In Machine Learning Methods for Planning, Morgan Kaufmann, 1993, ed. S. Minton,
pages 233-272

CHAPTER 8

Towards Scaling Up Machine Learning;:
A Case Study with
Derivational Analogy in PRODIGY

MANUELA M. VELOSO
JAIME G. CARBONELL

1. Motivation: Why, What and How

Machine learning has proven itself in the small, although theoretical, al-
gorithmic and implementational advances at the foundational level will
continue to improve the basic building blocks in the field. Empirical
induction methods have been developed [Michalski et al., 1983, Michal-
ski et al., 1986, Michalski and Kodratoff, 1990, Carbonell, 1990] at the
symbolic level and tested on standard (albeit small) test suites, ! and
occasionally they have been used externally, as in the case of decision
tree induction [Quinlan, 1983, Quinlan, 1986, Nifiez, 1991]. Subsym-
bolic induction methods, including genetic algorithms [Holland, 1986,
DeJong, 1989] and connectionist approaches [Hinton, 1989, Minsky and
Selfridge, 1961, Touretzky, 1989] are also well developed. Analytical
generalization methods are proving successful in improving performance
in a variety of planning and other reasoning tasks. These methods in-
clude macro-operator formation [Korf, 1985, Iba, 1989, Minton, 1985,
Cheng and Carbonell, 1986, Shell and Carbonell, 1989], explanation-
based learning [Mitchell et al., 1986, DeJong and Mooney, 1986, Minton
et al., 1989a), abstraction [Sacerdoti, 1977, Korf, 1987, Knoblock, 1991]
and within-domain analogy [Carbonell, 1983, Carbonell, 1986, Veloso
and Carbonell, 1989, Hickman et al., 1990].

The time has come to address machine learning in the large, in-
cluding both for inductive concept acquisition [Catlett, 1991, Quin-
lan, 1987] and analytic performance improvements. In this chapter,

1. The University of California at Irvine maintains informally a varied set of training
and test data for inductive generalization deposited and accessible by researchers
in machine learning.

2 TowARDS SCALING UP MACHINE LEARNING

we address the latter in the context of PRODIGY [Carbonell et al., 1990,
Minton et al., 1989b, Veloso, 1989], a general-purpose complete plan-
ner that incorporates various learning techniques: explanation-based
learning (EBL) [Minton, 1988], acquisition of control knowledge through
static analysis [Etzioni, 1990], learning by analogy [Veloso, 1991], learn-
ing by experimentation [Carbonell and Gil, 1990], learning abstraction
hierarchies for effective planning [Knoblock, 1991], and semiautomated
knowledge acquisition interfaces [Joseph, 1989]. These techniques have
been developed and tested in a variety of small and medium domains,
and all exhibit varying degrees of improved performance. Addressing
large-scale problems, however, requires several types of analyses and
extensions:

¢ Measuring the performance improvements produced by these tech-
niques as functions of domain size and complexity. Ideally, if the
learning system undergoes adequate training in increasingly com-
plex problems, performance should improve with domain size, rather
than be just a constant factor.

e Measuring the learning-time and run-time overhead of acquiring and
using the new knowledge with increasing complexity. At worst, the
overhead should remain a constant fraction of overall problem solv-
ing, and at best it should be a diminishing fraction with increased
domain size; otherwise the utility problem [Minton, 1988] will prove
a serious hindrance.

o The synergistic combination of multiple learning techniques produc-
ing far more performance improvements than individual learning
techniques, without paying a correspondingly large overhead cost
[Knoblock et al., 1991]. Measurements of performance with differ-
ent subsets of the learning techniques employed should shed light on
their synergistic utility as domain size grows.

This chapter focuses primarily on a single learning technique, deriva-
tional analogy [Carbonell, 1986, Carbonell and Veloso, 1988], in PRODIGY.
However, some discussion at the end of the chapter addresses the first
steps towards synergistic multitechnique integration. Derivational anal-
ogy is a generalized form of case-based reasoning [Hammond, 1986,
Kolodner, 1984, Riesbeck and Schank, 1989, Schank, 1982, Simpson,
1985, Sycara, 1987] that incorporates case generation from problem-
solving experience, case organization into an indexed long-term case

DERIVATIONAL ANALOGY IN PRODIGY 3

library, case retrieval for problem solving, case replay during problem
solving, and feedback to memory on the utility of the retrieved cases.
These stages of derivational analogy are reviewed with examples from
a version of the STRIPS domain [Fikes and Nilsson, 1971]. We show
results illustrating different degrees of performance improvement. We
address the scaling up characteristics of the derivational analogy frame-
work, and we discuss how the framework is applied to a complex lo-
gistics/transportation domain for which we are building a 1000-case
library. The chapter concludes with a discussion of multi-technique
synergy in PRODIGY to address progressively larger domains.

2. Derivational Analogy: The Basic Method

PRODIGY’s derivational analogy reasoner is a learning method for incor-
porating and reusing past experience. Analogical reasoning can be seen
as an alternative to the explanation-based learning (EBL) paradigm.
EBL generalizes control rules from an example trace of a solved prob-
lem and domain axioms. It proves the correctness of decisions at choice
points and synthesizes the control rules from these proofs. Hence, EBL
invests substantial effort in deriving general rules for behavior from each
example. The analogical reasoner automatically generates and stores
annotated traces of solved problems (cases) that are elaborated fur-
ther when and if needed to guide reasoning in similar future problems.
Compiled experience is therefore stored with little additional process-
ing. The explanation effort is done incrementally on an ”if needed”
basis at storage, retrieval and adaptation time when new similar sit-
uations occur. Thus, EBL and analogy are at opposite points in the
eager-versus-lazy evaluation spectrum. In principle, their combination
may prove optimal, acquiring simpler control knowledge for repetitive
situations by means of EBL, and reserving analogy for more complex
but less frequent decisions.

Analogical reasoning in PRODIGY integrates automatic case genera-
tion, case storage, case retrieval, case replay, and general problem solv-
ing — exploiting and modifying experience when available and resorting
to general problem-solving methods when it is required. Automatic case
generation occurs by extending the general problem solver with limited
ability to examine its internal decision cycle, recording the justifica-
tions for each decision during its extensive search process. Examples of
these justifications are links between choices that capture the subgoal-

4 TowARDS SCALING UP MACHINE LEARNING

ing structure, records of explored failed alternatives, and pointers to
applied control knowledge. A stored problem-solving episode consists
of the solution trace augmented with these annotations.

Past problems that match partially the new problem solving situation
are its candidate analogs. To rank these partially similar candidate
analogs, a similarity metric is used to explore the relevance of past
features identified using that were identified using goal regression in
the successful derivational trace. The retrieval module returns to the
analogical reasoner a set of past cases that should adequately cover
significant portions of the new problem-solving situation.

The analogical reasoner’s main functionality consists of a sophisti-
cated replay mechanism that is able to reconstruct solutions from the
retrieved past cases when only a partial match exists between the new
and past situations. The replay mechanism coordinates the set of multi-
ple retrieved cases and uses the annotated justifications to guide recon-
struction of the solution for use in problem-solving situations in which
equivalent justifications hold true.

Learning, therefore, occurs by accumulation and reuse of cases, es-
pecially in situations that required extensive problem solving, and by
tuning the memory model’s indexing structure to retrieve progressively
more appropriate cases. On one hand, we reduce search at the problem-
solving level by replaying past similar cases (derivational traces of problem-
solving episodes) [Veloso, 1991]. On the other hand, we learn incre-
mentally better similarity metrics by interpreting the behavior of the
problem solver replaying retrieved cases. Furthermore we explore an
efficient way of balancing the costs of retrieval and search [Veloso and
Carbonell, 1991], as discussed in section 7.

We present empirical results that illustrate the performance of the
replay mechanism in two domains using two different similarity metrics.
Recent tests with up to 1000 cases in the library demonstrated the
scaling properties of the memory organization, of the match/retrieval
process, and of the reconstruction mechanism replaying multiple cases.
We also show preliminary empirical results in this large domain.

3. The Derivational Trace: Case Generation

Derivational analogy is a reconstructive method by which lines of rea-
soning are transferred and adapted to a new problem [Carbonell, 1986].

DERIVATIONAL ANALOGY IN PRODIGY 5

The ability to replay previous solutions using the derivational analogy
method requires that the problem solver be able to examine its inter-
nal decision-making cycle, recording the justifications for each decision
during its extensive search process. These justifications augment the
solution trace and are used to guide future reconstruction of the solu-
tion for use in subsequent problem-solving situations in which equivalent
justifications hold true.

In PRODIGY [Minton et al., 1989b] a domain is specified as a set of
operators, inference rules, and control rules. Additionally, in a more
recent version of the system [Veloso, 1989, Carbonell et al., 1992], the
entities of the domain are organized in a class hierarchy. Each operator
(or inference rule) has a precondition expression that must be satisfied
before the operator can be applied, and an effects-list that describes
how the application of the operator changes the world. Search control
in PRODIGY allows the problem solver to represent and use control infor-
mation about the various problem-solving decisions. A problem consists
of an initial state and a goal expression. To solve a problem, PRODIGY
must find a sequence of operators that, if applied to the initial state,
produces a final state that satisfies the goal statement. The problem
solver produces a complete search tree, encapsulating all decisions —
right ones and wrong ones — as well as the final solution. This informa-
tion is used by each learning component in different ways: to extract
control rules via EBL [Minton, 1988], to build derivational traces (cases)
by the derivational analogy engine [Veloso, 1991], to analyze key deci-
sions by a knowledge-acquisition interface [Joseph, 1989], or to formu-
late focused experiments [Carbonell and Gil, 1990]. The axiomatized
domain knowledge is also used to learn abstraction layers [Knoblock,
1991], and statically generate control rules [Etzioni, 1990].

