Algorithm Evolution for Face Recognition:
What Makes a Picture Difficult

Astro Teller and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

astro@cs.cmu.edu

mmv@cs.cmu.edu

ABSTRACT

One of the classic problems in computer vision is the face recognition problem. In genera
thisproblem can take on awide variety of forms, but the most common face recognition problem
is“Whoisthisapictureof?” Evolutionary computation has, inthepast, been appliedindirectlyto
thisproblem through techniqueslikelearning Neural Networks. This paper introducesa Genetic
Programming style approach to learning algorithmsthat directly investigate face imagesand are
coordinated into a face recognition system. Through a series of experiments, we will show that
evolved agorithms can accomplish the face recognition task. We will aso highlight several
pitfalls and misconceptions surrounding face recognition as a learning problem.

1. Introduction

Face recognition has been recognized for years now
asan important task in computer vision and an excel-
lent area in which machine learning can participate.
In the past, works like [2] and have used evolution-
ary computation to help another learning technique
learn face recognition. The purpose of this paper
is three fold. First, we aim to show that genetic
programming can be used to learn agorithms that
directly discriminate anong face images for a face
recognition application. Second, we will show that
images that appear to be extremely difficult to clas-
sify, can have underlying and unwanted simplicity.
And third, we will suggest, through the fourth of
our four experiments, that the traditional method of
removing this unwanted underlying simplicity can
also remove part of theinterest of the problem.
These goals stem from two basic beliefs of ours.
Thefirst isthat computer vision can, in many cases,
benefit from the aid of machinelearning. Webelieve
this both because machine | earning has made signifi-
cant advancesin computer visionproblems(e.g., [7])
and because there seem to be more problems with
more task specific details than humans will ever
be able to understand and write individual specific
programs to conquer. Filling in such non-intuitive
details is exactly the sort of way machine learning
can be of help to the field of computer vision. Our
second belief is that machine learning, especialy

in the service of computer vision, has not yet well
explored a wide variety of learning techniques on
problems where the learning ramifications are well
understood. For example, the overwhelming ma
jority of past work in learned face recognition has
been images cropped to just the face and recognized
by a Neura Network. Both of these choices, while
not wrong, have other options. These two beliefs
gave birth to this paper subject: the application of a
GP-variant called PADO to aface recognition study
across several related databases.

This paper reports on experiments using a rel-
atively new database of face images developed at
CMU. Face databases such as the Olivetti, Usenix,
or MIT image sets are publicly available and have
all been the topic of multiple papers. A good mosaic
address for getting both the data and related papers
is http://mww.cs.rug.nl/~peterkr/FACE/face.html. In
our work, none of these “older” databases were used
because the faces they contain have a restricted set
of head movements and facial expressions. The new
CMU face images have a broader range. In addi-
tion, most of the “older” face databases need to be
preprocessed in order to make appropriate learning
experiments. This point will be discussed more in
Section 4. For the rest of this paper, the MIT face
database will be used as the dominant example of an
established database. It was chosen for this purpose
only because it has probably been the heaviest source

of face recognition papersin thelast 5 years.

Our face recognition work is donein our PADO
learning architecture. PADO (Paralel Algorithm
Discovery and Orchestration) is alearning architec-
ture that incorporates a form of Genetic Program-
ming(GP) [11]. Section 2 describes PADO'’s process
of agorithm evolution and algorithm orchestration
for signa understanding. There have been some
examples of GP applied to bitmaps (usually font
bitmaps) in order to do classification (e.g.,[1, 5]).
In between bitmaps and full resolution images are
projectslike [4] that applied GP to a subset of black
and white silhouettes of a person and tried to learn
where one of the hands was. Even in the domain of
full video, learned aids to object recognition can be
seen inworkslike [6] and [9].

This paper is organized as follows: Section 2
sketch PADO's process of agorithm evolution and
orchestration. Section 3 gives a few details on the
language in which PADO agorithms are evolved.
Section 4 proceeds through a series of 4 experiments
using PADO to accomplish face recognition in full
video images. Finaly, Section 5 draws conclusions.

