
Bounding the Suboptimality of Reusing Subproblems

Michael Bowling Manuela Veloso
mhb@cs.cmu.edu veloso@cs.cmu.edu

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

We are interested in the problem of determining a
course of action to achieve a desired objective in a non-
deterministic environment. Markov decision processes
(MDPs) provide a framework for representing this ac-
tion selection problem, and there are a number of algo-
rithms that learn optimal policies within this formulation.
This framework has also been used to study state space
abstraction, problem decomposition, and policy reuse.
These techniques sacrifice optimality of their solution
for improved learning speed. In this paper we examine
the suboptimality of reusing policies that are solutions to
subproblems. This is done within a restricted class of
MDPs, namely those where non-zero reward is received
only upon reaching a goal state. We introduce the defini-
tion of a subproblem within this class and provide moti-
vation for how reuse of subproblem solutions can speed
up learning. The contribution of this paper is the deriva-
tion of a tight bound on the loss in optimality from this
reuse. We examine a bound that is based on Bellman er-
ror, which applies to all MDPs, but does not provide us
with a tight bound. We contribute our own theoretical
result that gives an empirically tight bound on this sub-
optimality.

1 Introduction

Selecting a course of action in a complex environment
is a difficult task. It has been examined in a number
of frameworks, including classical planning, probabilis-
tic planning, and Markov decision processes. In all of
these formulations it is a goal to solve difficult problems
through simplifying techniques, such as finding and ex-
ploiting levels of state abstraction [3, 5], decomposing
into smaller subproblems [2], reusing previously discov-
ered solutions [8, 7]. All of these techniques make locally
optimal “decisions” and therefore will almost certainly
find a suboptimal solution. This is the tradeoff: sacrific-
ing optimality of the solution for efficiency in finding it.

In this paper we examine this tradeoff in the context
of Markov decision processes (MDPs). We assume the

reader has a basic understanding of MDPs [4], though we
will give a brief overview emphasizing the theory that is
needed for this paper. We will formalize a notion of a
subproblem and what it means to use a subproblem. We
will then provide examples of the use of subproblem so-
lutions, and also the tradeoff between suboptimality and
efficiency. The focus of the paper is the introduction of
a quantitative bound on this loss of optimality. We will
examine a bound based on Bellman error, which does not
give us a tight bound. We contribute our own theoretical
result and show empirical results that this bound is tight
using our presented examples.

2 Markov Decision Processes

A Markov Decision Process,
�

is a tuple ����������	
����
 ,
where � is a set of states, � is a set of actions, 	 is a
transition function ��������������������� , and � is a reward
function ������� � � . The transition function defines a
probability distribution on next states as a function of the
current state and the agent’s action. The reward function
defines the reward received when selecting an action from
the given state. The goal is to find a policy, !#"$���%� ,
which determines the agent’s actions so as to maximize
discounted future reward, with discount factor & .

For any policy ! the value of a state, '�(, is the ex-
pected discounted future reward of following the policy! from that state. We say !*) is the optimal policy and '+)
is the value function of the optimal policy. A standard re-
sult from the theory of dynamic programming [1] states
that the optimal value function is the unique solution to
the simultaneous equations for all states, s,

') ��,�
.-0/21435�647 8 �9��,:��;<
>=#&2?@�AB6DC 	���,:��;E��,GFB
�') �H,GFI
KJ
These equations are called the Bellman equations. For
any value function, V, not necessarily optimal, we can
define the Bellman residual or just Bellman error as,

/L143@M6NC#OOOOO
'P�H,Q
SRT/21435�647 8 �9��,:��;U
>=#&L?@�AB6DC 	���,:��;E��,GFB
�'V��,WFX
KJ OOOOOQY

So the optimal value function has a Bellman error of 0,
and reinforcement learning techniques, in general, can be
viewed as trying to minimize the Bellman error.

