
LEARNING BY ANALOGICAL REPLAY IN PRODIGY:
FIRST RESULTS

Manuela M. VELOSO Jaime G. CARBONELL
mmv@cs.cmu.edu jgc@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Robust reasoning requires learning from problem solving episodes. Past experience must be compiled to

provide adaptation to new contingencies and intelligent modification of solutions to past problems. This

paper presents a comprehensive computational model of analogical reasoning that transitions smoothly

between case replay, case adaptation, and general problem solving, exploiting and modifying past experi-

ence when available and resorting to general problem-solving methods when required. Learning occurs by

accumulation and reuse of cases (problem solving episodes), especially in situations that required extensive

problem solving, and by tuning the indexing structure of the memory model to retrieve progressively more

appropriate cases. The derivational replay mechanism is briefly discussed, and extensive results of the first

full implementation of the automatic generation of cases and the replay mechanism are presented. These

results show up to a 20-fold performance improvement in a simple transportation domain for structurally-

similar problems, and smaller improvements when a rudimentary similarity metric is used for problems

that share partial structure in a process-job planning domain and in an extended version of the STRIPS robot

domain.

Keywords

Analogy, general-purpose problem solving, learning.

376

1 Introduction: Motivation and Substrate

Derivational analogy is a general form of case-based reconstructive reasoning that replays and modifies

past problem solving traces to solve problems more directly in new but similar situations [Carbonell,

1986]. While generating a solution to a problem from a given domain theory, the problem solver accesses

a large amount of knowledge that is not explicitly present in the final solution returned. One can view

the problem solving process as a troubled (messy) search for a solution where different alternatives are

generated and explored, some failing and others succeeding. Local and global reasons for decisions are

recorded incrementally during the search process. A final solution represents a sequence of operations that

correspond only to a particular successful search path. Transformational analogy [Carbonell, 1983] and

most case-based reasoning systems (as summarized in [Riesbeck and Schank, 1989]) replay past solutions

by modifying, tweaking the retrieved past solution. Derivational analogy, on the other hand, aims at

capturing that extra amount of knowledge present at search time, by compiling the justifications at each

decision point and annotating these at different steps of the successful path. When replaying a solution, the

derivational analogy engine reconstructs the reasoning process underlying the past solution. Justifications

are tested to determine whether modifications are needed, and when they are needed; justifications provide

constraints on possible alternative search paths. In the derivational analogy framework, the compilation

of the justifications at search time is done naturally without extra effort, as that information is directly

accessible by the problem solver. In general, the justifications are valid for the individual problem. No

costly attempt is made to infer generalized behavior from a unique problem solving trace. Generalization

occurs incrementally as the problem solver accumulates experience in solving similar problems when they

occur. In this way we differ from the eager-learning approach of EBL and chunking [Laird et al., 1986].

This work is done in the context of the nonlinear problem solver of the PRODIGY research project. The

PRODIGY integrated intelligent architecture was designed both as a unified testbed for different learning

methods and as a general architecture to solve interesting problems in complex task domains. The problem

solver is an advanced operator-based planner that includes a simple reason-maintenance system and allows

operators to have conditional effects. All of PRODIGY'S learning modules share the same general problem

solver and the same domain representation language. Learning methods acquire domain and problem

specific control knowledge.

A domain is specified as a set of operators, inference rules, and control rules. Additionally the entities

of the domain are organized in a type hierarchy. Each operator (or inference rule) has a precondition

expression that must be satisfied before the operator can be applied, and an effects-list that describes how

the application of the operator changes the world. Search control in PRODIGY allows the problem solver to

represent and learn control information about the various problem solving decisions. A problem consists

of an initial state and a goal expression. To solve a problem, PRODIGY must find a sequence of operators

that, if applied to the initial state, produces a final state satisfying the goal expression.

The derivational analogy work in PRODIGY takes place in the context of PRODIGY's nonlinear problem

377

solver [Veloso, 1989, Veloso et al., 1990 forthcoming]. The system is called NOLB/nT, standing for

Nonlinear problem solver using casual commitment. The basic search procedure is, as in the linear

planner [Minton et al., 1989], means-ends analysis in backward chaining mode. Basically, given a goal

literal not true in the current world, the planner selects one operator that adds (in case of a positive goal,

or deletes, in case of a negative goal) that goal to the world. We say that this operator is relevant to

the given goal. If the preconditions of the chosen operator are true, the operator can be applied. If this

is not the case, then the preconditions that are not true in the state, become subgoals, i.e., new goals to

be achieved. The cycle repeats until all the conjunets from the goal expression are true in the world.

