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Abstract. Expertise consists of rapid selection and application of compiled experience. Robust reasoning, however,
requires adaptation to new contingencies and intelligent modification of past experience. And novel or creative
reasoning, by its real nature, necessitates general problem-solving abilities unconstrained by past behavior. This
article presents a comprehensive computational model of analogical (case-based) reasoning that transitions smoothly
between case replay, case adaptation, and general problem solving, exploiting and modifying past experience
when available and resorting to general problem-solving methods when required. Learning occurs by accumula-
tion of new cases, especially in situations that required extensive problem solving, and by tuning the indexing
structure of the memory model to retrieve progressively more appropriate cases. The derivational replay mechanism
is discussed in some detail, and extensive results of the first full implementation are presented. These results
show up to a large performance improvement in a simple transportation domain for structurally similar problems,
and smaller improvements when less strict similarity metrics are used for problems that share partial structure
in a process-job planning domain and in an extended version of the STRIPS robot domain.
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1. Introduction

Whereas classical AI techniques for problem solving and planning require vast amounts
of search to produce viable solutions for even moderately complex problems, humans typ-
ically require much less search as they accrue and reuse experience over time in any given
domain. Inspired by the ubiquitous observation, researchers in various subdisciplines of
AI sought methods of encapsulating more knowledge to reduce search, ranging from expert
systems, where all knowledge is laboriously hand-coded at the outset, to machine learning
approaches, where incrementally accumulated experience is stored and processed for future
reuse.

The machine learning approaches typically start with a general problem-solving engine
and accumulate experience in the process of solving problems the hard way (via extensive
search), or via demonstrations of viable solutions by an external (human) teacher. The knowl-
edge acquired can take many forms, ranging from explicit provably correct control rules
(meta rules, or chunks) (Cheng & Carbonell, 1986; DeJong & Mooney, 1986; Fikes &
Nilsson, 1971; Korf, 1985; Laird et al., 1986, Minton, 1985; Minton, 1988; Mitchell et
al., 1983; Mitchell et al., 1986; Newell, 1980; Shell & Carbonell, 1989) to actual instance
solutions for use in analogical or case-based reasoning (CBR) (Carbonell, 1983; Carbonell,
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1986; Doyle, 1984; Hammond, 1986; Kolodner, 1984; Riesbeck & Schank, 1989; Schank,
1982; Schank, 1983; Simpson, 1985; Sycara, 1987). However, they all seek to compile ex-
isting factual domain knowledge into more effective form by combining it with search con-
trol knowledge acquired through incremental practice.

Analogical reasoning in general is concerned with transferring episodic past experience
to guide problem solving. The pure CBR approach rejects the operator-based problem-
solving approach (Riesbeck & Schank, 1989). Knowledge is specified as a set of previously
solved problems (cases) in the domain of interest, and solving a problem consists of retrieving
a similar past case and adapting it to the new situation. To guarantee the success of the
adaptation phase, CBR requires accurate similarity metrics and incurs high retrieval costs.
This approach emphasizes, therefore, the organization, hierarchical indexing, and retrieval
of the case memory.

We have explored machine learning techniques for compiling past experience in the
PRODIGY system that integrate both knowledge and case-based reasoning for solving large-
scale problems efficiently (Carbonell & Veloso, 1988; Veloso & Carbonell, 199k). Deriva-
tional analogy is a general form of case-based reconstructive reasoning that replays and
modifies past problem-solving traces to solve problems more directly in new but similar
situations (Carbonell, 1986). When generating a solution to a novel problem from a given
operator-based domain theory, the problem solver accesses a large amount of knowledge
that is not explicitly present in the final solution returned. One can view the problem-solving
process as a troubled (messy) search for a solution where different alternatives are generated
and explored, some failing and others succeeding. The purpose of solving problems by
analogy is to reuse past experience to guide the generation of the solution for the new prob-
lem, avoiding a completely new search effort. Transformational analogy (Carbonell, 1983)
and most CBR systems (as summarized in Riesbeck & Schank, 1989) replay past solutions
by modifying (tweaking) the retrieved final solution plan as a function of the differences
recognized between the past and the current new problem. However, when the case is created
during the original problem solving, local and global reasons for decisions are naturally
accessible during the search process. A final solution represents a sequence of operations
that corresponds only to a particular successful search path. Derivational analogy aims
at capturing that extra amount of knowledge present at search time, by compiling the justifi-
cations at each decision point and annotating these at the different steps of the successful
path. When replaying a solution, the derivational analogy engine reconstructs the reasoning
process underlying the past solution. Justifications are tested to determine whether modifica-
tions are needed, and when they are needed, justifications provide constraints on possible
alternative search paths. In essence, derivational analogy can benefit from past successes,
failures, and interactions.

