF-
FERENCE return the respective functions applied
to that region in the image. DIFFERENCE is the
difference between the average values along the first
and second half of the line (X1,Y1,X2,Y2).
Routine Primitives: � ADF LIBRARY[i] �
These are programs that can be called from the Main
program. In addition, they may be called from each
other. Because they are programs, and not simple
functions, the effect they will have on the implicit
stack and memory before completion (if they ever
stop) is unknown. In particular, because both routine
types are arbitrarily complex programs, each has an
arbitrary number of arguments.

4. The Experiments

The images used in these experiments were taken
from a new CMU face database set, created under
the supervision of Tom Mitchell. These images are
head and shoulder shots of 20 different people in a
natural (i.e. extremely cluttered) office background.
The database has 28 images of each person. So there
are at total of 560 256x256 eight bit greyscale images
in this database. Each set of 28 images has a wide
range of facial expressions, head positions, and head
rotations. This image variance range is, in fact, wider
than the popular face databases such as the Olivetti
and the MIT face sets that the following experimental
databases are loosely compared against. Figures 3,



5, 6, and 7 show example face images from both the
training and testing sets for the respective four exper-
iments. As these figures show, each image contains
exactly one person. The more difficult problem of
multiple faces in a single image, while an important
part of face recognition, is not the focus of this work.

As was just mentioned, the CMU faces database
contains 28 images each for 20 different people. For
each class (person) half the images were set aside as a
training set and the other half were saved for testing.
These sets were chosen randomly. In fact, of the 14
images of each person that were saved for testing, 4
were used for tuning the orchestration weights and
the other 10 were used to actually measure PADO’s
generalization to completely unseen examples.

A population of 2800 PADO programs were used
and each program was given 30 milliseconds to ex-
amine the training image and produce a confidence
on which its fitness was then based. During each gen-
eration, the population is organized into

�
subpools,

one for each of the
�

face classes. The confidence
returned by a program � member of subpool � ex-
amining image � is the confidence � has that � is
a member of class � . Each of the 5 runs that was
done for each of the four experiments described in
this paper was allowed to continue until generation
150. A single run (including testing at the end of each
generation) took 2 days on a DECstation5000/20. At
the end of each generation, the seven best algorithms
from each of the 20 subpools were extracted and
orchestrated into a complete PADO system which
was then shown 200 images it had never seen before.

Experiment A
Initially, we tried PADO out on the unaltered CMU
face database. Figure 3 shows two training and two
testing example images (out of 560).

Figure 4 shows the percentage of test images that
the orchestrated PADO system of most fit algorithms
correctly classifies at the end of each generation. The
four curves in Figure 4 refer to the four different
experiments we report in this paper. The experiments
are referred to as experiments A, B, C, and D and the
four curves are marked accordingly. For example,
curve A is the results we obtained in experiment A,
using the untampered images.

Curve A in Figure 4 shows that by generation
150 PADO has learned to discriminate between the
unseen face images with about 92% accuracy. These
results are better than the only others currently re-
ported on these images [8]. In fact, this 92% recog-
nition rate is comparable to the best rates reported
on the MIT face database which is, to the causal
observer, a simpler set of faces to distinguish [3].

Experiment A: Sample Train Images

Experiment A Sample Test Images

Fig. 3: Random train and test images.

Experiment B
It is a well known evolutionary computation maxim
that simple solutions are often evolved for hard-
looking problems. In particular, many of the publicly
available face databases suffer from this problem [3].
In order to test whether the same inadvertent sim-
plicity occurs in the CMU face database, our second
experiment involved reusing the same database but
placing a black mask over the central half of each
image (see Figure 5). Because faces vary so widely
about the images, a portion of a face can occasion-
ally be seen outside the black square. In general,
however, this experiment tests how PADO learns to
perform without the feature that was supposed to
uniquely determine the image class.

As we can see from curve B of Figure 4, surpris-
ingly, the faces do not matter much. By generation
150, the face recognition rate in this experiment is
approximately 89%, only 3% lower than when the
faces were included. These findings for the CMU
face database are analogous to similar discoveries
about other face databases in which the face is an
unnecessary feature, (e.g., the MIT face set) [3].

Experiment C
The next logical step is one that many other exper-
imenters have followed: isolate the faces to force
the learner to concentrate on them (e.g., [13]). This
approach has two obvious effects, one positive and
one negative. The positive effect is that experiments
do really concentrate better (if not perfectly) on the



0

20

40

60

80

100

0 20 40 60 80 100 120 140

Object Recognition % Correct

A
B
C
D

Random

Fig. 4: The Face Recognition % correct for each generation. Test
results of experiments A, B, C, D.

faces. The negative effect, rarely discussed, is that
part of the learning problem should be to find the face
in the image. This aspect of the problem has been
removed when the images are cropped to remove the
background. If the background “gives away” the
answer, one solution is to constrain the problem by
removing the background. A more elegant solution
is, perhaps, to get more realistic data.

Only because this face cropping is so often done
for face recognition experiments, our third experi-
ment did something similar for comparison. Instead
of reducing the image to a smaller image that cropped
the face perfectly, we simply reversed the mask from
the previous problem so that background was masked
and the faces were mostly visible (see Figure 6).