NoLmflT's nonlinear character stems from working with a set of goals in this cycle, as opposed to the

top goal in a goal stack. The skeleton of NOLIMIT'S search algorithm is shown in Figure 1. Dynamic

goal selection enables NOLIMIT to interleave plans, exploiting common subgoals and addressing issues of

resource contention.

1. check if the goal statement is true in the current state, or there is a reason to suspend the current search
path.

If yes, then either, show the formulated plan, backtrack, or take appropriate action.
2. Compute the set of pending goals G, and the set of possible applicable operators A.
3. Choose a goal G from ~ or select an operator A from ,4 that is directly applicable.
4. If G has been chosen, then

• expand goal G, i.e., get the set O of relevant instantiated operators for the goal G,
• choose an operator O froin O,
• go to step 1.

5. If an operator A has been selected as directly applicable, then
• apply A,
• go to step 1.

Figure 1: A Skeleton of NOLIMIT's Search Algorithm

The algorithm in Figure 1 describes the basic cycle of NOLIMrr as a mental planner. Applying an

operator means executing it in the internal world of the problem solver, which we refer to, simply by

world or state. Step 1 of the algorithm checks whether the top level goal statement is true in the current

state. If this is the case, then we have reached a solution to the problem. Step 2 computes the set of

pending goals. A goal is pending, iff it is a precondition of a chosen operator that is not true in the

state. The subgoaling branch of the algorithm continues, by choosing, at step 3, a goal from the set of

pending goals. The problem solver expands this goal, by getting the set of instantiated operators that are

relevant to it (step 4). NOLIMIT now commits to a relevant operator. This means that the goal just being

expanded is to be achieved by applying this chosen operator. Step 2 further checks for the applicable

chosen operators. An operator is applicable, iff all its preconditions are true in the state. Note that we can

apply several operators in sequence by repeatedly choosing step 5 in case there are multiple applicable

operators. Such situations occur when fulfilling a subgoal satisfies the preconditions of more than one

pending operator. The applying branch continues by choosing to apply this operator at step 3, and applying

it at step 5, by updating the state. A search path is therefore defined by the follwoing regular expression:

378

(9oal chosen-operator applied-operator*)*.

PRODIGY'S general problem solver is combined with several learning modules. The operator-based

problem solver produces a complete search tree, encapsulating all decisions - right ones and wrong o n e s

- as well as the final solution. This information is used by each learning component in different ways:

to extract control rules via EBL [Minton, 1988], to build derivational traces (cases) by the derivational

analogy engine [Veloso and Carbonell, 1990], to analyze key decisions by the Apprentice knowledge

acquisition interface [Joseph, 1989], or to formulate focused experiments [Carbonell and Gil, 1990]. The

axiomatized domain knowledge is also used to learn abstraction layers [Knoblock, 1990], and statically

generate generate control rules [Etzioni, 1990].

The remainder of this paper is organized as follows. Section 2 discusses the automatic case generation,

as fully annotated derivational traces. Section 3 presents the replay mechanism for case utilization,

illustrated with results obtained by derivational replay in three different domains. In section 4 we briefly

describe the case memory we are developing to address dynamically the indexation and organization of

cases. Finally section 5 draws conclusions on this work.

2 The Derivational Trace: Case Generation

The ability to replay previous solutions using the derivational analogy method requires that the problem

solver be able to introspect into its internal deci.~ion cycle, recording the justifications for each decision

during its extensive search process. These justifications augment the solution trace and are used to

guide the future reconstruction of the solution for subsequent problem solving situations where equivalent

justifications hold true.

Derivational analogy is a reconstructive method by which lines of reasoning are transferred and adapted

to the new problem [Carbonell, 1986]. It is, thereft{e, necessary to extract and store these lines of reasoning

from the search process in an explicit way. The goal is to identify and capture the reasons for the decisions

taken by the problem solver at the different choice points encountered while searching for a solution. We

identify the following types of choice points [Veloso, 1989]:

• Whatgoaltosubgoal, choosingitfromthesetofpendinggoals.
• What operator to choose in pursuit of the particular goal selected.
• What bindings to choose to instantiate the selected operator.
• Whether to apply an applicable operator or continue subgoaling on a pending goal.
• Whether the search path being explored should be suspended, continued, or abandoned.
• Uponfailure, whichpastchoicepointtobacktrackto, orwhichsuspendedpathtoreeonsiderforfurther

search.