In the derivational analogy framework, the compilation of the justifications at search
time is done naturally without extra effort, as that information is directly accessible by
the problem solver. In general, the justifications are valid for the individual problem. No
costly attempt is made to infer generalized behavior from a unique problem-solving trace.
Generalization occurs incrementally as the problem solver accumulates experience in solving
similar problems when they occur.

In the context of a general problem solver, we approach analogy as a closed interaction
between the case memory management and the problem-solving engines. The problem solver
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is seen as both the generator of new cases and the module that acknowledges or rejects
the similar cases proposed by the case memory manager. We claim that no sophisticated
initial measures for similarity and relevance of information are needed, as the memory
manager will adapt its similarity computation based on positive and negative feedback on
the utility of retrieved cases as provided by the problem solver. We show how we take ad-
vantage of the integration of general problem solving and analogical reasoning to overcome
some crucial issues and difficulties in scaling up a knowledge or case-based system. The
primary issues addressed in our work are:

• How the integrated analogical problem solver can generate cases automatically from
problem-solving experience.

• How the analogical problem solver achieves a reduction in search effort by replaying
past annotated problem solving episodes (derivational traces).

• How the analogical problem solver can help in refining the similarity metric based on
the solutions(s) encountered and the utility of the suggested guiding case(s).

• How the cost of retrieving a past case can be offset by the expected search effort reduction.

Hence, our approach differs from pure CBR in the following ways:

• The substrate problem solver for the analogical engine is a rich general-purpose nonlinear
means-ends analysis reasoner, as opposed to a special-purpose one, or to no reasoning
engine at all beyond localized solution tweaking.

• The analogical reasoning mechanism developed is completely domain independent and
applies to any domain-specific case library.

• Cases are not simply copied and tweaked, but they guide replay and can be invoked in
recursive subgoal reduction, i.e., when a subgoal is reduced, memory may be asked for
additional guiding cases.

• Case memory is dynamically organized in response to feedback from the problem solver
on the utility of the suggested guidance. In fact, the similarity metric is adapted in response
to accumulated experience.

The model presented here is a major advance beyond the original derivational analogy
framework as presented in Carbonell (1986), including:

• Elaboration of the model of the derivational trace, i.e., identification and organization
of appropriate data structures for the justifications underlying decision making in problem-
solving episodes. Justifications are compiled under a lazy evaluation approach.

• Full implementation of the refined derivational analogy replay and memory model in
the context of a nonlinear planner (as opposed to the original linear one). Hence the
refined framework deals with a considerably larger space of decisions and with more
complex planning problems.

• Evidence of the feasibility of the extended development framework in a variety of differ-
ent domains (currently extended to a 1000-case library in a complex domain).

• Development of a memory model that dynamically addresses the indexing and organiza-
tion of cases, by maintaining a closely coupled interaction with the analogical problem
solver.
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This article is organized as follows. In section 2 we introduce the automatic case genera-
tion, as fully annotated derivational traces of problem-solving search episodes. Section 3
describes the mechanisms for case utilization. In section 4 we present the case retrieval
strategy and we discuss two different similarity metrics. The replay strategy is illustrated
with results obtained by derivational replay in three different domains. Section 5 summarizes
our overall case memory model that we are currently developing to address dynamically
the indexing and organization of cases. Finally, section 6 draws conclusions on the work
and mentions future work. An appendix provides a brief introduction to the PRODIGY
architecture.