The derivational analogy work in PRODIGY takes place in the context
of PRODIGY’s nonlinear problem solver [Veloso, 1989]. The planning
system is called NoLIMIT, standing for Nonlinear problem solver using
casual commitment. NOLIMIT can fully interleave goals at the different
search levels. The plans generated are nonlinear because they cannot be
decomposed into a linear sequence of complete subplans for interacting
conjunctive goals.

The basic search procedure is, as with the linear planner [Minton
et al., 1989b], means-ends analysis (MEA) in backward-chaining mode.
Basically, given a set of goal literals not true in the current world, the

6 TowARDS SCALING UP MACHINE LEARNING

planner selects one goal and an operator that adds that goal to the
state in the case of a positive goal, or deletes it in the case of a neg-
ative goal. We say that this operator is relevant to the given goal. If
the preconditions of the chosen operator are true, the operator can be
applied. If the preconditions are not true in the state, then they become
subgoals, that is new goals to be achieved. The cycle repeats until all
the conjuncts from the goal expression are true in the world. NoLIMIT’s
nonlinear character stems from working with a set of goals in this cy-
cle, as opposed to the top goal in a goal stack. Dynamic goal selection
enables NOLIMIT to interleave plans, exploiting common subgoals and
addressing plan interactions, such as issues of resource contention.

To generate a derivational trace from a problem-solving episode, the
problem solver must identify and capture the reasons for the decisions
taken at the different choice points encountered during the search for
a solution. In NOLIMIT’s search procedure, we identify the following
types of choice points [Veloso, 1989]:

e What goalis to become a subgoal, choosing it from the set of pending
goals

e What operator to choose to pursue the particular goal selected
e What bindings to choose to instantiate the selected operator

o Whether to apply an applicable operator or defer application and
continue subgoaling on a pending goal

o Whether the search path being explored should be suspended, con-
tinued, or abandoned

e On failure, which past choice point to backtrack to, or which sus-
pended path to reconsider for further search.

Justifications at these choice points may point to user-given guidance,
preprogrammed control knowledge, automatically learned control rules
responsible for decisions that have been made, or past cases used for
guidance (more than one case can be used to solve a complete prob-
lem). They also represent links within the different choices and their
related generators, in particular capturing the subgoaling structure. At
choice points, we also record failed alternatives (explored earlier) and
the causes of their failures. Note that the term cause of failure here

DERIVATIONAL ANALOGY IN PRODIGY 7

refers to the reason why the search path starting at that alternative
failed. It does not necessarily mean that the failed alternative is di-
rectly responsible for the failure of the global search path. There may
be an indirect relationship, but this is the best attribution so far. We
now present an example to illustrate the automatic generation of an
annotated case.

The extended-STRIPS domain [Minton, 1988] consists of a set of rooms
connected by doors. A robot can move among the rooms carrying or
pushing objects. The doors can be locked or unlocked. The keys to
the doors are in the rooms and can be picked up by the robot. The
set of operators include moving to be next to objects, going through
doors, pushing objects to rooms, picking up keys, and opening, closing,
locking, and unlocking doors. (Our version of the domain includes 13
operators and 4 inference rules.) Variables and instances are organized
in the class hierarchy shown in Figure 1 where CLASS is the top of the
hierarchy.

(is-a ROOM CLASS)
(is-a DOOR CLASS)
(is-a OBJECT CLASS)
(is-a BOX OBJECT)
(is-a KEY OBJECT)
(is-a AGENT CLASS)

Figure 1. The class hierarchy in the extended-STRIPS domain.

For example, the operator to push an object through a door is shown
in Figure 2; ? variables are in brackets and types are written in uppercase
letters.

Consider Figure 3 in which we show the initial state in (a) and in (b)
the goal statement of an example problem from the extended-STRIPS
domain, say problem strips2-5. The rooms are numbered at their corners
and the doors are named accordingly to the rooms they connect. Doors
may be open, closed, or locked. In particular, door24 connects the rooms
2 and 4 and is locked. Door34 is closed and, for example, door12 is open.
The number of the boxes can be inferred by the attached description
of the initial state. Note that box3 is in room4. The problem solver
must find a plan to reach a state in which door34, connecting room3 and

2. The complete set of operators for the nonlinear planner is obtained directly from
the set of operators for the linear planner of PRODIGY in [Minton, 1988] by ap-
plying some fixed syntax modifications [Veloso, 1989].

8 TowARDS SCALING UP MACHINE LEARNING

(OPERATOR PUSH-THRU-DOOR
(params
((<box>
(and BOX (pushable <box>)))
(<roomx>
(and ROOM (adjacent-room-p <roomx> <roomy>)))
(<roomy>
(and ROOM (adjacent-room-p <roomx> <roomy>)))
(<door>
(and DOOR (connects <door> <roomx> <roomy>))))
(preconds
(and (dr-open <door>)
(inroom robot <roomx>)
(next-to robot <box>)
(next-to <box> <door>)))
(effects
((del (inroom robot <roomx>))
(del (inroom <box> <roomx>))
(add (inroom robot <roomy>))
(add (inroom <box> <roomy>))
(if ((<obj> OBJECT))
(holding <obj>)
((del (holding <obj>))
(add (inroom <obj> <roomx>))
(add (next-to <obj> <door>)))))))

Figure 2. The operator to push an object through a door in the extended-
STRIPS domain.

room4, is closed, and the agent “hero” is next to box3. The problem is
simple, so we can show a full case corresponding to a problem-solving
search episode.

Without any analogical guidance (or other form of control knowl-
edge), the problem solver searches for a solution by applying its prim-
itive means-ends analysis procedure. In Figure 4 we show a complete
successful solution path. Goals are in parenthesis, chosen operators are
in angle brackets (<, >), and applied operators are in uppercase letters.
For simplicity, we represent the sequence of decision nodes annotated
only with their subgoaling structure.

NoLiMIT starts working on the goal (next-to robot box3) at node
cnl, since door34 is closed in the initial state. The relevant operator
for this goal is <goto-box box3> as shown in node cn2. This opera-
tor is not applicable, since one of its preconditions, namely that the
agent be in the same room as the box, is not true in the state. There-
fore, at node cn3, it subgoals on getting the robot into room4. Now,
note that both room2 and room3 are adjacent to room4. By backward
chaining, NOLIMIT finds these two alternatives as relevant operators

DERIVATIONAL ANALOGY IN PRODIGY 9

M

(inroom robot room1l) (inroom box1l roomil) (and (door-closed door34)
(inroom box2 room3) (inroom box3 room4) (next-to robot box3))
(door-open doori?2) (door-open doori13)

(door-closed door34) (door-locked door24)

(a) Initial State (b) Goal Statement

Figure 3. problem situation in the extended-STRIPS domain. The goal state-
ment is a partial specification of the final desired state: The location
of other objects and the statuses of other doors remain unspecified.

Node type schoice :precond :relevant
and number of to
goal cnil (next-to robot box3) user
chosen-op cn2 <goto-box box3> cnl
goal cn3 (inroom robot room4) cn2
chosen-op cn4 <go-thru dr34> cn3
goal cnb (inroom robot room3) cn4
chosen-op cn6 <go-thru dri3> cnb
applied-op cn7 <GO-THRU dri13>
goal cn8 (door-open dr34) cn4
chosen-op cn9 <open-door dr34> cn8

applied-op cn1l0 <OPEN-DOOR dr34>

applied-op cnll <GO-THRU dr34>

goal cnl2 (door-closed dr34) user

chosen-op cni13 <close-door dr34> cnl2
applied-op cni4 <CLOSE-DOOR dr34>

applied-op cn1l5 <GOTO-BOX box3>

Figure 4. A simplified case corresponding to a solution to the problem in Fig-
ure 3. A case is an annotated successful problem-solving episode.

to the goal (inroom robot room4), namely the operators <go-thru
door34>, shown as node cn4, or <go-thru door24>. In Figure 5 we
see the complete annotated decision node cn4 for the situation where
NoLIMIT searched the alternative <go-thru door24> before pursuing
the successful operator <go-thru door34>. Note that door24 is locked,

10 TowAaRDS SCALING UP MACHINE LEARNING

and there is no key for it in the initial state. In the search episode, this
failure corresponds to a subtree off the finally successful node cn4. How-
ever, the analogical reasoner creates a case by annotating the successful
path with its sibling failed alternatives (and other justifications as fully
introduced in [Veloso and Carbonell, 1993].) It simply attributes the
reason of a failure to the last failed leaf of the searched subtree, but it
also records the other failed leaves.

Frame of class chosen-op decision node cn4
:choice (go-thru dr34)
:sibling-relevant-ops
(((go-thru dr24)
(:no-relevant-ops (is-key dr24 <key>))))
:why-this-operator nil
:relevant-to (inroom robot room4)

Figure 5. A chosen operator decision node with its justifications: Zoom of the
decision node cn4 in Figure 4.

NoLiMIT pursues its search as shown in Figure 4. It alternates choos-
ing the relevant operator for each goal and applying it if all its precon-
ditions are true in the state, or it continues subgoaling on a goal of the
new goal set.

