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ABSTRACT

We investigate teams of complete autonomous agents that can collaborate towards achieving precise objectives in an
adversarial dynamic environment. We have pursued this work in the context of robotic soccer both in simulation and
with real physical robots. We briefly present these two frameworks emphasizing their different technical challenges.
Creating effective members of a team is a challenging research problem. We first address this issue by introducing
a team architecture organization which allows for a rich task decomposition between team members. The main
contribution of this paper is our introduction of an action-selection algorithm that allows for a teammate to anticipate
the needs of other teammates. Anticipation is critical for maximizing the probability of successful collaboration
in teams of agents. We show how our contribution applies to the two concrete robotic soccer frameworks and
present controlled empirical results run in simulation. Anticipation was successfully used by both our CMUnited-98
simulator and CMUnited-98 small-robot teams in the RoboCup-98 competition. The two teams are RoboCup-98
world champions each in its own league.

1. INTRODUCTION

We have been pursuing research in the development of teams of autonomous agents that need to act in adversarial
environments. In these domains, single agents cannot achieve the overall team goals individually. Goal achievement
necessarily requires the collaboration between the members of the team. We have used three different testbeds in the
robotic soccer domain to pursue this investigation: a rich simulation environment using the RoboCup soccer server,
our own-built small wheeled robots, and Sony’s fully autonomous legged robots. At the RoboCup-98 competitions
we came in first place in each of these three leagues. This paper focuses on the collaborative teamwork algorithms
of our CMUnited-98 simulation and small-robot teams.

Several other researchers have developed teamwork theories and opponent modelling in a variety of domains
(e.g.1?). One of the main focus of our research is on algorithms for collaboration between agents in a team. We
can view our teamwork approach as a method to optimize social utility.> We build upon this work in the real-time
adversarial robotic soccer domains. In our approach of social utility, an agent, as a member of a team, needs to be
capable of individual autonomous decisions while, at the same time, its decisions must contribute towards the team
goals.

In many multi-agent systems, one or a few agents are assigned, or assign themselves, the specific task to be solved
at a particular moment. We view these agents as the active agents. Other team members are passive waiting to be
needed to achieve some task. Concretely, in the robotic soccer domain, we view the agent that goes to the ball as
the “active” agent, while the other teammates are in principle “passive.” While the active agent has a clear task
assigned and therefore a clear plan to follow (e.g. move towards the ball), it is less clear what is the plan for the
passive agents. As the team agents most probably will need to collaborate, it seemed to us that passive agents could
not simply be “passive.”

Previously, in our CMUnited-97 teams, passive agents flexibly varied their positions within a range, however only
as a function of the position of the ball.*® In so doing, their goal was to anticipate where they would be most likely
to find the ball in the near future. In our CMUnited-97 teams, both simulation and real robots, we effectively used
this ball-dependent role-adjustment strategy. Since this strategy did not take into account other agents, we call this
first-level of anticipation towards better individual goal achievement, single-agent anticipation.
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Recently, we investigated a more elaborate team behavior for the passive agents. For the CMUnited-98 teams, we
introduced a team-based notion of multi-agent anticipation, which goes beyond single-agent anticipation. The passive
team agents position themselves strategically so as to optimize the chances that their teammates can successfully
collaborate with them, in particular pass to them. By considering the positions of other agents and the attacking
goal, in addition to that of the ball, they are able to position themselves more usefully: they anticipate their future
contributions to the team, i.e. they anticipate their social utility. This strategic anticipation is the main contribution
of this paper.

The paper is organized as follows. Section 2 describes the simulation and the robotic soccer frameworks. Section 4
contributes the anticipation algorithm as a key behavior for the success of team of agents, and reports on the results
obtained at the RoboCup-98 robotic soccer competitions as well as controlled empirical tests. Section 5 concludes
the paper.