2. The PADO Architecture

Picturesof facesareimage signals. Classificationcan
be done by agorithms that analyze signals. PADO
learns these al gorithms through evolution. The pur-
pose of this sectionisto provide formal explanation
to support the following experiments. We will first
sketchthe PADO architecture and itsextension of ge-
netic programming (GP). Then, Section 3 will detail
exactly what kind of programsPADOisevolvingand
what access these programs have to the experimental
signals.

The god of the PADO architectureisto learn to
take signals as input and output correct class labels.
When there are C classes to choose from, PADO
starts by learning C different “systems’. System; is
responsiblefor taking asignal asinput and returninga
confidence that class 7 isthe correct label. System,
is built out of severa programs learned by PADO.
Each of these programs does exactly what the system
asawholedoes: it takesasigna asinput and returns
a confidence value that labdl 7 is the correct labd.
PADO performs object recognition by orchestrating
the responses of the S programs within each system
and then the C systems. System; is built from the
S programs that best (based on the training results)
learned to recognize the instances of class Z. The
S responses that the § programs return on seeing a
particular image are al weighted and their weighted
average of responsesisinterpreted as the confidence

that System; has that the signal in question contains
an object from class Z. How these orchestration
weights (also used to orchestrate the C systems) are
actually changed and used can be seen in [11]. Fig-
ure 1 summarizes the main functionality of PADO’s
evolutionary learning of signal understanding algo-
rithms.

function PADO(Pop, signals, C, 5)
inputs:
Pop, a set of P randomly generated algorithms
signals, a set of training signals
C', the number of classes
S, # of algorithms from each classto return
Repeat
Loop over signals
EvaluateFitness(Pop,signal,)
Split Pop into C distinct subpoolsof size P/C
based on fitness
Loop: from1lto C
MatingPool, — Reproduce(SubPool;)
NewSubPop, — Recombine(MatingPool,)
population «— ~NewSubPop,
Until return requested
return the most fit S agorithms from each subpool

Fig. 1: PADO's algorithm evolution learning process.

PADO evolves programs in a PADO-specific
graph structured language. At the beginning of a
learning session, the main populationisfilled with P
programsthat have been randomly generated using a
grammar for the legal syntax of the language. All
programs in this language are constrained by the
syntax toreturnanumber that isinterpreted asaconfi-
dence val ue between some minimum confidence and
some maximum confidence. Crossover and mutation
in PADO are more complicated than their standard
formsin genetic a gorithmsor GP. Boththe crossover
and mutation operators are “SMART” operators that
are co-evolved with the main population, as we de-
scribein [10, 11].

3. PADO Program Language

Figure 2 sketches the structure of a PADO program.
Each program is constructed as an arbitrary directed
graph of nodes. As an arbitrary directed graph of
N nodes, each node can have as many as N out-
going arcs. These arcs indicate possible flows of
control in the program. In a PADO program each
node has two main parts: an action and a branch-
decision. Each program has an implicit stack and an
indexed memory. All actions pop their inputs from

this implicit stack and push their result back onto
the implicit stack. These actions are the equivalent
of GP's terminas and non-terminals. For example,
the action “6” simply pushes 6 onto the parameter
stack. The action “Write’ pops argl and arg2 off
the stack and writes argl into Memory[arg2] after
pushing Memory[arg2] onto the stack. Evauating
a GP tree is effectively a post-order traversal of the
tree. Because there are many arcs coming into a
particular node in the PADO language we evauate
a part of the graph (indeed, the whole graph) as a
chronological, not structural, post-order traversal of
the graph.

Main Program

osckefe
&6 &6

Fig. 2: Thegenera structure of anew PADO program.

Private ADF(s)
® OO
O®

Indexed Memory
FEEETrrrrrr

After the action a node ¢ is executed, an arc is
taken to anew node. The branch-decision function
at the current node makes this decision. Each node
hasitsown branch-decisionfunctionthat may usethe
stack top, the temporaly previous node action type,
the memory, and constantsto pick an arc.