In this article we use examples from an extended version of the STRIPS world (Fikes &
Nilsson, 1971; Minton et al., 1989), a process-job planning and scheduling domain (Minton
et al., 1989) and a simple transportation domain (Veloso, 1989). Due to the lack of space,
we present in full detail only the simplest version from one of these domains (as we can
reduce it to three operators) and refer the reader to the references for a complete descrip-
tion of the other two domains. The extended-STRIPS domain consists of a set of rooms con-
nected through doors. A robot can move around among the rooms carrying or pushing
objects along. Doors can be locked or unlocked. Keyes to the doors lay in rooms and can
be picked up by the robot. In the process-job planning domain, parts are to be shaped,
polished, painted, or treated in some other way. Machines are scheduled to accomplish
multiple part-processing requirements in parallel.

2. The derivational trace: Case generation

Derivational analogy is a reconstructive method by which lines of reasoning are transferred
and adapted to the new problem (Carbonell, 1986). The ability to replay previous solutions
using the derivational analogy method requires that the problem solver be able to introspect
into its internal decision cycle, recording the justifications for each decision during its ex-
tensive search process. These justifications augment the solution trace and are used to guide
the future reconstruction of the solution for subsequent problem solving situations where
equivalent justifications hold true.

In PRODIGY (Minton et al., 1989) a domain is specified as a set of operators, inference
rules, and control rules. Additionally the entities of the domain are organized in a type
hierarchy (Veloso, 1989). Each operator (or inference rule) has a precondition expression
that must be satisfied before the operator can be applied, and an effects-list that describes
how the application of the operator changes the world. Search control in PRODIGY allows
the problem solver to represent and use control information about the various problem-
solving decisions. A problem consists of an initial state and a goal expression. To solve
a problem, PRODIGY must find a sequence of operators that, if applied to the initial state,
produces a final state satisfying the goal statement. The operator-based problem solver
produces a complete search tree, encapsulating all decisions—right ones and wrong ones—as
well as the final solution. This information is used by each learning component in different
ways: to extract control rules via EBL (Minton, 1988), to build derivational traces (cases)
by the derivational analogy engine (Veloso & Carbonell, 1990), to analyze key decisions
by a knowledge acquisition interface (Joseph, 1989), or to formulate focused experiments
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(Carbonell & Gil, 1990). The axiomatized domain knowledge is also used to learn abstraction
layers (Knoblock, 1991), and statically generate control rules (Etzioni, 1990a). (For addi-
tional details on the PRODIGY architecture, see the appendix).

The derivational analogy work in PRODIGY takes place in the context of PRODIGY'S nonlinear
problem solver (Veloso, 1989). The system is called NOLIMIT, standing for Nonlinear prob-
lem solver using casual commitment. The basic search procedure is, as in the linear planner
(Minton et al., 1989), means-ends analysis (MEA) in backward chaining mode. Basically,
given a goal literal not true in the current world, the planner selects one operator that adds
(in case of a positive goal, or deletes, in case of a negative goal) that goal to the world.
We say that this operator is relevant to the given goal. If the preconditions of the chosen
operator are true, the operator can be applied. If this is not the case, then the preconditions
that are not true in the state become subgoals, i.e., new goals to be achieved. The cycle
repeats until all the conjuncts from the goal expression are true in the world.

Automatically generating a case from a problem-solving episode is immediately related
to identifying and capturing the reasons for the decisions taken by the problem solver at the
different choice points encountered while searching for a solution. In the nonlinear search
procedure of NoLIMIT, we identify the following types of choice points (Veloso, 1989):

What goal to subgoal, choosing it from the set of pending goals.
What operator to choose in pursuit of the particular goal selected.
What bindings to choose to instantiate the selected operator.
Whether to apply an applicable operator or continue subgoaling on a pending goal.
Whether the search path being explored should be suspended, continued, or abandoned.
Upon failure, which past choice point to backtrack to, or which suspended path to recon-
sider for further search.

These choice points characterize a nonlinear problem solver that uses casual commit-
ment (Minton, 1988) in its search cycle, i.e., mentally applies operators, and considers
a set, as opposed to a rigid FILO linear order (a stack), of pending goals (see appendix
section A.I).