In this paper we will examine a restricted class of
MDPs, called goal state MDPs. MDPs in this class have
a set of goal states. Reaching a goal state ends the trial, so
all actions from a goal state simply transition to the same
state with zero reward. Other transitions into goal states
receive a reward of 1, and all other transitions receive a
reward of 0. Using this class we can replace the reward
function � with the goal set

��� � since this uniquely
defines the reward function. Throughout this paper we
will refer to MDPs in this class as the tuple �H��� �9� 	
� �
 .
3 Subproblems

Before we can proceed we need to formalize the notion
of a subproblem within the frameworks of our restricted
class of MDPs. We also need to define what it means to
use a subproblem. These notions hinge on the definition
of the boundary of a set of states.

Definition 1 For a set of states, � , let the boundary of� , denoted �V����
 , be the set of all states not in � with a
non-zero transition from a state in � .
In other words the boundary of � are all the states not in� that are reachable from � in a single time step.

We can now define our notion of a subproblem.

Definition 2 A subproblem, � , of an MDP,
� -�H��� �9� 	
� �
 , is a pair �H� F � � F
 satisfying:

� � F � � F � � .
� � F�� � -	� and � ��� F
 � � -	� .
� � F � �V��� F
 .

This definition induces a new MDP over the states � F .
The state transitions remain the same as in

�
, but the re-

ward function is zero for all transitions except those en-
tering states in

� F , where the reward is one.

Given this notion of a subproblem we want to inves-
tigate the effects of using a subproblem solution. So we
define a formal notion of using a subproblem.

Definition 3 For a subproblem, � - ��� F � � F
 , of a prob-
lem
�

, we say that a policy, ! for
�

uses � if and only if! restricted to states in � F is optimal for the subproblem,
� . Additionally, the optimal policy for

�
that uses � is

denoted !>)
 .

4 Examples

Given these definitions of subproblem and how it is used,
we want to examine the tradeoffs of reusing subproblem
solutions. We explored this in the context of some simple
stochastic maze problems, which are within our class of
goal state MDPs.

4.1 Hallway Example

Figure 1 depicts a simple grid environment that was first
investigated in [7] within the context of sharing policies.
The agent has actions that move it in any of the eight grid
directions, but with probability 0.1 its action is ignored
and it is moved to a random neighbor state. There is a
single goal state labeled ’G’ in the diagram. The agent
receives a reward of 1 for a transition into the goal state,
and a reward of 0 otherwise. The agent is trying to max-
imize its discounted future reward with a discount factor,& , of 0.9.

S

G

Figure 1: Hallway example. Each grid position repre-
sents a state. ‘S’ denotes the start state, and ‘G’ the goal
state. The shaded regions mark off two different subprob-
lems.

The shaded regions in the diagram denote subprob-
lems. For example the subproblem of exiting the left
room has the dark shaded region as its state space, � F .
The five states in the eastern half of the doorway into
the middle room are the boundary of � F , and in this case� F -��V��� F
 . Another subproblem is exiting both the left
and middle rooms. In this case the states, � F , would be
both shaded regions, and the goal states would be the five
eastern states of the doorway to the room on the right.

We explored how using the solution to these subprob-
lems might speed learning of the complete problem. We
fixed the policy to always select the subproblem’s opti-
mal action while within the subproblem’s state space (i.e.
the shaded regions.) We then proceed to learn the optimal
policy given this constraint.

The results of this learning can be seen in figure 2.
When we use the subproblem of exiting the left and mid-

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 R
ew

ar
d

States Visited

From Scratch
Using Left and Middle Rooms

Using Left Room Only

Figure 2: Results from the hallway example.

dle rooms, we have a huge boost in learning speed. After
visiting 5000 states, it is doing approximately six times
better than learning from scratch. Notice that this sac-
rifices convergence to the optimal solution. The more
conservative approach of using the subproblem of exit-
ing just the left room has a more conservative learning
improvement. After visiting 5000 it is doing almost three
times better than learning from scratch. Although the im-
provement isn’t as pronounced, it does not appear that it
converges to a less than optimal solution.

4.2 Doorways Example

A second example that we explored consisted of a similar
grid world but with multiple doorways. This is depicted
in figure 3. The actions and transitions remain the same as
was described for the hallways example. Like that exam-
ple, this also has intuitive subproblems, such as reaching
a subset of the three doorways. We explored this domain
using a number of these subproblems. Results are shown
in figure 4 for learning when using the subproblem of
reaching the right doorway, reaching either the right or
middle doorway, and learning from scratch.

