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Introduction

As robots become more adept at operating in the
real world, it becomes more important to build teams
of robots, capable of high-level collaborative and ad-
versarial planning and learning in real-time situa-
tions. Robotic Soccer is an interesting emerging do-
main that is particularly appropriate for studying these
issues (Kitano et al. 1995; Stone & Veloso 1996a;
Kim 1996). We have been pursuing research in this do-
main using both a simulator and real physical agents.
This paper is a very brief introduction to our work and
the reader is referred to the references provided.

We present the architecture of the physical sys-
tem and introduce how actions are layered building
upon each other to create strategic reasoning. We
decompose the system’s capabilities in different lay-
ers, namely behavioral, perceptual, and strategic. We
view the strategic layer itself consisting of different lev-
els. We have been using realistic simulation environ-
ments (Noda 1995; Sahota 1993) to learn basic col-
laborative strategic procedures. Our on-going research
consists of extending and applying these robust strate-
gic templates to the physical agents.

A ground-breaking system for Robotic Soccer, and
the one that served as the inspiration and basis for our
work, is the Dynamo System developed at the Univer-
sity of British Columbia (Sahota 1993). This system
introduces a decision making strategy called reactive
deliberation which is used to choose from among seven
hard-wired behaviors. In our approach, we structure
the deliberation and reaction as a layered learning ar-
chitecture. Other efforts have been pursued on apply-
ing learning to acquire specific behaviors in different
setups (e.g., (Asada et al. 1994)). We have chosen to
focus on producing a simple, robust design that will en-
able us to concentrate our efforts on learning low-level
behaviors and high-level strategies.

Our current mini-robotic system is certainly usable
for tasks other than Robotic Soccer, but since our main
purpose in building the system was to work in the
Robotic Soccer domain, we made most of our design
decisions with this domain primarily in mind.

Overall Architecture

The architecture of our physical RoboSoccer system
addresses the combination of high-level and low-level
reasoning by viewing the overall system as the combi-
nation of the mini-robots, a vision camera over-looking
the playing field connected to a centralized interface
computer, and several clients as the minds of the mini-
robot players. Figure 1 sketches the building blocks of
the architecture.
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Figure 1: Our Robotic Soccer Architecture as a Dis-
tributed Deliberation and Reacting System.
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Our architecture implements the overall robotic soc-
cer system as a set of different platforms with dif-
ferent processing features. The current system can
use either radio (RF) or infrared (IR) communication.
The complete system is fully autonomous consisting of
the following processing cycle: the vision system per-
ceives the dynamic environment, namely the position-
ing of the robots and the ball; the image is processed
and transferred to the host computer that makes the
perception available to the client modules; based on
the perceived positioning of the agents and any other
needed information about the state of the game (e.g.
winning, losing, attacking), each client uses its strate-
gic knowledge to decide what to do next; the client se-
lects navigational commands to send to its correspond-
ing robot agent; these commands are sent by the main
computer to the robots using the robot-specific action
codes. Each robot has a self identification binary code
that is used in the communication. This complete sys-
tem is now fully implemented.

Figure 2 shows the architecture as a layered func-
tional system. The protocols of communication be-
tween the layers are specified in terms of the modular
inputs and outputs at each level.
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Figure 2: (a) The functional layers of the architecture,
and (b) strategic level decomposition.

The complete hardware details of the physical agents
can be found in (Achim, Stone, & Veloso 1996). We
now briefly introduce our work on learning behaviors
towards collaborative strategies.

Layered Behavioral Learning

We have been applying machine learning techniques to
acquire strategic knowledge initially using a simulator
based on the Dynamo system and currently the Soccer
Server. Further details of our learning work can be
found in (Stone & Veloso 1996¢; 1996b).

We have currently applied machine learning to learn
the following two layers of behaviors:

e A robust ball interception and shooting behavior;
e The choice of which teamplayer to pass the ball to.

We use supervised neural network to learn the ball
intercept behavior. Our setup consists of two agents:
a passer accelerates as fast as possible towards a sta-
tionary ball in order to propel it between a shooter and
the goal. The resulting speed of the ball is determined
by the distance that the passer started from the ball.
The shooter’s task is to time its acceleration so that it
intercepts the ball’s path and redirects it into the goal.
We constrain the shooter to accelerate at a fixed con-
stant rate, once it has decided to begin its approach.
Thus, precisely, the behavior to be learned consists of
the decision of when to begin moving. At each action
opportunity the shooter either starts or waits. The de-
cision needs to be made based on the observed field
through the noisy observation available: the ball’s and
the shooter’s (z,y, #) coordinates reported at a (simu-
lated) rate of 60H z.

We selected the inputs features that enabled the
learning to generalize to different field positions and
were easily computable from the observations. Given
that the shooter is able to estimating the point at
which it hoped to strike the ball, or the Contact Point,
we used the following features:

e Ball’s Distance to the Contact Point;

e Agent’s Distance to the Contact Point; and

e Heading Offset: the difference between the agent’s
initial heading and its desired heading.

These inputs (and one hidden layer) proved to be
sufficient for learning the task at hand. Furthermore,

since they contained no coordinate-specific informa-
tion, they enabled training in a narrow setting to apply
much more widely as shown at the end of this section.

We trained using a random shooting policy. Using
the learned 3-input NN shooting policy, the shooter
scored 96.5% of the time at different field locations.

To account for varying ball speeds, we added the es-
timate of the ball’s speed to the inputs of the NN. We
achieved equivalent successful interception and scoring
performance with this new NN for a variety of gen-
eralization situations, including different ball’s speeds,
ball’s trajectories, and locations of the goal.

All our client teamplayers are now equipped with
the learned NN for their low-level behavior to inter-
cept and shoot the ball. At the low individual level,
each teamplayer is also provided with a probabilistic
predictive memory to account for the inaccessibility of
the environment (Bowling, Stone, & Veloso 1996).

We have been incrementally teaching other basic col-
laborative strategy behaviors to our robots. In partic-
ular, we are using decision-tree learning algorithms for
the selection of which teamplayer to pass the ball to
and reinforcement learning approaches to learn to han-
dle adversarial strategies. These higher learning levels
use and build upon the low-level behavioral neural net-
works. Our system drives along the line of learning a
layered reasoning system, to handle the individual, col-
laborative and adversarial characteristics of multiagent
domains, in particular robotic soccer.
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