There are severa specia nodes shown in Fig-
ure 2. Node ¢ is the start node. It is specia in
no other way than it is always the first node to be
executed when a program begins. Node X is the
stop node. When this node is reached, its action
is executed and then the program hats. When a
program halts or is halted at the time-threshold, its
responseisconsideredto bethecurrent valueresiding
in some particular memory location (e.g., response =
Memory[Q]). If a program halts sooner than a pre-
set time threshold, it is started again at its start node
(without erasing its memory or stack) to give it a
chance to revise its confidence value. A weighted
average of the responses that the program giveson a
particular execution is computed and interpreted as
the answer.

Node A executesthe private ADF program (start-
ing at ¢,,) asitsaction. It then executes its branch-
decision function as norma. The ADF programs
associated with each Main program bear similarity
to the concept of ADF's (automatically defined func-
tions) [5]. However, PADO ADFs do not take a

specific number of arguments but evolveto use what
it they need from the incoming argument stack. In
addition, they have internal loops and recursion.
Here is a brief summary of the language primi-
tivesand their effects:
Algebraic Primitives: {+-*/NOT MAX MIN}
Memory Primitives. {READ WRITE}
Branching Primitives. {IF-THEN-ELSE PIFTE}
PIFTE is a probabilistic conditional that takes 3 ar-
guments. A random number ischosen and if itisless
than argl then arg2 isreturned, elsearg3isreturned.
Signal Primitives: {PIXEL, LEAST, MOST, AVER-
AGE, VARIANCE, DIFFERENCE}
These are the language functionsthat can access the
signals. In order to demonstrate PADQO'’s power and
flexibility, these same primitives were used for both
image and sound data[12]. PIXEL returnstheinten-
sity value at that point in the image (or sound). The
other five “signa functions’ each pop the top four
values off the stack. These four numbers are inter-
pretedas (X 1,Y 1) and (X2,Y 2) specifying arectangle
in the image. If the points specify a negative area
then the opposite interpretation was taken and the
function was applied to the positive area rectangle.
LEAST, MOST, AVERAGE, VARIANCE, and DIF-
FERENCE return the respective functions applied
to that region in the image. DIFFERENCE is the
difference between the average vaues along thefirst
and second haf of theline (X1,Y1,X2,Y2).
Routine Primitives: {ADF LIBRARYi]}
These are programs that can be called fromthe Main
program. In addition, they may be called from each
other. Because they are programs, and not simple
functions, the effect they will have on the implicit
stack and memory before completion (if they ever
stop) isunknown. In particular, because both routine
types are arbitrarily complex programs, each has an
arbitrary number of arguments.

4. The Experiments

The images used in these experiments were taken
from a new CMU face database set, creasted under
the supervision of Tom Mitchell. These images are
head and shoulder shots of 20 different peoplein a
natura (i.e. extremely cluttered) office background.
The database has 28 images of each person. So there
areat total of 560 256x256 eight bit greyscaleimages
in this database. Each set of 28 images has a wide
range of facial expressions, head positions, and head
rotations. Thisimagevariancerangeis, infact, wider
than the popular face databases such as the Olivetti
andtheMIT face setsthat thefoll owing experimental
databases are loosely compared against. Figures 3,

5,6, and 7 show example face images from both the
training and testing sets for the respective four exper-
iments. As these figures show, each image contains
exactly one person. The more difficult problem of
multiplefaces in a single image, while an important
part of face recognition, is not thefocus of thiswork.

Aswas just mentioned, the CMU faces database
contains 28 images each for 20 different people. For
each class (person) half theimageswere set asideasa
training set and the other half were saved for testing.
These sets were chosen randomly. In fact, of the 14
images of each person that were saved for testing, 4
were used for tuning the orchestration weights and
the other 10 were used to actualy measure PADO'’s
generalization to completely unseen examples.

A populationof 2800 PADO programswere used
and each program was given 30 milliseconds to ex-
amine the training image and produce a confidence
onwhichitsfitnesswasthen based. During each gen-
eration, the popul ationis organized into C' subpools,
one for each of the C' face classes. The confidence
returned by a program X member of subpool I ex-
amining image U is the confidence X hasthat U is
a member of class /. Each of the 5 runs that was
done for each of the four experiments described in
this paper was alowed to continue until generation
150. A singlerun (includingtesting at theend of each
generation) took 2 days on a DECstation5000/20. At
the end of each generation, the seven best algorithms
from each of the 20 subpools were extracted and
orchestrated into a complete PADO system which
was then shown 200 images it had never seen before.