This problem is slightly harder than the cropping
equivalent because the learner must learn to ignore
the black area (absent in experiments like [3, 13]). As
can be seen in curve C of Figure 4, the recognition
rate climbs to approximately 70% by generation 150
under these conditions. Again, this is comparably to
learned recognition rate results on cropped images
like those from the MIT face set (e.g., [3]).

Experiment D
Given the results of experiments A, B, and C, our
final experiment seemed a clear next step, though
we have been unable to find analogies to it in the
literature. This final step is: instead of masking
the background, why not simply randomly exchange
them between images? The result of this is that

Experiment B: Sample Train Images

Experiment B Sample Test Images

Fig. 5: Random train and test images.

the images are as complex as the original images
(thereby avoiding the negative effect of cropping
or masking mentioned above) but the answer is not
“given away” by the background (thereby preserving
the positive effect of cropping) (see Figure 7). While
no substitute for more carefully taken face data, this
background switching yields a more realistic face
recognition problem than does image cropping to the
faces.

Not surprisingly, this problem is harder than the
task of experiment C even though in both cases only
the signal data in the central square correlated to the
correct answer. PADO manages to learn algorithms
that recognize about 56% of the unseen faces by
generation 150. This task is harder because, while the
signal to noise ratio is the same in experiments C and
D, there is no variation in the noise in experiment C,
so there is no misleading correlations for the learner
to find.

5. Conclusion

Previous work has shown that evolutionary computa-
tion can be used to help in the task of face recognition.

The first goal of this paper was to show that
PADO, a variant of genetic programming, can pro-
duce algorithms that directly discriminate between
face images and that PADO can perform on a par
with past face recognition learning projects. This
was shown in Section 4; PADO achieved a 92%
recognition rate distinguishing among 20 different



Experiment C: Sample Train Images

Experiment C: Sample Test Images

Fig. 6: Random train and test images.

face classes.
The second goal of the paper was to show that it

is very difficult to correctly evaluate the difficulty of
face images. The CMU face image sets looks more
difficult than many of the traditional face databases.
Experiment B showed that it is not.

And our third goal was to suggest, through ex-
periment D and the difference between curves C and
D in Figure 4, that traditional methods for “making
the problem harder” (e.g., image cropping), have
partially emasculated the problem.

We are currently producing a database of face im-
ages (http://www.cs.cmu.edu/~astro/FacePage.html) that
really have the properties the face recognition task
implicitly defines (i.e., vacation-style photos). We
believe that, while still young, the marriage of genetic
programming and computer vision promises a bright
future for the face recognition task.

References

[1] David Andre. Automatically defined features: The simul-
taneous evolution of 2-dimensional feature detectors and an
algorithm for using them. In K. Kinnear, editor, Advances
In Genetic Programming, pages 477–494. MIT Press, 1994.

[2] P. J. B. Hancock and L. S Smith. GANNET: Genetic design
of a neural net for face recognition. In H-P. Schwefel and
R. Ma̋nner, editors, Proceedings of the Conference on Par-
allel Problem Solving from Nature. Springer Verlag, 1991.

[3] N. Intrator, D. Reisfeld, and Y. Yeshurun. Face recognition
using a hybrid supervised/unsupervised neural network. In
Proceedingsof the Face and Object RecognitionConference,
1995.

Experiment D: Sample Train Images

Experiment D Sample Test Images

Fig. 7: Random train and test images.

[4] M. Johnson. Evolving visual routines. In R. Brooks and
P. Maes, editors, Artificial Life IV. MIT Press, 1994.

[5] John Koza. Genetic Programming II. MIT Press, 1994.

[6] T. Nguyen and T. Huang. Evolvable 3d modeling for model-
based object recognition systems. In K. Kinnear, editor,
Advances In Genetic Programming. MIT Press, 1994.

[7] Dean Pomerleau. Neural Network Perception for Mobile
Robot Guidance. PhD thesis, Carnegie Mellon University
School of Computer Science, 1992.

[8] Jeff Shufelt and Tom Mitchell. Personal correspondence. In
Carnegie Mellon University, 1995.

[9] Walter A. Tackett. Genetic programming for feature dis-
covery and image discrimination. In Stephanie Forrest,
editor, Proceedings of the Fifth International Conference
on Genetic Algorithms. Morgan Kauffman, 1993.

[10] Astro Teller. Evolving programmers: The co-evolution
of intelligent recombination operators. In K. Kinnear and
P. Angeline, editors, Advances in Genetic Programming II.
MIT Press, 1996.

[11] Astro Teller and Manuela Veloso. PADO: A new learning
architecture for object recognition. In Katsushi Ikeuchi and
Manuela Veloso, editors, Symbolic Visual Learning. Oxford
University Press, 1995.

[12] Astro Teller and ManuelaVeloso. Program evolution for data
mining. In Sushil Louis, editor, The International Journal
of Expert Systems. Third Quarter. Special Issue on Genetic
Algorithms and Knowledge Bases. JAI Press, 1995.

[13] P. Viola. Feature-based recognition of objects. In AAAI FSS
on Machine Learning in Computer Vision. AAAI, 1993.