Justifications at these choice points may point to user-given guidance, to preprogrammed control

knowledge, to automatically-learned control rules responsible for decisions taken, or to previous eases

used as guidance (more than one case can be used to solve a complete problem). They also represent links

among the different steps and their related generators, in particular capturing the subgoaling structure. We

379

record failed alternatives (explored earlier) and the cause of their failure. Note that "cause of failure" here

refers to the reason why the search path starting at that alternative failed. It does not necessarily mean that

the failed alternative is directly responsible for the failure of the global search path. It may be an indirect

relationship, but this is the least costly attribution to determine. The current reasons for failure in NOLIMrr

follow from to PRODIGY'S search philosophy [Minton et at., 1989]:

No Relevant Operators - When NOLIMIT reaches an unachievable goal, i.e. a goal that does not have any
relevant operator that adds it as one of its effects, given the current state and control rules.

State Loop - If the application of an operator leads into a previously visited state, then NOLIMIT abandons
this path, as a redundant sequence of operators was applied.

Goal Loop - When NOL1M1T encounters an unmatched goal that was already previoulsy posted in the search
path (i.e. when a pending goal becomes its own subgoal).

NoLllvtrr abandons a search path either due to any of these failures, or at a situation that is heuristically

declared not promising (e.g. a search path that is too long).

A search path follows the sequence of decisions presented in the algorithm of Figure 1. Hence, a

step of the search path can only be either a goal choice, an operator choice, or the application of an

operator. To generate a case from a search tree episode, we take the successful solution path annotated

with both justifications for the successful decisions taken, and record of the remaining alternatives that

were not explored or that were abandoned and their corresponding reasons. We show below the different

justifications annotated at a goal, operator, and applied operator decision nodes.

2.1 Justifications at the Different Decision Nodes

According to the search algorithm presented in Figure 1, a goal is selected from the set of pending goals.

NOLIMIT may either apply an operator whose preconditions are satisfied (if any), i.e. its left hand side

is true in the current state, or continue subgoaling in an unmatched precondition of a different chosen

operator. Figure 2 (a) shows the skeleton of a goal decision node.

Goal Node Applied Operator Node Chosen Operator Node
:step :step :step
:sibling-goals :sibling-goals :sibling-relevant-ops
:sibling-applicable-ops :sibling-applicable-ops :why-this-operator
:why-subgoal :why-apply :relevant-to
:why-this-goal :why-this-operator
:precond-of

(a) (b) (c)

Figure 2: lustification Record Structure: (a) At a Goat Decision Node; (b) At a Chosen Operator Decision Node; (e) At an

Applied Operator Decision Node

The different slots capture the context in which the decision is taken and the reasons that support the

choice:

380

Step shows the goal selected at this node.
Sibllng-goals enumerates the set of pending goals, i.e. goals that arose from unmatched preconditions of

operators chosen as relevant to produce previous goals; the goal at this node was selected from this
set; the other goals in this set were therefore sibling goals to work on. NOLIMIT annotates the reason
why these alternatives were not pursued further according to its search experience (either not tried, or
abandon as described above).

Sibling-applicable-ops shows the relevant operators that could have been applied instead of subgoaling on
this goal.

Why-Subgoal presents the reason why NOLIMrr decided to subgoal instead of applying an operator (in case
there was one).

Why-Thls-Goal explains why this particular goal was selected from the set of alternative sibling goals.
Preeond-of captures the subgoaling structure; it refers to the operator(s) that gave rise to this goal as an

unmatched precondition.

The reasons annotated at the slots why-subgoal and why-this-goal can range from arbitrary choices to

a specific control rule or guiding case that dictated the selection. These reasons are tested at replay time

and are interpretable by NOLIMIT.

An operator may be applied if previously selected as relevant for a pending goal and all its preconditions

are satisfied in the current state. Figure 2 (b) shows the skeleton of an applied operator decision node. The

different slots have an equivalent semantics to the ones at a goal decision node.