Node cn12 is also worth remarking about, and we show its expansion
in Figure 6. At that search point, NOLIMIT has the alternative of imme-
diately applying the operator (goto-box box3), since it becomes appli-
cable as soon as robot enters room4 at node cn1i, or subgoaling in the
goal (door-closed dr34) that became a goal when door34 was open
at node cn10. Because NOLIMIT is a nonlinear planner with the ability
to fully interleave all the decisions at any search depth [Veloso, 1989,
Rosenbloom et al., 1990], it finds the optimal plan to solve this prob-
lem. Note that in Figure 6 we show the problem-solving search situation
in which NoLiMIT explores first the eager choice of applying any ap-
plicable operator, namely the sibling-applicable-op <GOT0-BOX box3>.
This ordering, however, leads to a failure: When returning back to close
door34, after achieving (next-to robot box3), NOLIMIT encounters a
state loop. It recognizes that it was in the same state before and back-
tracks to the correct ordering, postponing application of the operator
<GOTO0-BOX box3>, at node cni15, until the goal (door-closed dr34)
is accomplished.

Without guidance NOLIMIT explores the space of all possible atten-
tion foci and orderings of alternatives, and only after backtracking does

DERIVATIONAL ANALOGY IN PRODIGY 11

Frame of class goal decision node cnl2
:choice (door-closed dr34)
:sibling-goals nil
:sibling-applicable-ops

(((GOTOD-BOX box3) (:state-loop)))
:why-subgoal nil

:why-this-goal nil

:precond-of (#finish*)

Figure 6. A goal decision node with its justifications: Zoom of the decision
node cnl2 in Figure 4.

it find the correct goal interleaving. The idea of compiling problem-
solving episodes is to learn from its earlier exploration and reduce search
significantly by replaying the same reasoning process in similar situa-
tions.

The generated case corresponds to the search tree compacted into
the successful path annotated with the justifications that resulted in
the sequence of correct decisions that led to a solution to the problem.
In the next section we introduce a global view of the organization of the
accumulated library of cases.

4. Organization of the Case Library - Indexing

The goal statement and the initial state define a problem and act as
its immediate indexes. In order to efficiently prune the case library, we
index the cases in a three-level access structure.

At the top level of access, a hash table, named CASE-LIBRARY,
associates each generalized goal with the list of problems that have
corresponding instantiated literal as conjuncts in their goal statements.

As an example consider the problem strips2-5 shown in Figure 3 with
goal statement (and (door-closed door34) (next-to robot box3)).
Consider, too, the problem strips2-17 shown in Figure 12 with goal
statement (and (inroom boxl room2) (door-open door34)). Forthe
purpose of better illustration, consider an additional problem strips3-9
with goal statement (and (next-to robot box4) (inroom box4 rooml)
(holding key13)). In Figure 7 (a) we show the relevant entries of the
CASE-LIBRARY after strips2-5, strips2-17, and strips3-9 are stored
into memory. For example, the value of the hash key (inroom BOX
ROOM) is the list (strips2-17 strips3-9), because these two problems
have corresponding instantiated literals in their goal statements, (in-

12 TowAaRDS SCALING UP MACHINE LEARNING

room boxl room2) and (inroom box4 rooml), respectively.

Top *CASE-LIBRARY* hash table
ok ok ok okok ok skok ok ok sk ok skok ok sk ok ok o kok sk ok ok ok ok

Goal-generalized-to-class Problems

(door-closed DOOR) (strips2-5)

(next-to AGENT BOX) (strips2-5
strips3-9)

(inroom BOX ROOM) (strips2-17
strips3-9)

(door-open DOOR) (strips2-17)

(holding KEY) (strips3-9)

(a)

Top *STATE-NET-NAMES* hash table
ok ok ook skok ook ok ok sk ook skok o skok koo ok sk ok skok ok ok

Sorted-variable-goal State-net-names
(and (door—-closed <door0>) "state-net—-1"
(next-to <agent0> <box0>))
(and (door-open <door0>) "state-net-2"
(inroom <box0> <room0>))
(and (holding <key0>) "state-net-3"
(inroom <box0> <roomi>)
(next-to <agent0> <box0>))

(%))

Figure 7. (a) The hash table *CASE-LIBRARY*: The hash key is the gener-
alized literal and the value is the list of problems that have a corre-
sponding instantiated literal in their goal statement. (b) The hash
table *STATE-NET-NAMES*: It associates the sorted generalized
goal conjunct with the pointer to the discrimination network where
the initial state is stored.

At the second level of indexing, a hash table STATE-NET-NAMES
stores each conjunctive variable goal with the name of the discrimination
network where the initial state is stored. Each instance in an argument
of a goal conjunct is translated into a variable and the goal conjunct is
sorted alphabetically. In Figure 7 (b) we show the relevant entries of

DERIVATIONAL ANALOGY IN PRODIGY 13

the STATE-NET-NAMES after strips2-5 and strips2-17 are stored into
memory.

The goal statement filters the candidate past problems through the
first and second levels of access.

For exactly the same goal conjunct there may be several different
problems with different initial states. The initial state is itself stored in
a discrimination net that corresponds to the third level of access. Each
network has a root frame of class “state-root” as shown in Figure 8 that
summarizes the contents of the network. The nodes of the network are
frames of class “state” also shown in Figure 8. Their content is a set of
literals in the initial state.

(def-frame state-root (:is-a tofu)

:prob-names nil ;list of problem names stored
;in the state discrimination net
:goal nil ;goal conjunct of state-root
:case-names nil ;1list of all the cases in net
:children nil ;points to a state frame,

;though the root of state discrimination net has
;only one child node, the slot is named children,
;instead of child, to be uniform with the state frame.

)

(def-frame state (:is-a tofu)

:content nil ;1ist of state-goal literals
:parent nil ;state-root frame or state frame
:children nil ;1ist of state frames or nil
:cases nil ;1ist of leaf cases

)

Figure 8. The frame structure of the nodes of the discrimination net for the
initial state.

The purpose of the dynamic organization of the discrimination state
network is to learn the degree of relevance of the literals in the initial
state as a function of the common goal they address. The structure of
the network should be such that the literals closer to the root are more
relevant than the ones at the leaves.

FEach leaf of the network points to one or more cases (derivational
analogy traces) whose relevant initial state is the set of literals in the
path from the corresponding leaf up to the root of the network [Kolod-
ner, 1983]. We show a simple example though the discrimination net-
work is maintained dynamically. For the sake of illustration in Figure 9
we show the contents of “state-net-2” where two different solutions for
problem strips2-17 (see Figures 12, 13 (al), and 13 (bl)) are stored.

14 TowAaRDS SCALING UP MACHINE LEARNING

(arm-empty)
(connects dri3 rml rm3)
(connects dr34 rm3 rm4)

(pushable box1)
(dr-open dri13)
(dr-closed dr34)

/ N

(connects dr24 rm2 rm4) (connects dr24 rm2 rm4)
(dr-open dri2) (dr-locked dr24)
(inroom key24 rm4)

Figure 9. A simple discrimination tree for the initial state.

Later on we explain the meaning of the contents of the state nodes in
the context of foot-printing the initial state. This example should only
be considered from the organizational point of view, and after reading
section 5, the reader can return to this example and comprehensively
follow its contents.

In the next section we describe the retrieval algorithm and mention
how it makes use of the memory organization. The complete algorithm
for the dynamic memory update is still under development as we are
still analyzing results of its performance in scaled-up domains.

5. Retrieving Similar Past Cases for Guidance

Several research projects have studied the problem of assigning ade-
quate similarity metrics (recent work includes [Bareiss and King, 1989,
Kolodner, 1989, Porter et al., 1989]). Our approach relies on an in-
cremental understanding of an increasingly more appropriate similar-
ity metric. In [Veloso and Carbonell, 1990] we presented our pro-
posed memory model, SMART (standing for Storage in Memory and
Adaptive Retrieval over Time). NoLimIT, the nonlinear analogical
problem solver, provides to SMART information about the utility of the
candidate cases suggested as similar in reaching a solution. This infor-
mation is used to refine the case library organization and in particular
the similarity metric. In this section we analyze two similarity metrics
with different degrees of problem-context sensitivity. We first introduce
a simple direct similarity metric and proceed to refine it by analyzing
the derivational trace produced by the analogical problem solver.

DERIVATIONAL ANALOGY IN PRODIGY 15

5.1 A direct similarity metric

Let & be the initial state and G be the goal statement, both given as
conjunctions of literals. A literalis an instantiated predicate, i.e. literal
= (predicate argument-value*). As an example, (inroom keyl2 rooml)
is a literal where inroom is the predicate and keyl2 and rooml are its
instantiated arguments.

Each past case P in memory is indexed by the corresponding initial
state and goal statement, respectively S and G”. When a new problem
P’ is given to the system in terms of its G&' and S’, retrieving one (or
more) analog consists in finding a similar past case by comparing these
two inputs GF' and S’ to the indexes of past cases.

Definition 1 We say that a conjunction of literals I, = l1,...,1, di-
rectly malches a conjunction of literals L' = 1{,... Il under a substilu-
tion o with match value 8, if there are & many literals in L that directly

malch some literals in L' under o. A literal | directly matches a literal

U, if
o The predicate of | is the same as the predicate of I'.

o Fach argument of | is of the same class as its corresponding arqgument

of l'.
In this case, there is a substilution o, such that 1 = o(l").

As an example, the literal (inroom box1 rooml) directly matches the
literal (inroom boxA roomX), where boxl and boxA are both of class
BOX and room1 and roomX are of class ROOM. Under the substitution
o ={box1/boxA, rooml/roomX}, (inroom boxl rooml) = ¢ ((inroom
boxA roomX)).