The results are very similar to the previous example.

G

S

Figure 3: Doorways example. ‘S’ denotes the start state,
and ‘G’ the goal state. The shaded region marks off the
state space of the subproblem.

Subproblems speed learning but are likely to converge on
a suboptimal solution. These results also motivate our
goal, to be able to make some claim as to the amount of
optimality sacrificed in order to gain the improved learn-
ing speed.

5 Bounding the Suboptimality

In order to better judge this tradeoff it is important to
know the suboptimality of the solution obtained. For-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 R
ew

ar
d

States Visited

From Scratch
Using Right Doorways
Using Both Doorways

Figure 4: Results from the doorways example.

mally, we want to find a bound on the suboptimality of!>)
 . This would provide us with a quantitative measure of
the trade-off of using � as a subproblem. Before we dis-
cuss possible bounds we need a notion of suboptimality.

Definition 4 A policy, ! , is � -optimal if and only if� ,�'�($�H,Q
�� � ')U�H,Q
 .
Using this definition, � values are in the range ��������� ,

where large values are closer to the optimal solution. A
summary of the optimality for our examples (figures 2
and 4) is given in the first column of table 1. These values
were computed by taking the minimum over all states of
the ratio between the value of the state when using the
subproblem and the optimal value of the state. So we can
quantify our goal as finding a guaranteed lower bound for
these values without requiring knowledge of the value of
the optimal policy or value.

We will first examine a bound based on Bellman er-
ror and give some empirical results on our examples that
show that this bound is not satisfactorily tight. We will
then introduce a new bound based on boundary values
and show its results on these same examples.

5.1 Bound Using Bellman Error

The use of the Bellman error to bound the suboptimality
of a policy was developed by Williams and Baird [9].
Bellman error, as mentioned earlier, is simply the maxi-
mum error in the Bellman equations, and the optimal pol-
icy would have a Bellman error of zero. They proved the
following for all MDPs,

Theorem 1 For any value function, ' , with Bellman er-
ror, � . Let ! be a policy greedy for ' . Then for all states,
� , ' (� �
�� ') � �
 R � &��� R &
Qualitatively, this means we can bound the suboptimality
of a policy by examining the Bellman error of a value
function that induces that policy.

We can use this to compute a bound by simply calcu-
lating the Bellman error of ')
 . We define a value func-
tion that induces !*)
 and satisfies the Bellman equations
for states in � (because we are using an optimal solution
to the subproblem) and also for states outside of � (be-
cause we are acting optimally outside of � .) Then the
only states with a non-zero Bellman error would be on
the boundary of � .

Optimality
Example Subproblem Actual Bellman Bound Boundary Bound
Hallway Left and Middle Rooms 0.66 0.01 0.65

Left Room 0.99 0.22 0.98
Doorways Right and Middle Doorway 0.99 0.38 0.77

Right Doorway 0.52 0.04 0.16

Table 1: Comparison of the suboptimality bounds computed from the Bellman error and from our method, against the
actual suboptimality of using the subproblem. Larger values signify a more optimal solution (or a better guarantee.)

Results from the Examples. Table 1 gives the results
of using this bound in the subproblems in section 4.
These values were computed by finding the optimal solu-
tion using the subproblem, calculating the Bellman error
for that value function, and applying the equation. The re-
sults are quite disappointing. Even for subproblems that
are nearly optimal (e.g. the left and middle rooms of the
hallway problem) result in a weak constraint on the sub-
optimality. The computed bound does not help identify
when a subproblem results in a good solution.

5.2 Bound Using Boundary Values

The following two definitions play a crucial role in our
bound on suboptimality. The first provides a quantitative
measure of the stochasticity of a problem. The second
provides a measure for comparing values of sets of states.

Definition 5 Let � @ be the probability that following the
optimal policy at , will transition to a state, , F , where'�):��, F
�� '�)D�H,Q
 . Let � - /2143 @M6DC � @ . This captures the
stochasticity of the problem, where � - � for a determin-
istic problem.