An operator is chosen because it is relevant to a pending goal. Figure 2 (c) shows the skeleton of a

chosen operator decision node. Alternative instantiated relevant operators are listed in the slot sibling-

relevant-ops. The slot why-this-operator captures reasons that supported the choice of both the current

operator and instantiated bindings. The subgoaling link is kept in the slot relevant-to that points at the

pending goal that unifies with an effect of this operator.

To illustrate the automatic generation of an annotated case, we now present an example.

2.2 Example

Consider the set of operators in Figure 3 that define the ONE-WAY-ROCKET domain.

(LOAD-ROCKET
(params ((<obj> OBJECT)

(<loc> LOCATION))
(preconds
(and
(at <obj> <loc>)
(at ROCKET <loc>)))

(effects
(add (inside <obj> ROCKET))
(del (at <obj> <loc>))))

(UNLOAD-ROCKET
(params ((<obj> OBJECT)

(<loc> LOCATION))
(preconds
(and
(inside <obj> ROCKET)
(at ROCKET <ioc>)))

(effects
(add (at <obj> <loc>))
(del (inside <obj> ROCKET))))

Figure 3: The ONE-WAY-ROCKET Domain

(MOVE-ROCKET
(params nil)
(preconds
(at ROCKET locA))

(effects
(add (at ROCKET locB))
(del (at ROCKET locA))))

Variables in the operators are represented by framing their name with the signs " < " and ">" . In

this domain, there are variable objects and locations, and one specific constant ROCKET. An object can

381

be loaded into the ROCKET at any location by applying the operator LOAD-ROCKET. Similarly, an

object can be unloaded from the ROCKET at any location by using the operator UNLOAD-ROCKET.

The operator MOVE-ROCKET shows that the ROCKET can move only from a specific location IotA to

a specific location IocB. Although NoLnvln" will solve much more complex and general versions of this

problem, the present minimal form suffices to illustrate the derivational analogy procedure in the context

of nonlinear planning.

Suppose we want NOLIMrr to solve the problem of moving two given objects obj 1 and obj2 from the

location locA to the location locB as expressed in Figure 4.

Initial State: Goal Statement:
(at objl locA) (and (at objl locB)
(at obj2 loca) (at obj2 locB))
(at ROCKET iocA)

Figure 4: A Problem in the ONE-WAY-ROCKET World

Without any control knowledge the problem solver searches for the goal ordering that enables the

problem to be solved. Accomplishing either goal individually, as a linear planner would do, inhibits

the accomplishment of the other goal. A precondition of the operator LOAD-ROCKET cannot be

achieved when pursuing the second goal (after completing the first goal), because the ROCKET can-

not be moved back to the second object's initial position (i.e. locA). So interleaving of goals and subgoals

at different levels of the search is needed to find a solution. An example of a solution to this prob-

lem is the following plan: (LOAD-ROCKET objl locA), (LOAD-ROCKET obj2 IocA) (MOVE-ROCKET),

(UNLOAD-ROCKET objl locB), (UNLOAD-ROCKET obj2 IocB).

NoLnvrrr solves this problem, because it switches attention to the conjunctive goal (at ob]2 locB)

before completing the first conjunct (at objl locB). This is shown in Figure 5 by noting that; after the

plan step 1 where the operator (LOAD-ROCKET objl locA) is applied as relevant to a subgoal of the

top-level goal (at objl locB), N o L ~ r r suspends processing and changes its focus of attention to the other

top-level goal and applies, at plan step 2, the operator (LOAD-ROCKET obj2 locA) which is relevant to a

subgoal of the goal (at obj2 locB). In fact NOLIMrr explores the space of possible attention foci and only

after backtracking does it find the correct goal interleaving. The idea is to learn next time from its earlier

exploration and reduce search dramatically.

While solving this problem, NoLmrrr automatically annotates the decisions taken with justifications

that reflect its experience while searching for the solution. As an example, suppose that the correct decision

of choosing to work on the goal (inside objl ROCKET) was taken after having failed when working first

on (at ROCKET locB). The decision node stored for the goal (inside objl ROCKET) is annotated with

sibling goal failure as illustrated in Figure 6. (at ROCKET locB) was a sibling goal that was abandoned

because NOLIMrr encountered an unachievable predicate pursuing that search path, namely the goal (at

ROCKET locA).