We first compute a simple partial match value between problems as
the sum of the match value of their corresponding initial states and goal
statements calculated independently, as presented in definition 2.

Definition 2 Let P and P’ be two particular problems, respectively with
initial states ST and SPI, and goal G* and gP’. Let 6§(P)’P be the

match value of G and gP’, under substitution o. Let 6§(P)’Pl be the
match value of S and ST', under the substitution o. Then we say thal
the two problems P and P' directly match with match value §7(F)F" =

6§(P)’P + 6§(P)’P under substitution o.

16 TowAaRDS SCALING UP MACHINE LEARNING

The partial match value of two problems as expected is substitu-
tion dependent. As an example, consider the goal G ={(inroom key12
rooml), (inroom box1 room1)}, and the goal G’ ={(inroom key13 room4),
(inroom key14 room?2), (inroom box53 room4)}. Then G directly matches
G' with match value § = 2 under the substitution ¢ ={key12/key13,
rooml/room4, box1/box53}, and match value § = 1 under the substi-
tution ¢’ ={key12/key14, room1/room2}.

In a first experiment we used this direct similarity metric to evalu-
ate the partial match between problems, not considering therefore any
relevant correlations between the initial states and the goal statements.
The procedure in Figure 10 retrieves the set of most similar past cases.
Each goal conjunct is generalized to its class arguments. By hashing
each goal conjunct in the CASE-LIBRARY (see section 4) we retrieve
directly all and only the past problems that share at least one goal con-
junct with the current new problem. This set of problems is the input
for the procedure shown in Figure 10.

Input: A case library £ = P4, ..., Pp, and a new problem P’.
Output: The set of problems from £ and corresponding substitutions
that make them the most similar ones to P’.

procedure Retrieve_Most_Similar_Past_Cases(L, P’):

1 current_max_match — 0

2. Most_Similar — {}

3. fori:+<— 1topdo

4 Compute 55”13, for all the possible goal substitutions.
5. for each substitution o such that 55(P’)’Pl # 0 do
6 Apply substitution to the initial state S;.

7 Compute 6g(P’)’PI.

3 6C(pl)7p' - 6g(P,),P’ +5Z(Pl)7p/

9. if §°(F)F" 5 current_max_match

10. current_max_match — §7(F):F’

11. Most_Similar — {(P;, 0)}

12. if 5°(P)P" — current_max_match

13. Add (P;, o) to Most_Similar.

14. Return Most_Similar

Figure 10. Retrieving the most similar past cases.

Number of Nodes Searched

DERIVATIONAL ANALOGY IN PRODIGY 17

5.1.1 EXAMPLES IN PROCESS-JOB PLANNING AND EXTENDED-STRIPS
DOMAINS

We ran NoLiMIT without analogy over a set of problems in the process-
job planning and in the extended-STRIPS domains. > We accumulated
a library of cases. In order to factor away other issues in memory
organization, the case library was simply organized as a linear list of
cases. We then ran again a new set of problems using the case library.

The dotted curves in Figures 11 (a) and (b) show the results for
these two domains. We plotted the average cumulative number of nodes
searched. We note from the results that analogy showed an improvement
over basic blind search (dashed curves): a factor of 1.5 speed up for
the process-job planning and scheduling domain and 2.0 speed for the
extended-STRIPS domain. (We will see later the meaning of the filled
curves.) In general the direct similarity metric lead to acceptable results.
Allen and Langley [Allen and Langley, 1990] obtained similar results
in simple domains by replaying one-step past cases as opposed to a
complete sequence of problem-solving decisions.

1600 - = — & NoLimit S 2500 -
Xennnen X direct similarity N =— — & NoLimit
1400 - s——k foot-print similarity / o »— — X direct similarity 7
/ $® 2000 | s—— foot-print similarity /
1200 N
A A
(%2}
- - S):(
800 | Y2 > y
600 L %5 1000 | 7
)
400
€ 5001
200 |- 2 /
O 1 1 1 1 1 1 O 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 45
Number of Problems Number of Problems
(@) Process-Job Planning Domain (b) Extended-STRIPS Domain

Figure 11. Comparison in the process-job planning and extended-STRIPS do-
mains.

However, analyzing the results, we notice that the straightforward
similarity metric does not always provide the best guidance when there

3. This set is a sampled subset of the original set used by [Minton, 1988].

18 TowAaRDS SCALING UP MACHINE LEARNING

are several conjuncts in the goal statement.

The problem of matching conjunctive goals turns out to be rather
complex. As conjunctive goals may interact, it is not at all clear to
decide that problems are more similar based simply on the number of
literals that match the initial state and the goal statements. Noticing
therefore that matching conjunctive goals involves reasoning over a large
lattice of situations, we developed a new similarity metric by refining
the indexing based on the derivational trace of a past solution.

5.2 The foot-print similarity metric

The derivational trace identifies for each goal the set of weakest precon-
dilions necessary to achieve that goal. Then recursively we create the
foot-print of a user-given goal conjunct by doing a goal regression, i.e.
projecting back its weakest preconditions into the literals in the initial
state [Waldinger, 1981, Mitchell et al., 1986). The literals in the initial
state are therefore categorized according to the goal conjunct that em-
ployed them in its solution. Goal regression acts as an explanation of
the successful path [Cain et al., 1991].

Definition 3 For a given problem P and corresponding solution, a lit-
eral s in the initial state is in the foot-print of a goal conjunct g if it
s in the set of weakest preconditions of g according to the derivational
trace of the solution.

The purpose of retrieving a similar past case is to provide a problem
solving episode to be replayed for the construction of the solution to a
new problem. We capture into the similarity metric the role of the initial
state in terms of the different goal conjuncts for a particular solution
found. Situation details are not similar per se. They are similar as a
function of their relevance in the solution encountered.

Consider Figure 12 where in (a) we show the initial state and in (b)
the goal statement of an example problem from the extended-STRIPS
domain, say problem strips2-17.

Assume we solved the problem in Figure 12 by pushing box1 from
rooml into room?2, and then going to room3 back through rooml to
open the door dr34. The actual solution searched and found would be
the plan shown in Figure 13 (al).

DERIVATIONAL ANALOGY IN PRODIGY 19

M

(inroom robot rooml) (inroom boxl rooml) (and (inroom box1l room2)
(inroom box2 room3) (inroom box3 room3) (door-open door34))
(inroom box4 room4) (inroom key24 room4)

(door-open doori?2) (door-open doori13)

(door-closed door34) (door-locked door24)

(a) Initial State (b) Goal Statement

Figure 12. Problem situation in the extended-STRIPS domain (strips2-17). The
goal statement is a partial specification of the final desired state:
the location of other objects and the status of other doors remains
unspecified.

In this way of solving the problem, for example, key24 for the locked
door dr24 did not play any role and is therefore not a relevant literal in
the initial state of this problem if this problem-solving episode is to be
replayed. In Figure 13 (a2) we show the actual foot-print of the initial
state corresponding to this first solution to the problem. Each literal in
the initial state is associated with the list of goals that it contributed
to achieve.

However NOLIMIT could have encountered a different solution to this
problem, namely to push box1 along on its way to door dr34, open it,
and push box1 through door dr24 into room2, after unlocking this door.
The actual solution searched and found would be the plan shown in
Figure 13 (bl). In this way of solving the problem, for example, the
key24 for the locked door dr24 is a relevant literal in the initial state
of this problem if this problem-solving episode is to be replayed. In
Figure 13 (b2) we show the actual foot-print of the initial state for this
solution.

We formally define the new similarity metric that evaluates the degree
(or value) of match of the initial state as a function of the goal conjuncts
that directly matched. This similarity emphasizes even more the goal

20 TowAaRDS SCALING UP MACHINE LEARNING

(GOTO-BOX box1) (GOTO-BOX box1)
(PUSH-THRU-DOOR box1 dri2) (PUSH-THRU-DOOR box1 dri3)
(GO-THRU dr12 rooml) (PUSH-TO-DOOR box1 dr34)
(GOTO-DOOR dri13) (OPEN-DOOR dr34)
(GO-THRU dr13 room3) (PUSH-THRU-DOOR box1 dr34)
(GOTO-DOOR dr34) (GOTO-KEY key24)
(OPEN-DOOR dr34) (PICK-UP key24)
(al) (GOTO-DOOR dr24)
Initial State: Goal Conjuncts: Egg;;?ﬁ;ggugrgzgzl)
/(COHnects drl2 rml rm2) (GUTO-BOX box1)
(arm-empty) (PUT-DOWN key24)
(pushable box1) (inroom box1 rm2) (PUSH-THRU-DOOR box1 dr24)
(inroom box1 rm1) (b1)
><Edr—0pen drlz) Initial State: Goal Conjuncts:
inroom robot rm1) ﬂconnects dr24 rm2 rm4) \
(connects dr13 rm1 rm3) (arm-empty)
(connects dr34 rm3 rm4) (pushable box1))
(dr-open dr13) (dr-locked dr24) (inroom box1 rm2)
udr—closed dr34) (dr-open dr34) (inroom key24 rm4)
connects dr24 rm2 rm4) (inroom box1 rm1)

dr-locked dr24)

(

(nroom robot rm1)
(inroom box2 rm3)

(

(

(

connects dr13 rm1 rm3)
inroom box3 rm3) connects dr34 rm3 rm4)
dr-open dr13)

dr-closed dr34) (dr-open dr34) /

(
(
(
(
(a2) (conmects dr1z rml rmz)
(
(
(
(

inroom box4 rm4)

inroom key24 rm4)

dr-open dr12)

inroom box2 rm3)

inroom box3 rm3)

inroom box4 rm4)
(b2)

Figure 13. Two different solutions for the problem in Figure 3: Plans (al),
(b1l), and their corresponding foot-printed initial states (a2) and
(b2)

oriented behavior [Kedar-Cabelli, 1985, Hammond, 1989] than the one
introduced earlier, by focusing only on the goal-relevant portions of the
initial state [Hickman and Larkin, 1990, Pazzani, 1990] as determined
by the problem solver for each case in the library.