2. SIMULATION AND REAL ROBOTIC SOCCER

Robotic soccer is a challenging domain for studying real-time multi-agent coordination techniques: agents must act
quickly and autonomously while contributing to the achievement of the team’s overall goal.”®

2.1. Simulator

The RoboCup soccer server’ has been used as the basis for successful international competitions and research
challenges.!® Though not directly based upon any single robotic system, the soccer server captures several real-
world complexities: all players are controlled by separate processes; the players’ vision is limited; the players can
communicate by posting to a blackboard that is visible to all players; actions and sensors are noisy; each player has
limited stamina; and play occurs in real time.

the players’ vision is limited;

the players can communicate by posting to a blackboard that is visible to all players;

all players are controlled by separate processes;

each team has 11 members;

each player has limited stamina;

actions and sensors are noisy; and

play occurs in real time: the agents must react to their sensory inputs at roughly the same speed as
human or robotic soccer players.

The simulator, acting as a server, provides a domain and supports users who wish to build their own agents (clients).

By abstracting away the low-level perception and action complexities inherent in robotics, the simulator allows
researchers to focus quickly on the multi-agent coordination issues. In this regard, the fact that the simulator enforces
a completely distributed approach (each player must be controlled by a separate program) is a crucial feature.

Perception in the simulator is distributed. Each agent sees a portion of the world depending on the direction
it is facing. All of the information it receives is in polar coordinates relative to its own position (instead of global
Cartesian coordinates). Objects that are farther away are seen with less precision. Actions available to the clients
are parameterized movement commands (turn/dash/kick) as well as a communicate “say” command. The effects of
all actions are non-deterministic.*

2.2. Real Robots

Our small-size robot team is a fully autonomous system consisting of a global perception system and individual
decision-making clients. The team is made up of five robots that we have built.!? T Figure 1 shows our CMUnited-98
robots.

The decision-making clients select actions based on the perceived world state and send these commands to the
physical robots through radio communication. Perception is accomplished through a camera over-looking the playing
field. The full view of the world is processed by our vision algorithm to find and track the position and orientation

*For complete details of the simulator, see Stone’s PhD thesis.!!

'We thank Sorin Achim and Kwun Han for designing and building the CMUnited-98 robots.



Figure 1. Our Small Robot Team: RoboCup-98 Champions

of the team’s agents, the position of the opponents, and the position and trajectory of the ball.'® This processing
provides a global view of the environment that is shared by all of the agents.

Each physical robot is controlled by a separate client program that makes decisions using the information obtained
from the vision system. Each agent is assigned a role and therefore behaves differently. Our robots exhibit three
roles: goal-tender, defender, and attacker. Even with this partition of agents, it is still not desirable for all of the
agents to be “actively” filling their roles. For example, it is rarely successful for all of the attackers to chase the
ball since they will often be hindering each other’s progress. Multiple attackers need therefore to coordinate. Each
attacking agent uses the perceived world to calculate the value of its own and its teammates’ possible actions and
acts accordingly.

3. SINGLE-AGENT ANTICIPATION

Our base teamwork structure is situated within a team member architecture suitable for real-time multi-agent domains
in which individual agents can cooperate with teammates towards common goals while still acting autonomously.*
Based on a standard agent paradigm, our team member architecture allows a complete intelligent agent cycle: (i) to
sense the environment, (ii) to reason about and select their actions, and (iii) to act in the real world.

Individual agents act autonomously during the games. In the simulator, agents have limited communication
capabilities, but in our real robots, agents cannot communicate with each other. In order to achieve the necessary
team coordination towards the joint achievement of the team goals, we introduce a “locker-room agreement,” as
a collection of deliberative plans shared by all the agents. The locker-room agreement specifies team conventions
and collaboration protocols (building upon equivalent approaches in multi-agent systems). It alleviates the need for
negotiation during time-pressured situations and it allows for team coordination when no communication is available.

In our initial team architecture,* we include a behavior-based approach.'® Agents play different roles and are
organized in different formations. A formation consists primarily of a set of roles.* A formation consists of a set of
positions and a set of units. The formation and each of the units can also specify inter-position behavior specifications
for the member positions. The definition of a role includes home coordinates, a home range, and a mazrimum range.
The home and max ranges of different roles can overlap, even if they are part of the same formations.

When an agent is not in control of the ball, our architecture allows for it to flexibly vary its position within its
role. The role’s home coordinates are the default location to which the agent should go. Within the flexible role
assignment, rather than associating fixed (z,y) coordinates with each role, an agent filling a particular role is given
a range of coordinates in which it could position itself. It is this flexibility that is exploited by the anticipation
mechanism. In particular, based on the ball’s position on the field, the agent positions itself so as to increase its
chances of achieving the team goal.