The problem and the generated annotated solution become a case in memory. The ease corresponds

382

at ROCKET IocB

~g~eS:TheComple~ Conceptu~ Tree foraSuccess~lS~utionPa~.Thenumbersat~enod~ ~ow ~eex~ufionorder
of~eplansteps. Shaded nodescoffespond ~thechoic~ towhich ~eproblemsolv~committed.

Frame of class goal-decision-node
:step (inside objl ROCKET)
:sibling-goals (((inside obj2 ROCKET) not-tried)

((at ROCKET locB) (:no-relevant-ops (at ROCKET locA))))
:sibling-applicable-ops NIL
:why-subgoal NIL
:why-this-goal NIL
:precond-of (UNLOAD-ROCKET objl locB)
step of next-decision-node (LOAD-ROCKET objl locA)

Figu~6:SavingaGo~Decision Node wi~i~Jusfifications

to the search tree compacted into the successful path annotated with the justifications that resulted in the

sequence of correct decisions that lead into a solution to the problem. In essence, a case is a sequence of

decision nodes such as the one illustrated in Figure 6.

3 The Derivational Replay: Case Utilization

When solving new problems similar to past cases, one can envision two approaches for derivational replay:

A. The satisficing approach - Minimize planning effort by solving the problem as directly as possible,
recycling as much of the old solution as permitted by the justifications.

B. The optimizing approach - Maximize plan quality by expanding the search to consider alternatives of
arbitrary decisions and to re-explore failed paths if their causes for failure are not present in the new
situation.

At present we have implemented in full the satisficing approach, although work on establishing

workable optimizing criteria may make the optimizing alternative viable (so long as the planner is willing

383

to invest the extra time required). Satisficing also accords with observations of human planning efficiency

and human planning errors.

In the satisficing paradigm, the system is fully guided by its past experience. The syntactic applicability

of an operator is always checked by simply testing whether its left hand side matches the current state.

Semantic applicability is checked by determining whether the justifications hold (i.e. whether there is still

a r e a s o n to apply this operator). In case the choice remains valid in the current problem state, it is merely

copied, and in case it is not valid the system has three alternatives:

1. Replan at the particular failed choice, e.g. re-establishing the current subgoal by other means (or to
fred an equivalent operator, or equivalent variable bindings) substituting the new choice for the old one
in the solution sequence,

2. Re-establish the failed condition by adding it as a prioritized goal in the planning, and if achieved
simply insert the extra steps into the solution sequence, or

3. Attempt an experiment to perform the partially unjustified action anyway; if success is achieved the
system refines its knowledge according to the experiment. For instance, if the justification for stacking
blocks into a tower required objects with fiat top and bottom surfaces, and there were none about (so the
first fix does not work) nor is there a way to make surfaces fiat (so the second fix also fails), the robot
could attempt to forge ahead. Ilethe objects were spherical it would fail, but if they were interlocking
LEGO TM pieces, it would leam that these were just as good if not better than rectangular blocks for
the purpose of stacking objects to build tall towers. Thus, the justification could be generalized for
future reference.

In the first case (substitution), deviations from the retrieved solution are minimized by returning to the

solution path after making the most localized substitution possible.

The second case occurs, for example, when the assumptions for the applicability of an operator fail.

The system then tries to overcome the failed condition, and if it succeeds, it returns to the exact point in the

derivation to proceed as if nothing had gone wrong earlier. Failures however, can be serious. Consider as

an example, applying to the context of matrix calculus, some previously solved problems on scalars that

rely on commutativity of multiplication. Facing the failure to apply a commutation operator in the matrix

context, the system may try to overcome this difficulty by checking whether there is a way of having two

matrices commute. In general this fails; the case must be abandoned; and a totally different approach is

required.

The experimentation case enables uncertain attempts to perform the same action with partially unjusti-

fied conditions, or can digress from the problem at hand to perform systematic relaxation of justifications,

and establish whether a more general (more permissive) set of conditions suffices for the instance domain.

Then, returning to the problem at hand, it may find possible substitutions or perhaps even re-establishments

of these looser conditions via steps 1 or 2 above.

The fact that these different situations can be identified by the problem solver when trying to replay

a past case is the motivation and support for our proposed memory model. Memory organization is in a

closely coupled dynamic relationship with the problem solving engine.