Experiment A

Initialy, we tried PADO out on the unaltered CMU
face database. Figure 3 shows two training and two
testing exampl e images (out of 560).

Figure4 showsthe percentage of test imagesthat
the orchestrated PADO system of most fit algorithms
correctly classifies at theend of each generation. The
four curves in Figure 4 refer to the four different
experimentswereport inthispaper. Theexperiments
arereferred to as experiments A, B, C, and D and the
four curves are marked accordingly. For example,
curve A is the results we obtained in experiment A,
using the untampered images.

Curve A in Figure 4 shows that by generation
150 PADO heas learned to discriminate between the
unseen face images with about 92% accuracy. These
results are better than the only others currently re-
ported on these images [8]. In fact, this 92% recog-
nition rate is comparable to the best rates reported
on the MIT face database which is, to the causal
observer, asimpler set of faces to distinguish[3].

Experiment A: Sample Train Images

Fig. 3: Random train and test images.

Experiment B

It isawell known evolutionary computation maxim
that simple solutions are often evolved for hard-
looking problems. In particular, many of thepublicly
availableface databases suffer from thisproblem [3].
In order to test whether the same inadvertent sim-
plicity occursin the CMU face database, our second
experiment involved reusing the same database but
placing a black mask over the central half of each
image (see Figure 5). Because faces vary so widely
about the images, a portion of a face can occasion-
ally be seen outside the black square. In general,
however, this experiment tests how PADO learns to
perform without the feature that was supposed to
uniquely determine the image class.

Aswe can see from curve B of Figure4, surpris-
ingly, the faces do not matter much. By generation
150, the face recognition rate in this experiment is
approximately 89%, only 3% lower than when the
faces were included. These findings for the CMU
face database are anaogous to similar discoveries
about other face databases in which the face is an
unnecessary feature, (e.g., the MIT face set) [3].

Experiment C

The next logical step is one that many other exper-
imenters have followed: isolate the faces to force
the learner to concentrate on them (e.g., [13]). This
approach has two obvious effects, one positive and
one negative. The positive effect isthat experiments
do really concentrate better (if not perfectly) on the

Object Recognition % Correct

100

80

60

40

20

100 120

Fig. 4: The Face Recognition % correct for each generation. Test
results of experimentsA, B, C, D.

faces. The negative effect, rarely discussed, is that
part of thelearning problem should beto find theface
in the image. This aspect of the problem has been
removed when theimages are cropped to remove the
background. If the background “gives away” the
answer, one solution is to constrain the problem by
removing the background. A more elegant solution
is, perhaps, to get more redlistic data.

Only because this face cropping is so often done
for face recognition experiments, our third experi-
ment did something similar for comparison. Instead
of reducing theimageto asmaller imagethat cropped
theface perfectly, we ssimply reversed the mask from
theprevious problem so that background was masked
and the faces were mostly visible (see Figure 6).

Thisproblemisdightly harder than the cropping
equivaent because the learner must learn to ignore
theblack area (absent inexperimentslike[3, 13]). As
can be seen in curve C of Figure 4, the recognition
rate climbsto approximately 70% by generation 150
under these conditions. Again, thisis comparably to
learned recognition rate results on cropped images
likethose from the MIT face set (e.g., [3]).

Experiment D

Given the results of experiments A, B, and C, our
final experiment seemed a clear next step, though
we have been unable to find analogies to it in the
literature. This fina step is: instead of masking
the background, why not simply randomly exchange
them between images? The result of this is that

Experiment B: Sample Train Images
i 4 e _

Experiment B Sample Test Images
N 4 £ B MR L3

= -

Fig. 5: Random train and test images.

the images are as complex as the original images
(thereby avoiding the negative effect of cropping
or masking mentioned above) but the answer is not
“given away” by the background (thereby preserving
the positiveeffect of cropping) (see Figure7). While
no substitute for more carefully taken face data, this
background switching yields a more redlistic face
recognition problem than doesimage cropping to the
faces.