Justifications at these choice points may point to user-given guidance, to preprogrammed
control knowledge, to automatically learned control rules responsible for decisions taken,
or to past cases used as guidance (more than one case can be used to solve a complete
problem). They also represent links within the different choices and their related generators,
in particular capturing the subgoaling structure. At choice points, we also record failed
alternatives (explored earlier) and the cause of their failure. Note that "cause of failure"
here refers to the reason why the search path starting at that alternative failed. It does not
necessarily mean that the failed alternative is directly responsible for the failure of the global
search path. It may be an indirect relationship, but this the best attribution so far. The
current reasons for failure in NoLIMIT follow, according to PRODIGY'S search strategy:

No Relevant Operators—NoLIMIT reaches an unachievable goal, i.e., a goal that does
not have any relevant operator that adds it as one of its effects, given the current state
and control rules.
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State Loop—If the application of an operator leads into a previously visited state, then
NOLIMIT abandons this path, as a redundant sequence of operators was applied.

Goal Loop—NOLIMIT encounters an unmatched goal that was already previously posted
in the search path (i.e., when a pending goal becomes its own subgoal).

NOLIMIT abandons a search path either due to any of these failures, or at a situation
that is heuristically declared not promising (e.g., a search path that is too long).

A step of the search path can only be either a goal choice, an instantiated operator choice,
or the application of an operator. Each step taken corresponds to a decision. To generate
a case from a search tree episode, we take the successful solution path annotated with the
justifications for the successful decisions taken, and with the record of the remaining alter-
natives that were not explored or that were abandoned and their corresponding reasons.
We show below the different justifications annotated at the goal, operator, and applied
operator decision nodes.

2.1. Justification structures at decision nodes

In a casual-commitment search approach, justifications on decisions made arise in a natural
way. Examples of these justifications are links between choices capturing the subgoaling
structure, records of explored failed alternatives, and pointers to applied control guidance.

Figure 1 shows the skeleton of the different decision nodes. The different justification
slots capture the context in which the decision is taken and the reasons that support the
choice.

The choice slots show the selection done, namely, the selected goal or operator. The
sibling-slots enumerate the alternatives to the choice made. At a goal node and an applied
operator node (see Figure 1 (a) and (b)), the goals left in the current set of goals that need
still to be achieved, constitute the sibling-goals annotation. For completeness, the problem
solver may postpone applying an operator whose preconditions are satisfied and continue
subgoaling on a still unachieved goal. These possible applicable operators are the contents
of the alternative sibling-applicable-ops slot. At a chosen operator node, the sibling operators
are the possible other different operators that are also relevant to the goal being expanded,
i.e., the operators that, if applied, will achieve that goal. NOLIMIT annotates the reason why

Figure I. Justification record structure: (a) At a goal decision node; (b) At an applied operator decision node;
(c) At a chosen operator decision node.
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these alternatives were not pursued further according to its search experience (either not
tried, or abandoned due to a described failure reason). The why- slots present the reasons
(if any) the particular decision was taken. The reasons range from arbitrary choices to
a specific control rule or guiding case that dictated the selection. These reasons are tested
at replay time and are interpretable by the analogical problem solver. Finally the subgoaling
structure is captured by the slot precond-of at a goal node, and the slot relevant-to at a
chosen operator node. At reconstruction time, these slots play an important role in provid-
ing the set of relevant operators for a given goal, and the set of instantiated preconditions
of an operator.

The problem and the generated annotated solution become a case in memory. The case
corresponds to the search tree compacted into the successful path as a sequence of anno-
tated decision nodes as presented in figure 1. According to the case utilization method (see
section 3) that we present below, we note that a case is not used as a simple "macro-operator"
(Fikes & Nilsson, 1971; Minton, 1985). A case is selected based on a partial match to a
new problem-solving situation. Hence, as opposed to a macro-operator, a case guides and
does not dictate the reconstruction process. Intermediate decisions corresponding to choices
internal to each case can be bypassed or adapted, if their justifications no longer hold.

To illustrate the automatic generation of an annotated case, we now present an example.

2.2. An example in a simple transportation domain

The simplicity of this example is for pedagogical reasons, rather than to show a situation
where learning is absolutely needed in order to deal with new problems. In this section
the example illustrates the automatic case-generation process, where the justifications anno-
tated are simple and the subgoaling structure in particular can be fully presented. Later
in this article, the example is briefly pursued to show the reuse of a case. Results are shown
of the search reduction achieved when these simple justifications are tested and guide the
reconstruction of structurally similar new problems. Clearly, the system solves much more
complex and general versions of the domain.1 The present minimal form suffices also to
illustrate the casual-commitment strategy in nonlinear planning, allowing full interleaving
of goals and subgoals.