Definition 4 We say that the initial state S foot-print matches an ini-
tial state " under a substitution o and given matched goals g7, ..., g}"
with match value 6 if there are § many literals | in S, such that (i)l di-
rectly matches some literal I in 8" under o, and (ii) l is in the foot-print
of some goal g7, forv=1,...,m.

DERIVATIONAL ANALOGY IN PRODIGY 21

When assigning a match value to two problems we now consider not
only the number of goals that match, but also use the matched goals
themselves to determine the match degree of the initial state.

From the definition 4 we change steps 4 and 8 of the procedure pre-
sented in Figure 10 accordingly. Namely in step 4 we compute the match
value for the goal statements but further return which goals matched.
In step 8 we use these goals to compute the match value for the initial
states. The rest of the algorithm is invariant to selection of similarity
metric.

5.2.1 FURTHER SEARCH REDUCTION EXAMPLES

We ran new experiments with this foot-print similarity metric in the
extended-STRIPS and process-job planning domains. The filled curves in
Figures 11 (a) and (b) show the results for these two domains. We note
that the results with the foot-print similarity metric show an improve-
ment over base search of a factor of 2.0 speed up for the process-job plan-
ning and scheduling domain and 2.6 speed up for the extended-STRIPS
domain. The curves obtained do not represent the best improvement
expected as the set of forty problems used does not completely cover
the full range of problems in either domain. We expect further improve-
ments with a denser coverage (more cases). One of the directions of our
current research is to develop techniques for learning similarity metrics
by further automatically analyzing the analogical replay mechanism. *

6. The Logistics Transportation Domain

To scale up the system in both the size and diversity of domains, we
have currently a 1000-case library in a complex logistics transportation
domain. In this domain, packages are to be moved among different
cities. Packages are carried within the same city in trucks and across
cities in airplanes. Trucks and airplanes may have limited capacity. At
each city there are several locations, e.g. post offices and airports. This
transportation domain represents scale up in length of the solution and
size of the search space over the other domains we have been using like
the extended-STRIPS or the process-job planning domains.

4. In fact we currently have generated a more sophisticated similarity metric also de-
rived from the derivational trace where better improvements are noticed [Veloso,
1992].

22 TowAaRDS SCALING UP MACHINE LEARNING

To generate such a large collection of problems, we implemented tools
to automatically create random problems of different complexity in this
domain. The user specifies the number of cities, trucks, airplanes, and
packages desired, and the system randomly assigns the locations for all
these entities. The complexity of the problem is directly related to the
size of the configuration entered as well as the number of goals specified.

We organize the 1000-case library in the three-level indexing struc-
ture presented above. The top level of access associates each generalized
goal literal with the problems that solved a corresponding instantiated
version of that literal. A second-level of indexing links the full gener-
alized conjunctive goal to the generalized initial state configuration of
the problem. The final indexing level is a discrimination network that
organizes the initial state according to its relevance in solving the prob-
lem. We performed several retrieval experiments that show that this
three-level access structure acts as a very useful filtering mechanism to
effectively prune the number of candidate retrieved analogs.

Finally we developed a more powerful replay mechanism that is able
to reconstruct a solution to a new problem by analogy with multiple
guiding similar past situations. This method evolved from our previ-
ously developed one-case replay mechanism [Veloso, 1991] and consists
of a sophisticated algorithm to merge the multiple analog past cases. It
has been shown to produce very significant results in complex problems
that require guidance from several individual simpler past situations.

Recent tests with up to 1000 cases in the library have demonstrated
the scaling properties of the memory organization, of the match /retrieval
process, and of the reconstruction mechanism replaying multiple cases.
Details on the multiple-case replay mechanism and results of these scal-
ing up tests are being compiled and forthcoming in [Veloso, 1992].

We now show two examples from the logistics domain that illustrate
the replay mechanism when one or more cases are used for guidance.

6.1 Following one case — Subgoaling structure and failures

In Figure 14 we illustrate how the subgoaling structure and the failure
records at a stored case can help guiding the reconstruction process for
a similar new problem. First let us focus on the basic representation in
Figure 14. The detailed explanation of the picture follows later. On the
left side of Figure 14 we show a sequence of nodes named cnl through

DERIVATIONAL ANALOGY IN PRODIGY 23

cn21 that correspond to a past stored case. We describe below the
meaning of these nodes as well as the problem-solving situation. The
sequence of nodes, nl,... n21, on the right side of Figure 14 represent
the new problem-solving episode. Both sequences represent successful
search paths and follow NoLimIT’s search cycle [Veloso, 1989]. The se-
quence of decisions taken is captured therefore by the regular expression
(goal chosen-(relevant)-operator applied-operator *) *. The final plan
itself can be read by the sequence of applied operator nodes. The arrows
across the nodes show the transfer occurred.

The past case was stored with instances generalized to variables of
the same class as illustrated in section 4. When a case is retrieved
as similar to a new situation, the partial match found between the
old and new situations defines partial bindings to the variablized past
case.® The past generalized problem involved moving an object ?0b9
from the post office at some city 7po35 to an airport at a different city
?apl7. In the initial state there was a truck 7tr35 at the post office
?po35 and an airplane 7pl3 at the airport 7apl7. Formally the rel-
evant past initial state was: (at-obj 7ob9 ?po35) (at-truck 7tr35
?7po35) (at-airplane 7pl3 7apl7) (same-city 7po35 7ap35). The
goal statement was the simple goal (at-obj 7ob9 7apl7).

Assume that this case was retrieved as the most similar to a new
problem where an object ob0 is also to be moved from a post office
p0 to an airport a2 at a different city. In this new initial state how-
ever a truck tr0 is at the airport a0 and there is an airplane pl0 also
at a0. Formally the initial state is: (at-obj obO p0) (at-truck tr0
a0) (at-airplane plO a0) (same-city pO a0), and the goal state-
ment is: (at-obj ob0 a2). The retrieval procedure returns the sub-
stitution (7ob9/0b0, 7po35/p0, 7ap35/al, 7apl7/a2) as a partial match
between that past case and the new situation. Note that neither the
truck ?tr35 nor the airplane 7pl3 get bindings from this partial match.
However the replay mechanism further assigns bindings as the match
between the two situations becomes clearer along the reconstruction.
In the figure we show the case further instantiated with the substitu-
tions ?tr35/tr0 and ?pl3/pl0 that occur dynamically at transfer time as
we now also explain.

5. The complete storage, matching, and retrieval procedures are described in [Veloso,
1992].

24

TowAaRDS SCALING UP MACHINE LEARNING

Figure 14. Following one case — Subgoaling structure and failures.

DERIVATIONAL ANALOGY IN PRODIGY 25

The same goal is chosen at the node nl as it was at node cnl. At
node cn2 the past case records that the operator (unload-airplane ob0
7pl3 a2) was successfully chosen and that the operator (unload-truck
ob0 ?tr77 a2) failed. This information guides the decision at node n2
of choosing (also successfully as realized in the sequence) the relevant
operator (unload-airplane ob0 pl0 a2) instead of (unload-truck ob0 tr2
a2). The substitution 7pl3/pl0 is set and applied to the case. The
transfer continues interleaving the choices of goals and relevant opera-
tors in the same subgoaling chains. At node cn6 the alternative choice
of (unload-airplane ob0 pl0 a0) is pruned from the new case, because
the justification for failure in the past, namely the goal-loop of the goal
(inside-airplane ob0 pl0), also holds. This goal is chosen in this search
path, namely at node n3, and was not achieved yet at the current node
n6.

As we noticed, the problems diverge in the location of the truck and
airplane. In fact at node cn9, the past decision of loading the truck at
the post office cannot now be immediately transferred as the operator
(load-truck ob0 tr0 p0) is not applicable in the new problem. The
new solution diverges then from the past case at nodes n9, nl0, and
nll, where the conditions for applying that operator are set, namely by
driving the truck tr0 from the airport a0 to the post office p0. The past
case is stopped at the node cn9. The past decision is tested at each new
step to see whether it is justified. This happens at node n12 where the
transfer continues. A somehow symmetric situation occurs when, at the
node cnl4 the goal (at-airplane pl0 a0) is not a pending goal in the new
problem, as the airplane was initially already at the airport a0. In this
case, the past case is advanced and the steps in the subgoaling structure
of that goal are skipped. The transfer is pursued at node cn17 and the
reconstruction process terminates successfully.

6.2 Following multiple cases

In the Figure 15 we show a reconstruction process guided by two past
cases. The new situation is shown at the center of the figure and the
two past guiding cases on its left and right sides.

The new problem to be solved consists of a two-goal conjunct, namely
to load an object o4 into a truck tr9 and to load another object 02 into
an airplane pl7. The goal conjunct is (and (inside-truck o4 tr9)
(inside-airplane 02 pl17)). The literals (at-obj o4 p5) (inside

26 TowAaRDS SCALING UP MACHINE LEARNING

Figure 15. Following multiple cases — Merging during derivational replay.