Not surprisingly, this problem is harder than the
task of experiment C even though in both cases only
the signal datain the central square correlated to the
correct answer. PADO manages to learn algorithms
that recognize about 56% of the unseen faces by
generation 150. Thistask isharder because, whilethe
signal to noiseratio isthe same in experiments C and
D, thereisno variationin the noisein experiment C,
so there is no misleading correlations for the learner
to find.

5. Conclusion

Previouswork has shown that evol utionary computa-
tioncan beused to hel pinthetask of face recognition.

The first goa of this paper was to show that
PADO, a variant of genetic programming, can pro-
duce algorithms that directly discriminate between
face images and that PADO can perform on a par
with past face recognition learning projects. This
was shown in Section 4, PADO achieved a 92%
recognition rate distinguishing among 20 different

Experiment C: Sample Train Images

A

Experiment D Sample Test Images

Fig. 6: Random train and test images.

face classes.

The second god of the paper was to show that it
isvery difficult to correctly evaluate the difficulty of
face images. The CMU face image sets looks more
difficult than many of the traditional face databases.
Experiment B showed that it is not.

And our third goal was to suggest, through ex-
periment D and the difference between curves C and
D in Figure 4, that traditional methods for “making
the problem harder” (e.g., image cropping), have
partially emascul ated the problem.

We are currently producing adatabase of faceim-
ages (http://www.cs.cmu.edu/~astro/FacePage.html) that
really have the properties the face recognition task
implicitly defines (i.e.,, vacation-style photos). We
believethat, whilestill young, themarriage of genetic
programming and computer vision promises a bright
futurefor the face recognition task.

References

[1] David Andre. Automatically defined features: The simul-
taneousevolution of 2-dimensional feature detectorsand an
agorithm for using them. In K. Kinnear, editor, Advances
In Genetic Programming, pages 477—494. MIT Press, 1994.

[2] P J. B.HancockandL. S Smith. GANNET: Genetic design
of a neural net for face recognition. In H-P. Schwefel and
R. Manner, editors, Proceedings of the Conference on Par-
allel Problem Solving from Nature. Springer Verlag, 1991.

[3] N.Intrator, D. Reisfeld, and Y. Yeshurun. Face recognition
using a hybrid supervised/unsupervised neural network. In
Proceedingsof theFaceand Object Recognition Conference,
1995.

(4

(5]
(6]

(8

(9

[10]

[11]

[12]

[13]

Fig. 7: Random train and test images.

M. Johnson. Evolving visual routines. In R. Brooks and
P. Maes, editors, Artificial Life IV. MIT Press, 1994.

John Koza. Genetic Programming 1. MIT Press, 1994.

T. Nguyenand T. Huang. Evolvable 3d modeling for model-
based object recognition systems. In K. Kinnear, editor,
Advances|n Genetic Programming. MIT Press, 1994.

Dean Pomerleau. Neural Network Perception for Mobile
Robot Guidance. PhD thesis, Carnegie Mellon University
School of Computer Science, 1992.

Jeff Shufelt and Tom Mitchell. Personal correspondence. In
Carnegie Mellon University, 1995.

Walter A. Tackett. Genetic programming for feature dis-
covery and image discrimination. In Stephanie Forrest,
editor, Proceedings of the Fifth International Conference
on Genetic Algorithms. Morgan Kauffman, 1993.

Astro Teller. Evolving programmers: The co-evolution
of intelligent recombination operators. In K. Kinnear and
P. Angeline, editors, Advancesin Genetic Programming I1.
MIT Press, 1996.

Astro Teller and Manuela Veloso. PADO: A new learning
architecturefor object recognition. In Katsushi Ikeuchi and
ManuelaVeloso, editors, Symbolic Visual Learning. Oxford
University Press, 1995.

Astro Teller and M anuelaVel oso. Program evolutionfor data
mining. In Sushil Louis, editor, The International Journal
of Expert Systems. Third Quarter. Special Issue on Genetic
Algorithms and Knowledge Bases. JAI Press, 1995.

P. Viola. Feature-based recognition of objects. In AAAI FSS
on Machine Learning in Computer Vision. AAAI, 1993.