In this initial team architecture approach, agents can vary their position within their home range, only as a
function of the position of the ball. The position of the other agents is not used to determine each agent’s own
position, therefore the agent performs what we call single-agent anticipation. When reacting to the ball’s position,
the agent moves to a location within its range that minimizes its distance to the ball. In so doing, the agent’s goal is
to anticipate where they would be most likely to find the ball. This single-agent anticipation aims towards a better
individual goal achievement. It was successfully used in our CMUnited-97 simulation and small-robots teams.?©



4. ANTICIPATION FOR TEAM COLLABORATION

The social utility of agents in a team of agents can be in general very hard to define. We are particularly interested
in opportunities that allow the agents to collaborate with each other. The assumption is that collaboration is needed
when a task cannot be accomplished by individual agents.

Our anticipation approach for team collaboration presented in this section in the robotic soccer domain, could
be in principle generalized.

Consider that for each agent, for each state, and at each time, there is a computable value for the probability
that an active agent could successfully collaborate with a passive agent. As the world is constantly changing, the
values for the probability of collaboration are computed as a function of the dynamic world.

Assuming that the transitions between states for each agent take time (or some other cost function), then
anticipation consists of the selection of a new state that maximizes the probability of future collaboration.

Anticipation therefore allows for a flexible adjustment of a team agent to maximize the probability of its social
utility, i.e., to be useful for the team. We now formally present our anticipation algorithm within the robotic soccer
domain.

4.1. Anticipation in a Robotic Soccer Team

The CMUnited-98 small robot team significantly extends the initial CMUnited-97 single-agent anticipation in two
ways: (i) we maintain the role assignments, but we don’t use pre-defined formations, (ii) we use a decision theoretic
algorithm to select the active agent; and (ii) we use a technique for passive agents to anticipate future collaboration.
Passive agents are therefore not actually “passive;” instead, they actively anticipate opportunities for collaboration.

Collaboration is built on robust individual behaviors. We first developed individual behaviors for passing and
shooting. Passing and shooting in CMUnited-98 is handled effectively by the motion controller.!> The target
configuration is specified to be the ball (using its estimated trajectory) and the target direction is either towards the
goal or another teammate. This gives us robust and accurate individual behaviors that can handle obstacles as well
as intercepting a moving ball.

4.2. Decision Theoretic Action Selection

Given the agents’ individual behaviors, we must select an active agent and appropriate behavior. This choice is
made using a decision theoretic analysis using a single step look-ahead. With n agents this amounts to n? choices of
actions involving shooting or a pass to another agent followed by that agent shooting. An estimated probability of
success for each pass and shot is computed along with the time estimate to complete the action, which is provided
by the motion controller. A value for each action is computed:

Value — £rpassPlshoot

time

The action with the largest value is selected, which determines both the active agent and its behavior. Table 1
illustrates an example of the values for the selection considering two attackers, 1 and 2.

Probability

of Success
Attacker Action Pass | Shoot | Time(s) | Value
1 Shoot - 60% 2.0 0.30

1* Pass to 2 | 60% | 90% 1.0 0.54
2 Shoot — 80% 1.5 0.53
2 Passto 1l | 50% | 40% 0.8 0.25

Table 1. Action choices and computed values are based on the probability of success and estimate of time. The
largest-valued action (marked with an *) is selected.



This decision theoretic action selection is implemented on our real robots. It is important to note that this action
selection is occurring on each iteration of control, i.e., approximately 30 times per second. The probabilities of
success, estimates of time, and values of actions, are being continuously recomputed. This allows for quick changes
of actions if shooting opportunities become available or collaboration with another agent appears more useful.

4.3. Dynamic Positioning: SPAR

Although the above technique determines what action should be taken by the active agent, it is unclear what the
passive agents should be doing. However, in a team multi-agent system such as robotic soccer, success and goal
achievement often depend upon collaboration. Therefore, we introduce in CMUnited-98, the concept that team
agents should not actually be “passive.”