Definition 6 For a set of states ��� and ��� , and a policy! , we say ��� � (�V��� if and only if,

� ,	��
 ���4��,
��
���� ' (��,��Q
�� � ' (�H,���

If ��� (��� then � is � -equivalent with respect to ! , i.e.
the values of all the states in the set are within � .

The following theorem provides a bound on the subop-
timality of using a subproblem where the goal states for
the subproblem are its entire boundary.

Theorem 2 Given a subproblem � - ��� F � �V��� F
�
 of�
, if �V�H� F
 is � -equivalent with respect to !)
 , then,!>)
 is ��� -optimal for

�
,

where � - ���������� � and �L- �������������� �! "� .

The � value may appear very cryptic but it is simply the
discounted probability of ever reaching a state of lower
value. The value emerges from the proof which is pre-
sented in appendix A.

We have attempted to generalize the theorem to all sub-
problems with the following conjecture,

Conjecture 1 Given a subproblem � - ��� F � � F
 of
�

,

let #� F -�� ��� F
%$ � F . If
� F � ('&(�*) ���,+ � F
 and #� F � ('&(� ����-+.#� F
 , then!
 is � � � � � -optimal for

�
,

where � - ��������/� �0)1�
�

and �2- �������������� �� 2� .

Theorem 3 Conjecture 1 is true if
�

is deterministic (i.e.
if � -0� .)

Theorem 3 proves the conjecture true for deterministic
MDPs and the � factor should provide the necessary ad-
justment for the non-determinism as it did in theorem 2.
The proof for theorem 3 is given in appendix B.

Results from the Examples. Table 1 gives the results
of using this bound in our example subproblems. The val-
ues were computed much like those for the Bellman error;
an optimal solution was learned using the subproblem,
the � values were calculated, and the bound computed.
The results show a reasonably tight bound, especially for
the single exit subproblems. Thought it’s not as tight on
the multiple exit subproblems it is still much improved
over the bound computed from Bellman error.

This bound provides considerable information as to the
loss in optimality of using a subproblem. In addition to
this guarantee on the resulting policy it also helps to iden-
tify a possibly better subproblem. This is done by exam-
ining the � values. For example, in the doorways prob-
lem using the right doorway, the guaranteed optimality is
fairly weak. But, by examining the � values it becomes
obvious that this bound could be improved if the middle
door was in the subproblem’s goal states. By using the
“new” subproblem we achieve a better policy and a bet-
ter bound on its suboptimality.

6 Related Work

The definitive performance bound for general MDPs is
the one based on Bellman error [9]. It is provably tight
for the general case of any value function of any MDP.
Although, it is not as strong at bounding subproblem use
in our restricted class of MDPs.

There has been a great deal of recent work in finding
and exploiting layers of abstraction in MDPs. This work

is very related to subproblem reuse since the operators at
a high layer of abstraction can be thought of as subprob-
lem solutions of the lower layers. Theoretical bounds on
the suboptimality of subproblem reuse also help to un-
derstand the suboptimalityof using abstractions (and vice
versa.)

Sutton and his colleagues provided a theoretical frame-
work for dealing with abstraction in reinforcement learn-
ing, through a multi-time model. [6] This framework
defines temporally abstract options or macro-actions,
which are local policies that act like subroutines. Op-
tions, unlike primitive actions, can control the agent over
multiple time steps, and so can work at different levels
of abstraction. The theoretical model of options allows
them to be treated as actions in the MDP, and can be used
to possibly speed planning and still find an optimal solu-
tion.

Hauskrecht, et al. [3] extends Sutton’s original theo-
retical results on planning with macro-actions to develop
a hierarchical model of MDPs. The motivation was to
use macro-actions to reduce the state and action space of
large MDPs, through abstraction. This is done by creat-
ing a state partition of the MDP and restricting a macro
to be a local policy over one of these regions. This parti-
tion and associated macros defines a new abstract MDP
whose states are the boundaries of the regions, and whose
actions are the macros that move between regions.

The solution to the abstract MDP has no guarantee
of being a good solution to the original MDP. In order
to make some guarantees on the quality of the solution
requires a macro set that “covers” the range of values
of a region’s exit states. This may be intractable since
the number of required macros grows exponential in the
number of exit states for the region and the desired bound
on suboptimality.