384

3.1 The O n e - W a y - R o c k e t Domain , A n E xa m ple

Let us return to the ONE-WAY-ROCKET problem shown in section 2.2 to illustrate the derivational replay

process. We show the results obtained in the problems of moving three objects and four objects from locA

into locB in Tables 1 and 2. Each row of the tables refers to one new problem, namely the two- (2objs),

three- (3objs), and four-object (4objs) problems. We show the number of search steps in the final solution,

the average running time of NOLIMIT without analogy (blind search), and using analogical guidance from

one of the other cases.

Following Following Following

New Blind Case Impro- Case Impro- Case Impro-

Problem Search 2objs vement 3objs vement 4objs vement

(s) (s) (s) (s)

2objs

(18 steps)

3objs

(24 steps)

4objs

(30 steps)

18 8 2.3x 8 2.3x 8 2.3x

59 31 1.9x 13 4.5x

470 110 4.3x 58 8.1x

Table 1: Replaying Direct Solution

13 4.5x

23 20.4x

Table 1 shows the results obtained when the justifications are not fully tested. The solution is simply

replayed whenever the same step is possible (but not necessarily desirable). For example, if using the

two-object case as guidance to the three- (or four-) object problem, after two objects are loaded into the

rocket, the step of moving the rocket is tested and replayed because it is also a syntatically possible step.

This is not the right step to take, as there are more objects to load into the rocket in the new extended cases.

NOLIMn" must backtrack across previously replayed steps, namely across the step of moving the rocket.

On the other hand, in Table 2, we show the results obtained from further testing the justifications before

applying the step. In this case, the failure justification for moving the rocket - "no-relevant-ops" - is tested

and this step is not replayed until all the objects are loaded into the rocket. Testing justifications shows

maximal improvement in performance when the case and the new problem differ substantially (two-objects

and four-objects respectively).

From these results we also note that it is better to approach a complicated problem, like the four-

object problem, by first generating automatically a reduced problem [Polya, 1945], such as the two-object

problem, then gain insight solving the reduced problem from scratch (i.e. build a reference case), and

385

New Blind

Problem Search

(s)

Following Following Following

Case Impro- Case Impro- Case Impro-

2objs vement 3objs vement 4objs vement

(s) (s) (s)

2objs 18

(18 steps)

3objs 59

(24 steps)

4objs 470

(30 steps)

8 2.3x 8 2.3x 8 2.3x

19 3.1x 13 4.5x 13 4.5x

30 15.2X 30 15.2x 23 20.4x

"Pable 2: Testing the Justifications: no-relevant-ops

finally solve the original four-object problem by analogy with the simpler problem. The running time of

the last two steps in this process is significantly less than trying to solve the extended problem directly,

without analog for guidance. (18 seconds + 30 seconds = 48 seconds - see Table 2 - for solving the

two-objects from scratch + derivational replay to the four-object case, versus 470 seconds for solving the

four-object case from scratch.)

We note that whereas we have implemented the nonlinear problem solver, the case formation module,

and the analogical replay engine, we have not yet addressed the equally interesting problem of automated

generation of simpler problems for the purpose of gaining relevant experience. That is, PRODIGY will

exploit successfully the presence of simpler problems via derivational analogy, but cannot create them as

yet.

3.2 P r o c e s s - J o b P l a n n i n g a n d extended-sTRrpS D o m a i n s , M o r e E x a m p l e s

We also ran two other experiments to test empirically the benefits of the replay mechanism. We ran

NOLIMIT without analogy in a set of problems in the process-job planning and in the extended-STRIPS

domains 1 We accumulated a library of cases, i.e. annotated derivational solution traces. We then

ran again the set of problems using the case library. In particular, if the set of cases is C, and the new

problem is P, corresponding to case Up, then we searched for a similar case in the set C - C p . We used a

rudimentary fixed similarity metric that matched the goal predicates, allowed substitutions for elements of

the same type, and did not consider any relevant correlations. Figures 7 and 8 show the results for these

1This set is a sampled subset of the original set used by LMinton, 1988].

3 8 6

two domains. We plotted the average cumulative number of nodes searched.