Here we introduce a team-based notion of anticipation, which goes beyond individual single-agent anticipation.
The passive team members position themselves strategically so as to optimize the chances that their teammates can
successfully collaborate with them, in particular pass to them. By considering the positions of other agents and the
attacking goal, in addition to that of the ball, they are able to position themselves more usefully: they anticipate
their future contributions to the team.

This strategic positioning takes into account the position of the other robots (teammates and opponents), the
ball, and the opponent’s goal. The best position is determined by the solution to a multiple-objective function with
repulsion and attraction points. To present our algorithm, we introduce the following variables:

n - the number of agents on each team;
O; - the current position of each opponent, i =1,... n;
T; - the current position of each teammate, i = 1,...,(n — 1);

B - the current position of the active teammate and ball;
G - the position of the opponent’s goal;
P - the desired position for the passive agent in anticipation of a pass.

Using these variables, we formalize our algorithm for strategic positioning which we call SPAR for Strategic
Positioning with Attraction and Repulsion. SPAR extends similar approaches using potential fields'® to our highly-
dynamic, multi-agent domain. The probability of collaboration is directly related to how “open” a position is to
allow for a successful pass. SPAR maximizes the repulsion from other agents and minimizes attraction to the ball
and to the goal. Using d as the Fuclidean distance function, SPAR considers the following set of objectives:

Repulsion from opponents. Maximize the distance to each opponent: Vi, max d(P, O;).
Repulsion from teammates. Maximize the distance to other passive teammates: Vi, max d(P,T;).
Attraction to the ball: mind(P, B).

Attraction to the opponent’s goal: min d(P, G).

This is a multiple-objective function. To solve this optimization problem, we restate this function into a single-
objective function.

As each term in the multiple-objective function may have a different relevance (e.g., staying close to the goal may
be more important than staying away from opponents), we want to consider different functions of each term. In our
CMUnited-98 teams, we weight the terms differently, namely wo,, wr,, wp, and wg, for the weights for opponents,
teammates, the ball, and the goal, respectively. For CMUnited-98, these weights were hand tuned to create a proper
balance. This gives us a weighted single-objective function:

max( Soi wo, dist(P,0;) + >, wr,dist(P, T;) — wgdist(P, B) — wgdist(P,G) )

This optimization problem is then solved numerically under constraints which are specific to each team environ-
ment. We now present the set of constraints for both the simulator and the small-robot teams. We used the SPAR
algorithm in both of these platforms.



4.4. Constraints in the Simulator Team

One constraint in the simulator team relates to the position, or role, that the passive agent is playing relative to the
position of the ball. The agent only considers positions that are within a rectangle whose corner is on the ball that is
closest to the position home of the position that it is currently playing. This constraint helps ensure that the player
with the ball will have several different passing options in different parts of the field. In addition, players don’t need
to consider moving too far from their positions to support the ball.

In addition to this first constraint, the agents observe three additional constraints. In total, the constraints in
the simulator team are:

Stay in an area near home position

Stay within the field boundaries

Avoid being in an off-sides position

Stay in a position in which it would be possible to receive a pass.

This last constraint is evaluated by checking that there are no opponents in a cone with vertex at the ball and
extending to the point in consideration.

4.5. Constraints in the Real Robot Team

The real robotic environment is different from the simulator in several aspects. The main differences result from the
fact that the agents here are real physical artifacts that occupy space, do not control the ball carefully, and have
rather unreliable accurate motion. The robots’ motion is quite crude manipulating the ball, as they cannot hold it,
but act on the ball simply by pushing it with their mostly flat sides.

The constraints in the real robot team therefore involve two main aspects on the position of the passive agent:

¢ Do not block possible direct shot from active teammate to the goal.
¢ Do not stand behind other robots, because these are difficult positions to receive passes in case the active
team decides to do so.

Figures 2(a) and (b) illustrate these two constraints and Figure 2(c) shows the combination of these two constraints
and the resulting position returned by our algorithm for the anticipating passive teammate.