DERIVATIONAL ANALOGY IN PRODIGY 27

-truck o2 tr9) (at-airplane pl7 all) are in the new initial state.

The retrieval procedure returns two past cases each partially match-
ing one of the goal conjuncts. ® The case represented on the left corre-
sponds to a situation where an object was also to be loaded into a truck.
However this truck was at the airport of the city and not at the post
office. The case represented on the right corresponds to a past solved
problem where an object is to be loaded into an airplane and the object
is already at the airport.

The transfer occurs by interleaving the two guiding cases and per-
forming any additional work needed to accomplish remaining subgoals.
The subgoaling structure stored at the past cases defines which case
should be followed. When there is nothing specifying which case to
follow, the replay mechanism randomly decides on the case to pursue.
This randomness occurs in a small percentage of the decisions as most
of them are guided by the justifications stored in particular by the sub-
goaling chaining. We have been noticing interestingly that the random
behavior allows innovative merging of past cases leading to solutions of
a better quality in several situations.

6.3 Empirical Results

Although our analysis in this large-scaled domain is not complete yet,
the results so far show high positive transfer reducing significantly the
total memory retrieval and problem-solving times. We have experienced
reductions of up to 90% in the size of the search space and in the total
running time. In Figure 16 we show results from running 200 complex
problems in this domain. We note that the system without analogy
performs considerably worse than the analogical reasoner. The case
library was incrementally built as the problems were being solved.

We are still in the process of compiling and interpreting empirical and
analytical results on the complexity of this logistics domain in order
to quantify more precisely the scaling-up capabilities of our methods
[Veloso, 1992].

6. In general the retrieval method tries to find cases that solved the maximum
possible number of goals with good match of the initial state. The complete
retrieval procedure is presented in [Veloso, 1992].

28 TowAaRDS SCALING UP MACHINE LEARNING

(]
£ 60000
'—
[@)]
£
£ 50000 |- /
=)
x /
> /
S 40000 | /
=)
S /
O /

30000 |- //

oA
/
= — & Without Analogy /
20000 } F#—— With Analogy /
/
/
/
10000 4
7~ /E{
7
7~ ° —%
7~
0 —g L L !
) 50 100 150 200

Number of Problems

Figure 16. Cumulative running time for 200 problems in the logistics domain
with and without analogy.

7. Trading Off Retrieval and Search Costs

In pure general-purpose problem solvers the cost of search is exponential
in the length of the solution. (By pure PS systems, we refer to systems
that search without any control knowledge to prune the search space of
possible operators). In pure CBR systems the cost of retrieval is very
high as the system fully relies on retrieving the best case in memory to
maximize its chance of successful adaptation.

In the analogical version of PRODICGY, where we integrate a search-
based problem solver with an analogical reasoner, we balance the cost
of retrieving and the residual problem-solving cost. We show how we
balance the cost of retrieval as a function of the degree of partial match.

DERIVATIONAL ANALOGY IN PRODIGY 29

In the retrieval procedure of Figure 10, suppose that the memory is or-
ganized in a discrimination network. The organization of the memory
is such that the indexes for the cases are less relevant as we move away
from the root of the discrimination network. On the other hand, given
a new problem P’ with initial state S¥' and goal G¥', we can com-
pute the absolute maximum possible match value. In fact it is simply
absolute_maz_match = length (G"') + length (S¥').

In general, we integrate analogy and search to reduce the size of the
search space in terms of the number of the nodes searched and conse-
quently achieve an improvement in running time. Harandi and Bhansali
[Harandi and Bhansali, 1989] confirmed that analogy would be useful if
the time to find analogues is small and the degree of similarity is high.
Hickman, Shell, and Carbonell [Hickman et al., 1990] also showed that
internal analogy can reduce the search cost. We show now that there
is an optimal range of retrieval time to spend searching for candidate
analogs. Intuitively the deeper that memory is searched, the better the
analog and the less search required by the problem solver. However
searching memory also takes time. Is there, hence, an optimal amount
of effort to spend searching memory?

We assume that the memory is organized in such a way that the
match degree increases monotonically with retrieval time [Kolodner,
1984, Schank, 1982] though not necessarily in a linear manner. This also
means that there is always one (or more) case available to return when
retrieval is halted. However if the retrieval time increases, the match
value between the case returned and the new problem also increases.
We now formalize this model. Let

e {. be the time spent to retrieve a similar past case,

e s, be the match value between the case retrieved and the new
problem,

e m be the absolute_max_match as introduced above, and

o d be the percentage of deviation from the absolute_max_match
of the match value of the case retrieved if the retrieval time is
null (or close to null).

Then we say that

6, = m(1 — dC™), (1)
where C and a are constants.

In Figure 17 we sketch three possible curves for the match value as

30 TowAaRDS SCALING UP MACHINE LEARNING

a function of the retrieval time. Curves 1 and 2 show situations where
the initial match is poor, i.e. with low match degree. However for
curve 1 the rate of match-degree improvement is very low (low a) while
for curve 2 the match degree increases rapidly with the retrieval time.
Situations 1 and 2 depict two different rates of improvement for the
match result while traversing down the discrimination net. Curve 3 plots
a situation where the initial match is immediately high and continues
to improve gradually towards the maximum.

Mat Ch b
degree

-

variable retrieval tine

Figure 17. Three different curves for the match value as a function of the re-
trieval time.

In the situations captured by the curves 1 and 3, the system should not
invest a long time in retrieving a better, or best similar past case. In both
cases termination occurs because the rate of improvement, «, is low. In
case 1, the system should solve the problem by general MEA search
because there are no good cases, and in case 3 it should immediately
start derivational replay on the retrieved high-match case, rather than
waste time seeking a marginally better one. Situation 2 illustrates the
case where retrieval time is more wisely invested. Given the fact that
the match degree is on average directly related to search savings in PS,
we now show analytically that there is an optimal amount of effort to
spend searching memory.

PRODIGY’s search tree can be viewed as an OR-tree, branching alter-
natively among possible goal orderings and possible operators to achieve
a goal. Let b be the average branching factor of the search tree, Let [
be the solution length for a given problem, and S be the search effort
without analogy. Then the complexity of § is [Hickman et al., 1990],
5 = 0b°WM). (From now on we skip the order of, @, notation for sim-
plicity.) Assume that the effect of analogical reasoning is captured in

DERIVATIONAL ANALOGY IN PRODIGY 31

a decrease of the average branching factor [Hickman et al., 1990]. This
reduction of the search effort is in direct relationship with the match
degree of the guiding case(s). Let Sgpaiogy be the search spent with
analogy. We can then say that, for some linear function f,

Sanalogy = (1= f(6:,))b)" (2)

The goal of the integrated analogical reasoner is to improve the effort
to reach a solution: PS search time plus memory search time [Harandi
and Bhansali, 1989]. The objective is to find the situation when this
sum is much smaller than brute-force PS search without any analogical
guidance. We capture this goal in the inequality below, where we do
not represent, for simplicity, the function f introduced in eq. 2:

L+ (1= 6,)b) < bl (3)

Substituting eq. 1 into the eq. 3, we get the final equation as a function
of the retrieval time ¢,:

tr 4+ (1 = m(1 —dC~"))lpl < v (4)
A

T | optimal
a2 | interval
.— 0O

[oR)

hc

)

(U S

o

— 0

[@)X7)}

(@]

— O

S C

c G

c

retrieval

Figure 18. Retrieval time (curve 2) plus analogical search effort (curve 1).

32 TowAaRDS SCALING UP MACHINE LEARNING

Figure 18 sketches the left hand side of inequality 4. 7 Analyzing this
qualitative curve, we conclude that there is an optimal retrieval time
interval, which is a function of the dynamic match rate a. Retrieval
should then stop when a given threshold is reached, namely when the
derivative of the expected search savings approaches the incremental
memory search cost.

8. Discussion: EBL and Analogy, Abstraction and
Analogy

Previous work in the linear planner of PRODIGY uses explanation-based
learning (EBL) techniques [Minton, 1988] to extract from a problem-
solving trace the explanation chain responsible for a success or failure
and, together with domain axioms, compile search control rules there-
from. The axiomatized domain knowledge is also used to learn ab-
straction layers [Knoblock, 1991], and statically generate control rules
[Etzioni, 1990]. In this section we discuss the benefits that we foresee in
a deeper integration of EBL and analogy, and abstraction and analogy.

8.1 EBL and analogy

Although we do not directly yet integrate full EBL with analogy we
expect scaling-up benefits from EBL-compiled control rules for high-
utility common situations plus a case library for lower-frequency more
complex situations. We discuss first the simple explanation mechanism
we use in the foot-print similarity metric. We then extend our discussion
to the deeper integration that we envision.

While performing the goal regression on the derivational trace to de-
termine the relevant foot-print of the initial state, the analogical rea-
soner performs a lazy explanation of the solution encountered. The
evaluation is termed “lazy” because it goes up the successful path fol-
lowing the subgoaling chain without trying to prove any generalization
of the immediate success or recorded failures. However it turns out
quite useful to take into account this explanation though simple, as we
discussed in section 5 to isolate the relevant part of the initial state.

7. This smooth curve does not correspond to data from any particular domain.
It captures solely the qualitative behavior of the search effort according to our
analytical analysis.