1600

 1,oo F o
l /) B - ~ -~ NoLimit /

1200r~'N°Limit+Anal°gy/1000 I. . ~

t / / / / ~
,1~ 600

,oo t ,,,y
E % 5 10 15 20 25 30 35 40

Number of Problems

Figure 7: Comparison in the Process-Job Planning and Scheduling Domain

25oo

2000 B-- -- ~ NoLimit
~ NoLimit + Analogy /

/

d
15oo / /

/
lOOO / , ~ / ~ /

500 ~ / ~ ~ ~ "

0.~ J" 5 10 15' 20' 25' 30' 35' 40' 4 ~'~'~ ' "5
Number of Problems

Figure 8: Comparison in the Extended-STRIPS Domain

We note from the results that analogy showed an improvement over basic blind search: a factor of 1.5

fold up for the process-job planning and scheduling domain and 2.0 fold for the extended-sTEws domain.

We noticed few individual problems in the case library that provided bad guidance. In general, however,

the simple similarity metric lead to acceptable results. We expect to achieve even better results when a

more sophisticated metric is used through dynamic memory organization, as discussed below. We also

expect faster indexing than the current linear comparison search, and therefore expect higher performance

improvements after completing the implementation of the more sophisticated memory model.

(a)

4 Towards an Integrated Memory Model

We view the ultimate desired behavior of the analogical reasoning system to emerge from the interaction

of two functional modules, namely the problem solver and the memory manager. We call the memory

manager, SMART, for Storage in Memory and Adaptive Retrieval" over Time. NOLIMIT and SMART

communicate as shown in Figure 9, where Wi is the initial world, G is the goal to be achieved, W! is

the final world, Analogs are the retrieved candidate cases, and Feedback represents both the new solved

problem and information about the utility of the candidate cases in reaching a solution.

Wi, G Analogical Wi, G ,(
Problem Analo.qs ,[SMART

" W:, Sol Solver

Feedback
(Solution and Relevance of Analogs)

Figure 9: Interaction of the Problem Solver and the Memory Manager

In encoding the utility of the guidance received from SMART, we foresee four different situations that

can arise, as shown in Figure 10.

now new new

Ib)

387

n s w

(c) (d)

Figure 10: Four Situations to Encode the Utility of the Guidance Received: (a) Fully-sufficient: past ease is fully copied; Co)
Extension: past case is copied but additional steps are performed in the new case; (c) Locally-diveagent: justifications do not
hold and invalidate copying part of the past case; (d) Globally-divergent: extra steps are performed that undo previously copied

steps.

These four situations determine the reorganization of memory when the new case is to be stored in

memory. We are exploring algorithms to address each of these situations. If a case was fully-suf-jicient

under a particular match, SMART will generalize its data structure over this "rnateh updating the indices

to access these cases [Veloso and Carbonell, 1989, Veloso and Carbonell, 1990]. If the new case is an

388

extension of the previous case, the conditions that lead into the adaptation and extension work are used to

differentiate the indexing of the two cases. Generalization will also occur on the common parts of the case.

The situations where the two cases diverge represent a currently incorrect metric of similarity or lack of

knowledge. The fact that the retrieval mechanism suggested a past case as most similar to the new problem

and the problem solver could not fully use the past case or even extend it, indicates either the sparsity of

better cases in memory, or a similarity function that ignores an important discriminant condition. SMART

will have to either specialize variables in the memory data structures due to previous overgeneralization or

completely set apart the two cases in the decision structure used for retrieval. We plan to extract memory

indices from the justification structure, and use them at retrieval time to more adequately prune the set of

candidate analogs.

5 Conclusion

Whereas much more work lies ahead in reconstructive problem solving exploiting past experience, the

results reported here demonstrate the feasibility of derivational analogy as a means to integrate general

problem solving with analogical reasoning.

The research into full-fledged case-based reasoning and machine learning in the context of the PRODIGY

nonlinear planner and problem solver, however, is far from complete. The full implementation of the SMART

memory model, for instance, must be completed. This will enable us to scale up from the present case

libraries of under a hundred individual cases to much larger case libraries numbering in the thousands

of cases. We are investigating domains such as logistics and transportation planning whose inherent

complexity requires large case libraries and sophisticated indexing methods.

Finally, we summarize new contributions in this work beyond the original derivational analogy frame-

work as presented in [Carbonell, 1986]:

• Elaboration of the model of the derivational trace, i.e. identification and organization of

appropriate data structures for the justifications underlying decision making in problem solving

episodes. Justifications are compiled under a lazy evaluation approach.

• Development of a memory model that dynamically addresses the indexation and organization

of cases, by maintaining a closely-coupled interaction with the analogical problem solver.