Parr [5] developed a number of improved methods for
constructing macro sets, or policy caches, for an abstract
MDP. He presents two algorithms that give optimality
guarantees on the original MDP, though are not exponen-
tial in either the error bound or the size of the region’s
boundary.

7 Conclusion

In this paper we examined the reuse of subproblem so-
lutions in the context of MDPs. We provided examples
of the tradeoff between learning speed and loss in opti-
mality. In order to quantify this tradeoff we examined
quantitative bounds on the suboptimality of these tech-
niques. Although generally applicable, a bound based
on the Bellman error is often not tight enough to be use-
ful. We introduced an empirically tight bound that applies
specifically subproblems in our restricted class of MDPs.

There is still many questions of extending and using
this bound. Relaxing the restriction on the applicable

class of MDPs would be useful. Another critical step is
examining the loss in optimality of using multiple sub-
problem solutions simultaneously. There are also ques-
tions on how this bound may help identify good and
bad subproblems before using them, especially if there
is knowledge about the problem or problems using them.

A Proof of Theorem 2

Proof. Let , � - argmax @�6�� � C '):��,�
 . We will first
show that ! is � -optimal for , � . From this we will be
able to show that for all other states it is ��� -optimal.

We can write '):��, �
 as,

') �H, �
�- ?
all paths

Pr ���E;����$
 Value ���E;����E

We can then split the sum into the paths containing a state
in � F and those that don’t contain a state in � F . Let �
be the probability a path from , � , following the optimal
policy, contains a state in � F . Then,') ��, �
.- � � R	�E
�
V� Value ���$;����E

� � F � �E;���� - �:
 =�
V� Value ���$;����E

� � F � �E;������- �:

Let � - � � R	�$
�
 � Value ���$;����$
�� � F�� �$;����2- �:
 . Notice
that any path that contains a state in � F must also contain
a state in �V�H� F
 . So we can write the second term as a
value of that state discounted by the length of the path
before the state is reached. Let �D���$;���� ��,�
 be the number
of steps in �E;���� until , is reached. So,') �H, �
.-���= ?

paths with,
 � ��� F

Pr ���$;����$
K&�� � � 5������ @ ') �H,Q

Since '�)D�H, �
 � '):��,�
 , we can substitute '+)U��, �
 for'+):��,�
 and pull it outside of the sum. The resulting sum
is just the expected discount between , � and , when fol-
lowing the optimal policy. Let this value be � . So we
get, ') �H, �
 ����= �!�U') ��, �

This recurrence can be written as,

') ��, �
 � � 8#"? $&%(' ���!�D
 $ J
� �) �� R*�+�(,

We can also achieve a similar result for '�)
 ��, �
 . Since! acts optimally for ,*-
 � F , then it can achieve the same
value for paths not containing ,-
0� F . As before, paths

containing a state in � F , must contain a state in �V�H� F
 . So
we can write,')
 ��, �
.-�� = ?

paths with,
 �V�H� F

Pr ���E;����$
K&�� � � 5������ @ ')
 �H,Q

By the � -equivalence of �V����
 we know that '�)
 ��,�
 �
� ')
 ��, �
 . So, as before, we can substitute � '+)
 ��, �
 for'�)
 ��,�
 and pull it outside of the sum. The resulting sum is
the expected discount between , � and , when following!>)
 . Let this value be � F . So we get,')
 �H, �
 ����=#�+�4F � ')
 ��, �

Since !*)
 is optimal over the subproblem, it will reach
a state in �V�H� F
 with less expected discount than !) .
Hence, � F � � , and we can substitute � for � F and maintain
the inequality. As above, we can rewrite the recurrence
as,

')
 ��, �
 � � 8 "? $&%(' ���+� �
 $ J
� �) �� R �!� � ,

Now we examine the ratio of the two values,

')
 ��, �
') ��, �
 �
� � ���� ��� ���� � ���� ��� �

� ��-�� � R	�+� �
��-���� R �+�D

� � R	�!�� R*�+� �

The value, �+� , is the probability of returning to a state in� F , discounted by the distance to that state and the dis-
tance from that state to a state in �V�H� F
 . Since all states
in � F have a smaller value than � � , then we can bound
this by the discounted probability of ever reaching a state
with smaller value. But this can be computed from � and
is the following infinite sum,

& � � &E= � � �NR �
K& � = � � �NR �
 � &��
Y�YQY

 - � & �� R�� � R �
K& -��

So, �!� � � , hence,'�(E� � �
') � � �
 � � R �� R � � � �

We can now show that !*)
 is ��� -optimal for any state, , .
We can decompose the value of , just as was done for , � .