DERIVATIONAL ANALOGY IN PRODIGY 33

We plan to pursue a deeper integration with the EBL module in
PRODIGY [Minton, 1988, Etzioni, 1990]. On one hand, this integration
would allow the joint EBL-analogical reasoner to decide whether to in-
vest effort in statically analyzing a domain theory or a trace of a solved
problem to generalize control rules therefrom, or to store the problem-
solving episode as a case for eventual future retrieval and replay. On
the other hand, the dynamic memory organization in analogy converges
by clustering problems that are similar to each other. An explanation-
based strategy would be capable of generalizing the situations captured
by the more densely populated clusters and generate control rules there-
from.

Analogy can also complement EBL in incomplete domain theories
where the proofs cannot be pursued. In such situations, EBL could
apply to completely defined subtheories (for parts of the domain) and
use analogy as a backup for explanations that cannot be proved correct.
The joint EBL-analogical reasoner could switch from an eager costly
attempt to explain a difficult trace to a lazy attitude of storing it as a
case, as a function of a cost function between the two approaches.

8.2 Abstraction and analogy

A key issue in the process of solving problems by analogy is the iden-
tification of what are the details and what are the relevant features of
a particular situation. As new and past situations are not expected to
fully match, knowing the relevance of the information available increases
the ability for successful partial matching of different problems. ALPINE
[Knoblock, 1991] provides a mechanism that analyzes a particular do-
main, and generates abstraction levels that group together features (lit-
erals) in a hierarchical structure, the most crucial, interrelated ones at
the top. We plan to explore the use of the abstraction levels generated
by ALPINE as a measure of relevance to rank partially matched candi-
date analogs. In other words, the partial match is weighted towards
features and relations at the top of the abstraction hierarchy.

The way the case memory is organized directly relates to the eventual
success of the retrieval phase. As we have seen before, a new situation
is presented in terms of an initial world state and a goal statement.
The initial similarity metric we use requires a total match at the goal
predicate level, i.e. situations that refer to different uninstantiated goals
are not proposed as candidate analogs. This supports a goal-oriented

34 TowAaRDS SCALING UP MACHINE LEARNING

matching method [Kedar-Cabelli, 1985] that we advocate as the base
strategy.

The dynamic organization of memory currently does a simple abstrac-
tion by generalizing instances into their classes. However we plan to use
multiple abstraction levels to help the dynamic organization of the dis-
crimination network. Namely, we would like to have the most relevant
features of the problem being unified with the new problem before the
less relevant ones, where relevant is both a function of past experience
and the level in the abstraction hierarchy.

A second major benefit of the integration of analogy and abstraction
is the generalily of stored plans for later indexing. That is, a solution
at an abstract level is much more likely to be an applicable candidate
analog then one at the ground level — although it will require refinement
by adding in details of the current problem. In general, we propose to
use abstract analogs when specific grounded ones are not present to
guide search in derivational analogy.

9. Conclusion

In this chapter we presented the automatic case generation, storage, and
retrieval of cases in the derivational analogy module in the PRODIGY
architecture, and showed how the methods contribute to scaling up.

We showed how the problem solver introspects into its decision cycle
recording the justifications of the decisions taken and automatically gen-
erating cases from its problem-solving experience. These cases are or-
ganized in a case library indexed by their goal and relevant initial state.
We illustrated the case generation procedure and the organization of
memory with simple examples from the extended-STRrIPS domain. We
presented results of the performance of the replay mechanism when the
retrieval procedure used two different similarity metrics, the direct and
foot-print ones. The direct metric does not consider any correlations
between the initial state and the goal conjuncts. The foot-print metric
performs a goal regression in the solution path and is able to identify
the relevant features of the initial state for each goal conjunct. The
system shows better performance when the foot-print similarity metric
is used as more similar cases are replayed. Given our memory index-
ing method, similarity metric, and multiple-case replay mechanism, the
analogical reasoner of PRODIGY can scale up to complex domains such as

DERIVATIONAL ANALOGY IN PRODIGY 35

logistics/transportation with a 1000-case library. Finally we discussed
the benefits we foresee of a deeper integration of the EBL and abstrac-
tion modules with the analogical reasoner within PRODIGY.

Acknowledgements

The authors thank Daniel Borrajo for a major part of NoLIMIT s im-
plementation, and Oren Etzioni, Yolanda Gil, Robert Joseph, Craig
Knoblock, Steve Minton and Alicia Pérez for many useful discussions
and suggestions on both the analogy work and the synergy of the learn-
ing modules. The authors thank the whole PRODIGY research group for
helpful comments on this work.

This research was sponsored by the Defense Advanced Research Projects
Agency (DOD) and monitored by the Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC),
Wright-Patterson AFB, OH 45433-6543 under Contract F33615-87-C-
1499, ARPA Order No. 4976, Amendment 20. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or of the
U.S. Government.

References

[Allen and Langley, 1990] Allen, J. and Langley, P. (1990). Integrating
memory and search in planning. In Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Scheduling, and Control,
pages 301-312, San Diego, CA. Morgan Kaufmann.

[Bareiss and King, 1989] Bareiss, R. and King, J. A. (1989). Similar-
ity assessment in case-based reasoning. In Proceedings of the Second
Workshop on Case-Based Reasoning, pages 67-71, Pensacola, FL.
Morgan Kaufmann.

[Cain et al., 1991] Cain, T., Pazzani, M., and Silverstein, G. (1991).
Using domain knowledge to influence similarity judgments. In Pro-
ceedings of the 1991 DARPA Workshop on Case-Based Reasoning,
pages 191-199. Morgan Kaufmann.

36 TowAaRDS SCALING UP MACHINE LEARNING

[Carbonell et al., 1992] Carbonell, J. G., and the PRODIGY Re-
search Group (1992). PRODIGY4.0: The manual and tutorial. Tech-
nical Report CMU-CS-92-150, School of Computer Science, Carnegie
Mellon University.

[Carbonell, 1983] Carbonell, J. G. (1983). Learning by analogy: For-
mulating and generalizing plans from past experience. In Michalski,
R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learn-
ing, An Artificial Intelligence Approach, pages 137-162, Palo Alto,
CA. Tioga Press.

[Carbonell, 1986] Carbonell, J. G. (1986). Derivational analogy: A the-
ory of reconstructive problem solving and expertise acquisition. In
Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors, Ma-

chine Learning, An Artificial Intelligence Approach, Volume II, pages
371-392. Morgan Kaufman.

[Carbonell, 1990] Carbonell, J. G., editor (1990). Machine Learning:
Paradigms and Methods. MIT Press, Boston, MA.

[Carbonell and Gil, 1990] Carbonell, J. G. and Gil, Y. (1990). Learning
by experimentation: The operator refinement method. In Michalski,
R. S. and Kodratoffl, Y., editors, Machine Learning: An Artificial In-

telligence Approach, Volume III, pages 191-213. Morgan Kaufmann,
Palo Alto, CA.

[Carbonell et al., 1990] Carbonell, J. G., Knoblock, C. A., and Minton,
S.(1990). Prodigy: An integrated architecture for planning and learn-

ing. In VanLehn, K., editor, Architectures for Intelligence. Erlbaum,
Hillsdale, NJ. Also Technical Report CMU-CS-89-189.

[Carbonell and Veloso, 1988] Carbonell, J. G. and Veloso, M. M.
(1988). Integrating derivational analogy into a general problem solv-
ing architecture. In Proceedings of the First Workshop on Case-Based
Reasoning, pages 104-124, Tampa, FL. Morgan Kaufmann.

[Catlett, 1991] Catlett, J. (1991). Overpruning large decision trees. In
Proceedings of IJCAI-91, pages 764-769.

[Cheng and Carbonell, 1986] Cheng, P. W. and Carbonell, J. G. (1986).
The FERMI system: Inducing iterative rules from experience. In
Proceedings of AAAI-86, pages 490-495, Philadelphia, PA.

DERIVATIONAL ANALOGY IN PRODIGY 37

[DeJong and Mooney, 1986] DeJong, G. F. and Mooney, R. (1986).
Explanation-based learning: An alternative view. Machine Learn-
ing, 1(2):145-176.

[DeJong, 1989] DeJong, K., editor (1989). Machine Learning. Special
Issue on Genetic Algorithms. Kluwer Academic Publishers.

[Etzioni, 1990] Etzioni, O. (1990). A Structural Theory of Explanation-
Based Learning. PhD thesis, School of Computer Science, Carnegie
Mellon University. Available as technical report CMU-CS-90-185.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips:
A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2:189-208.

[Hammond, 1986] Hammond, K. J. (1986). Case-based Planning: An
Integrated Theory of Planning, Learning and Memory. PhD thesis,
Yale University.

[Hammond, 1989] Hammond, K. J. (1989). Opportunistic memory. In
Proceedings of the FEleventh International Joint Conference on Artifi-
cial Intelligence, pages 504-510, San Mateo, CA. Morgan Kaufmann.

[Harandi and Bhansali, 1989] Harandi, M. T. and Bhansali, S. (1989).
Program derivation using analogy. In Proceedings of the Fleventh

International Joint Conference on Artificial Intelligence, pages 389—
394, Detroit, MI.

[Hickman and Larkin, 1990] Hickman, A. K. and Larkin, J. H. (1990).
Internal analogy: A model of transfer within problems. In The 12th
Annual Conference of The Cognitive Science Sociely, pages 53-60,
Hillsdale, NJ. Lawrence Erlbaum Associates.

[Hickman et al., 1990] Hickman, A. K., Shell, P., and Carbonell, J. G.
(1990). Internal analogy: Reducing search during problem solving.
In Copetas, C., editor, The Computer Science Research Review 1990.
The School of Computer Science, Carnegie Mellon University.