• Full implementation of the refined derivational analogy replay and memory model in the

context of a nonlinear planner (as opposed to the original linear one). Hence the refined

framework deals with a considerably larger space of decisions and with more complex planning

problems.

389

Acknowledgments

The authors thank the whole PRODIGY research group for helpful discussions: Daniel Borrajo, Yolanda
Gil, Robert Joseph, Dan Kahn, Craig Knoblock, Dan Kuokka, Steve Minton, Alicia P~rez, and Mei Wang.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, Amendment 20, under contract number F33615-87-C-1499, monitored by the Avionics
Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), United
States Air Force, Wright-Patterson AFB, Ohio 45433-6543, and in part by the Office of Naval Research
under contracts N00014-86-K-0678. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

References
[Carbonell and Gil, 1990] J. G. Carbonell and Y. Gil. Learning by experimentation: The operator refine-

ment method. In R. S. Michalski and Y. Kodratoff, editors, Machine Learning: AnArtificiallntelligence
Approach, Volume III. Morgan Kaufmann, Paio Alto, CA, 1990.

[CarboneU, 1983] J. G. Carbonell. Learning by analogy: Formulating and generalizing plans from past
experience. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning, An
Artificial Intelligence Approach, Volume I. Tioga Press, Palo Alto, CA, 1983.

[Carbonell, 1986] J. G. Carbonell. Derivationai analogy: A theory of reconstructive problem solving
and expertise acquisition. In R. S. Michalski, J. O. Carbonell, and T. M. Mitchell, editors, Machine
Learning, An Artificial Intelligence Approach, Volume IL Morgan Kaufman, Los Altos, CA, 1986.

[Etzioni, 1990] O. Etzioni. Why Prodigy/EBL works. In Proceedings of AAAI-90, 1990.

[Joseph, 1989] R. L. Joseph. Graphical knowledge acquisition. In Proceedings of the 4 th Knowledge
Acauisition For Knowledge-Based Systems Workshop, Banff, Canada, 1989.

[Knoblock, 1990] Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Proceed-
ings of Eighth National Conference on Artificial Intelligence, Boston, MA, 1990.

[Laird et al., 1986] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in SOAR: The anatomy of a
general learning mechanism. Machine Learning, 1:11-46, 1986.

[Minton et al., 1989] S. Minton, C. A. Knoblock, D. R. Kuokka, Y. Gil, R. L. Joseph, and J. G. Carbonell.
PRODIGY 2.0: The manual and tutorial. Technical Report CMU-CS-89-146, School of Computer
Science, Carnegie Mellon University, 1989.

[Minton, 1988] S. Minton. Learning Effective Search Control Knowledge: An Explanation-Based Ap-
proach. PhD thesis, Computer Science Department, Carnegie Mellon University, 1988.

[Polya, 1945] G. Polya. How to Solve It. Princeton University Press, Princeton, NJ, 1945.

[Riesbeck and Schank, 1989] C.K. Riesbeck and R. C. Schank. Inside Case-BasedReasoning. Lawrence
Erlbaum Associates, Inc., Hillsdaie, New Jersey, 1989.

390

[Vcloso and Carbonell, 1989] M. M. Vcloso and J. G. Carboncll. Learning analogies by analogy: The
closed loop of memory organization and problem solving. In Proceedings of the Second Workshop on
Case-Based Reasoning. Morgan Kaufmann, May 1989.

[Veloso and Carbonell, 1990] M. M. Veloso and J. G. Carbonell. Integrating analogy into a general
problem-solving architecture. In Maria Zemankova and Zbigniew Ras, editors, Intelligent Systems,
1990.

[Veloso et al., 1990 forthcoming] M. M. Veloso, D. Borrajo, and A. Perez. NoLimit - the nonlinear
problem solver for Prodigy: User's and programmer's manual. Technical report, School of Computer
Science, Carnegie Mellon University, 1990, forthcoming.

[Veloso, 1989] M. M. Veloso. Nonlinear problem solving using intelligent casual-commitment. Technical
Report CMU-CS-89-210, School of Computer Science, Carnegie Mellon University, 1989.

	Carnegie Mellon University
	Research Showcase @ CMU
	1991

	Learning by Analogical Replay in Prodigy: First Results
	Manuela M. Veloso
	Jaime G. Carbonell

	Learning by analogical replay in prodigy: First results