) Do not block goal shot  (b) Avoid dlfﬁcult Collaboratlon ) Result
Figure 2. Constraints for the anticipation algorithm for the CMUnited-98 small-robot team: (a) and (b) show
three opponents robots, and the position of the ball corresponding also to the position of the active teammate; (c)

shows the resulting position of the passive agent, dark square, as returned by our anticipation algorithm, using the
constraints in (a) and (b).

Using this anticipation algorithm in competition, the attacking team agents behaved in an exemplary collaborative
fashion. Their motion on the field was a beautiful response to the dynamically changing adversarial environment.
The active and passive agents moved in coordination using the anticipation algorithm increasing very significantly
successful collaboration.



4.6. Results

In this paper, we provide the results of all of our real RoboCup-98 games as anecdotal evidence of the performance of
our algorithm. Note that the environments are highly adversarial and that our agents had never seen the opponent
teams before. We also report on the results of extensive, controlled empirical tests run in simulation.

Tables 2 and 3 show the scores of the games of CMUnited-98 simulator and real robot teams. Both the simulator
and small-robot CMUnited-98 teams won their respective leagues at RoboCup-98. The simulator and small-robot
teams placed first out of 34 and 11 teams, respectively.

|| Opponent Name | Affiliation | Score ||
UuU Utrecht University 220
TUM / TUMSA Technical University Munich 2-0
Kasuga-Bitos I1 Chubu University 50
Andhill’98 NEC 8-0
ISIS Information Sciences Institute 12-0
Rolling Brains Johannes Gutenberg-University | 13-0
Windmill Wanderers University of Amsterdam 1-0
AT-Humboldt’98 Humboldt University of Berlin 3-0

| TOTAL [ 660 |

Table 2. The scores of CMUnited-98’s games in the simulator league of RoboCup-98.

|| Opponent Name | Affiliation | Score ||
iXS iXs Inc. 16-2
5DPO University of Porto 0-3
Paris-8 University of Paris-8 3-0
Cambridge University of Cambridge | 3-0
Roboroos University of Queensland | 3-1
TOTAL 256

Table 3. The scores of CMUnited-98’s games in the small-robot league of RoboCup-98.

We find that the RoboCup games offered a fully unbiased evaluation setup, as the dynamics of the environment
was unknown and not modeled. Our anticipation algorithm clearly provided a significant advantage over the other
teams. Video clips of our games show the dynamic movement of our robots as a function of the position of the
other robots and of the ball. Using our SPAR algorithm, the passive agents intelligently move to open areas, hence
responding in real-time to the highly dynamic character of the robotic soccer domain. In the games, robots position
themselves leading to successful collaboration opportunities as ball passes between robots towards goal scoring.

As a controlled experiment, we tested teams using single-agent (ball-dependent) and multi-agent (SPAR) antici-
pation against a common opponent in an offense-defense scenario: 6 attackers against 4 defenders with the ball being
reset whenever the attackers scored or the defenders cleared the ball. As shown in Table 4, when the attackers used
SPAR, they scored significantly more frequently than when they used ball-dependent positioning. Each experiment
was run for 200,000 simulator cycles or 333.3 minutes of real time (1 cycle = 100 msec).

Anticipation || Goals | Mean cycles between goals | Std. Dev. |
Single-agent 191 1048.45 + 71.2
Multi-agent 272 739.64 + 45.0

Table 4. A comparison of single-agent (ball-dependent) and multi-agent (SPAR) anticipation strategies against a
common opponent over 200,000 simulator cycles.



5. CONCLUSION

In this paper we have presented our work investigating and introducing the concept of anticipation to increase
collaboration in teams of agents. We have been working in the concrete domain of robotic soccer.

We discussed our basic flexible team architecture in which individual agents flexibly move within their role as a
function of the position of the ball to try to optimize their individual actions towards the ball.

We then introduced a novel anticipation algorithm that allows for team agents to strategically position themselves
in anticipation of possible collaboration needs from other teammates. In simulation, we demonstrated empirically that
our novel multi-agent anticipation strategy significant improves over our previous single-agent anticipation strategy.
We used this new multi-agent anticipation algorithm in our RoboCup-98 teams achieving very successful results.

Given that we have developed algorithms for individual action and team collaboration through anticipation, the
current on-going step on our research agenda is to develop algorithms to predict the actions of the opponent agents
and proactively counter them.
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