[Hinton, 1989] Hinton, G. E. (1989). Connectionist learning procedures.
Artificial Intelligence, 40:185-234.

[Holland, 1986] Holland, J. H. (1986). Escaping brittleness: The pos-
sibilities of general purpose learning algorithms applied to paral-
lel rule-based systems. In Michalski, R. S., Carbonell, J. G., and

38 TowAaRDS SCALING UP MACHINE LEARNING

Mitchell, T. M., editors, Machine Learning, An Artificial Intelligence
Approach, Volume II. Morgan Kaufman.

[Iba, 1989] Iba, G. A. (1989). A heuristic approach to the discovery of
macro-operators. Machine Learning, 3(4):285-317.

[Joseph, 1989] Joseph, R. L. (1989). Graphical knowledge acquisition.
In Proceedings of the 4" Knowledge Acquisition For Knowledge-Based
Systems Workshop, Banff, Canada.

[Kedar-Cabelli, 1985] Kedar-Cabelli, S. (1985). Purpose-directed anal-
ogy. In Proceedings of the Seventh Annual Conference of the Cognilive
Science Sociely, pages 150-159.

[Knoblock, 1991] Knoblock, C. A. (1991). Automalically Generaling
Abstractions for Problem Solving. PhD thesis, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA. Available as
technical report CMU-CS-91-120.

[Knoblock et al., 1991] Knoblock, C. A., Minton, S., and Etzioni, O.
(1991). Integrating abstraction and explanation based learning in
PRODIGY. In Proceedings of AAAI-91, pages 541-546.

[Kolodner, 1983] Kolodner, J. (1983). Maintaining organization in a
dynamic long-term memory. In Charniak, E., Norman, D., and Smith,
E., editors, Cognilive Science, volume 7, pages 243-280, Norwood,
NJ. Ablex Publishing Company.

[Kolodner, 1989] Kolodner, J. (1989). Judging which is the “best” case
for a case-based reasoner. In Proceedings of the Second Workshop on
Cuase-Based Reasoning, pages 77-81. Morgan Kaufmann.

[Kolodner, 1984] Kolodner, J. L. (1984). Relrieval and Organization
Strategies in Conceptual Memory. Lawrence Erlbaum Associates,
Inc., Hillsdale, New Jersey.

[Korf, 1985] Korf, R. E. (1985). Macro-operators: A weak method for
learning. Artificial Intelligence, 26:35-77.

[Korf, 1987] Korf, R. E. (1987). Planning as search: A quantitative
approach. Artificial Intelligence, 33:65-88.

DERIVATIONAL ANALOGY IN PRODIGY 39

[Michalski et al., 1983] Michalski, R. S., Carbonell, J. G., and Mitchell,
T., editors (1983). Machine Learning: An Artificial Intelligence Ap-
proach, volume I. Morgan Kaufmann Publishers, Inc., Los Altos, CA.

[Michalski et al., 1986] Michalski, R. S., Carbonell, J. G., and Mitchell,
T., editors (1986). Machine Learning: An Artificial Intelligence Ap-
proach, volume II. Morgan Kaufmann Publishers, Inc., Los Altos,

CA.

[Michalski and Kodratoff, 1990] Michalski, R. S. and Kodratoff, Y., ed-
itors (1990). Machine Learning, An Artificial Intelligence Approach,
Volume I1I. Morgan Kaufmann, Palo Alto, CA.

[Minsky and Selfridge, 1961] Minsky, M. and Selfridge, O. G. (1961).
Learning in neural nets. In Proceedings of Fourth London Symposium
on Information Theory, New York, NY. Academic Press.

[Minton, 1985] Minton, S. (1985). Selectively generalizing plans for
g g
problem solving. In Proceedings of AAAI-85, pages 596-599.

[Minton, 1988] Minton, S. (1988). Learning Effective Search Control
Knowledge: An Fzplanalion-Based Approach. PhD thesis, Computer
Science Department, Carnegie Mellon University. Available as tech-
nical report CMU-CS-88-133.

[Minton et al., 1989a] Minton, S., Carbonell, J. G., Knoblock, C. A.,
Kuokka, D. R., Etzioni, O., and Gil, Y. (1989a). Explanation-based
learning: Optimizing problem solving performance through experi-
ence. Artificial Intelligence.

[Minton et al., 1989b] Minton, S., Knoblock, C. A., Kuokka, D. R., Gil,
Y., Joseph, R. L., and Carbonell, J. G. (1989b). proDIGY 2.0: The
manual and tutorial. Technical Report CMU-CS-89-146, School of
Computer Science, Carnegie Mellon University.

[Mitchell et al., 1986] Mitchell, T. M., Keller, R. M., and Kedar-
Cabelli, S. T. (1986). Explanation-based generalization: A unifying
view. Machine Learning, 1:47-80.

[Niiiez, 1991] Nifiez, M. (1991). The use of background knowledge in
decision tree induction. Machine Learning, 6(3):231-250.

40 TowAaRDS SCALING UP MACHINE LEARNING

[Pazzani, 1990] Pazzani, M. (1990). Creating a Memory of Causal Rela-
tionships: An integration of empirical and explanation-based learning
methods. Lawrence Erlbaum Associates, Hillsdale, NJ.

[Porter et al., 1989] Porter, B., Bareiss, R., and Holte, R. (1989).
Knowledge acquisition and heuristic classification in weak-theory do-
mains. Technical Report AI-TR-88-96, Department of Computer Sci-
ence, University of Texas at Austin.

[Quinlan, 1983] Quinlan, J. R. (1983). Learning efficient classifiation
procedures and their application to chess end games. In Michalski,
R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learn-
ing, An Artificial Intelligence Approach, Volume I. Morgan Kaufman.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1:81-106.

[Quinlan, 1987] Quinlan, J. R. (1987). Simplifying decison trees. Inter-
national Journal of Man-machine Studies, 27:221-234.

[Riesbeck and Schank, 1989] Riesbeck, C. K. and Schank, R. C. (1989).
Inside Case-Based Reasoning. Lawrence Erlbaum Associates, Inc.,
Hillsdale, New Jersey.

[Rosenbloom et al., 1990] Rosenbloom, P. S., Lee, S., and Unruh, A.
(1990). Responding to impasses in memory-driven behavior: A frame-
work for planning. In Proceedings of the DARPA Workshop on In-
novative Approaches to Planning, Scheduling, and Control. Morgan
Kaufmann.

[Sacerdoti, 1977] Sacerdoti, E. D. (1977). A Structure for Plans and
Behavior. American Elsevier, New York.

[Schank, 1982] Schank, R. C. (1982). Dynamic Memory. Cambridge
University Press.

[Shell and Carbonell, 1989] Shell, P. and Carbonell, J. G. (1989). To-
wards a general framework for composing disjunctive and iterative
macro-operators. In Proceedings of IJCAI-89.

[Simpson, 1985] Simpson, R. L. (1985). A computer model of case-based
reasoning in problem solving: An investigation in the domain of dis-
pute mediation. PhD thesis, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA.

DERIVATIONAL ANALOGY IN PRODIGY 41

[Sycara, 1987] Sycara, E. P. (1987). Resolving adversarial conflicts: An
approach to integrating case-based and analytic methods. PhD thesis,
School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA.

[Touretzky, 1989] Touretzky, D. (1989). Connectionism and composi-
tional semantics. In Barnden, J. A. and Pollack, J. B., editors, Ad-
vances in Connectionist and Neural Computational Theory. Ablex,
Norwood, NJ.

[Veloso, 1989] Veloso, M. M. (1989). Nonlinear problem solving using
intelligent casual-commitment. Technical Report CMU-CS-89-210,
School of Computer Science, Carnegie Mellon University.

[Veloso, 1991] Veloso, M. M. (1991). Efficient nonlinear planning using
casual commitment and analogical reasoning. In Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Sociely, pages
938-943, University of Chicago, IL. Lawrence Erlbaum.

[Veloso, 1992] Veloso, M. M. (1992). Learning by Analogical Reasoning
in General Problem Solving. PhD thesis, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA. Available as technical
report CMU-CS-92-174.

[Veloso and Carbonell, 1989] Veloso, M. M. and Carbonell, J. G.
(1989). Learning analogies by analogy - The closed loop of mem-
ory organization and problem solving. In Proceedings of the Second
Workshop on Case-Based Reasoning, pages 153-158, Pensacola, FL.
Morgan Kaufmann.

[Veloso and Carbonell, 1990] Veloso, M. M. and Carbonell, J. G.
(1990). Integrating analogy into a general problem-solving architec-
ture. In Zemankova, M. and Ras, Z., editors, Intelligent Systems,
pages 29-51. Ellis Horwood, Chichester, England.

[Veloso and Carbonell, 1991] Veloso, M. M. and Carbonell, J. G.
(1991). Variable-precision case retrieval in analogical problem solv-
ing. In Proceedings of the 1991 DARPA Workshop on Case-Based
Reasoning, pages 93-106, Washington, DC. Morgan Kaufmann.

[Veloso and Carbonell, 1993] Veloso, M. M. and Carbonell, J. G.
(1993). Derivational analogy in PRODIGY: Automating case acqui-
sition, storage, and utilization. Machine Learning, 10:249-278.

42 TowAaRDS SCALING UP MACHINE LEARNING

[Waldinger, 1981] Waldinger, R. (1981). Achieving several goals simul-
taneously. In Nilsson, N. J. and Webber, B., editors, Readings in

Artificial Intelligence, pages 250-271. Morgan Kaufman, Los Altos,
CA.