Let � be the probability that a path from , , following !) ,
contains a state in � F . Notice that if ,
T� F , then � - �

Y
� .

We let � and � represent the same values with respect to, . Then we can bound '�):��,�
 , '�)
 �H,Q
 , and their ratio as
follows: ') �H,Q
 � ��=#�+�U') ��, �
')
 �H,Q
 � ��=#�+� � ')
 ��, �
'�)
 �H,Q
') �H,Q
 � ��=#�+� � ')
 ��, �
� =	�+�U') �H, �

� �!� � '�)
 �H, �
�!�U') ��, �

� � ')
 ��, �
') ��, �

� ���

So,
� , '�)
 ��,�
 � ��� '+):��,�
 , therefore !*)
 is ��� -optimal

for
�

. �

B Proof of Theorem 3

Proof. Since
�

is deterministic then � - � and � -� . Also, for any state, , , and a policy there is a unique
path of states to a state in

�
from following that policy.

Trivially if the optimal path (path of states from following
the optimal policy) from , does not contain a state in � F
then '�)
 ��,�
.- '�)D�H,Q
 .
Consider the case where the optimal path from , contains
a state in � F . Then it must contain a state in �V��� F
 . Let �
be the last state in the optimal path where �
 �V�H� F
 . So
the optimal path from � cannot contain a state in � F , and
therefore, ')
 �	��
 - ') �	��

Now, there are two cases:

1. �
 � F . The path from following !*)
 will reach a
state � F
 � F in fewer steps (because !)
 is optimal
at reaching goal states of the subproblem.) Since� F � ('&(�) ���-+ � F
 , then')
 �	� F
 � � � ')
 �
�
 - � � ') �	��

And since � F is reached in fewer steps,')
 �H,Q
 � � �G') �H,Q

2. � -
 � F . Since, #� F � ('&(� � ��� + #� F
 , then')
 ��,�
 � � ��')
 �	�
 - � ��') �
�
 � � ��') �H,Q

So, !*)
 is � � � � -optimal. �

References

[1] D. P. Bertsekas. Dynamic Programming: Deterministic and
Stochastic Models. Prentice-Hall, Englewood Cliffs, NJ,
1987.

[2] T. Dean and S.-H. Lin. Decomposition techniques for plan-
ning in stochastic domains. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), 1995.

[3] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and
C. Boutilier. Hierarchical solution of markove decision pro-
cesses using macro-actions. In Proceedings of the Four-
teenth Annual Conference on Uncertainty in Artificial In-
telligence (UAI-98), 1998.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research, 4:237–285, 1996.

[5] R. Parr. Flexible decomposition algorithms for weakly cou-
pled markov decision problems. In Proceedings of the
Fourteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98), 1998.

[6] R. Sutton, D. Precup, and S. Singh. Between MDPs and
semi-MDPs: Learning, planning, and representing knowl-
edge at multiple temporal scales. Technical report, Depart-
ment of Computer Science, University of Massachusets,
Amherst, 1998.

[7] S. Thrun and A. Schwartz. Finding structure in reinforce-
ment learning. In G. Tesauro, D. Touretzky, and T. Leen,
editors, Advances in Neural Information Processing Sys-
tems, volume 7, pages 385–392. The MIT Press, 1995.

[8] M. M. Veloso. Flexible strategy learning: Analogical replay
of problem solving episodes. In Proceedings of AAAI-94,
the Twelfth National Conference on Artificial Intelligence,
pages 595–600, Seattle, WA, August 1994. AAAI Press.

[9] R. J. Williams and L. C. Baird. Tight performance bounds
on greedy policies based on imperfect value functions.
Technical report, College of Computer Science, Northeast-
ern University, 1993.