Consider a generic transportation domain with three simple operators that load, unload,
or move a ROCKET, as shown in figure 2.

The operator MOVE-ROCKET shows that the ROCKET can move only from a specific
location locA to a specific location locB. This transforms this current general domain into
a ONE-WAY-ROCKET domain. An object can be loaded into the ROCKET at any location
by applying the operator LOAD-ROCKET. Similarly, an object can be unloaded from the
ROCKET at any location by using the operator UNLOAD-ROCKET.

Suppose we want NOLIMIT to solve the problem of moving two given objects obj1 and
obj2 from the location locA to the location locB, as expressed in figure 3.

Without any analogical guidance (or other form of control knowledge) the problem solver
searches for the goal ordering that enables the problem to be solved. Accomplishing either
goal individually, as a linear planner would do, inhibits the accomplishment of the other
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Figure 2. The ONE-WAY-ROCKET domain.

Figure 3. A problem in the ONE-WAY-ROCKET world.

goal. A precondition of the operator LOAD-ROCKET cannot be achieved when pursuing
the second goal (after completing the first goal), because the ROCKET cannot be moved
back to the second object's initial position (i.e., locA). So interleaving of goals and subgoals
at different levels of the search tree is needed to reach a solution.

Figure 4 shows the conceptual tree, i.e., the subgoaling structure, for this problem. The
top node *FINISH* represents the final operator that is applied to show that the user-given
problem is completely solved. The numbers show the execution order of the plan steps.

NOLIMIT solves this problem, where linear planners fail (but where of course other com-
plete planners also succeed), because it switches attention to the conjunctive goal (at obj2
locB) before completing the first conjunct (at objl locB). This is shown in figure 4 by
noting that, after the plan step 1, where the operator (LOAD-ROCKET obj1 locA) is ap-
plied as relevant to a subgoal of the top-level goal (at obj1 locB), NOLIMIT suspends proc-
essing subgoals in the subgoaling stack of this goal. NOLIMIT changes its focus of attention
to the other top-level goal (at obj2 locB), and applies at plan step 2, the operator (LOAD-
ROCKET obj2 locA) which is relevant to a subgoal of the goal (at obj2 locB). In fact,
NOLIMIT explores the space of possible attention foci, and only after backtracking does
it find the correct goal interleaving. The idea is to learn next time from its earlier explora-
tion and reduce the search.

While solving this problem, NOLIMIT automatically annotates the decisions taken with
justifications that reflect its experience while searching for the solution. Figure 5 shows
an example of a case generated from a problem-solving episode for this two-object prob-
lem. We represent only the choice and the subgoaling links for each node. These are ex-
tracted from the conceptual tree, as shown in figure 4, which is incrementally expanded
at search time. Figure 6 represents the complete goal-decision node, cn6, to show the record
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Figure 4. The complete conceptual tree for a successful solution path. The numbers at the nodes show the execu-
tion order of the plan steps.

Figure 5. A case as a sequence of annotated decision nodes.

of a failure. It corresponds to the situation where the correct decision of choosing to work
on the goal (at obj2 locB) was taken after having failed when working first on (at ROCKET
locB). The decision node stored for the goal (at obj2 locB) is annotated with sibling goal
failure, as illustrated in figure 6. (at ROCKET locB) was a sibling goal that was abandoned
because NOLIMIT encountered an unachievable predicate pursuing that search path, namely,
the goal (at ROCKET locA). This goal needs to be achieved in order to load obj2 into
the ROCKET.
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Figure 6. Saving a goal decision node with its justifications. An example: The goal decision node cn6.

The generated case corresponds to the search tree compacted into the successful path
annotated with the justifications that resulted in the sequence of correct decisions that led
into a solution to the problem. In essence, a case, as shwon in figure 5, is a sequence of
decision nodes such as the one illustrated in figure 6.

3. The derivational replay: Case utilization

The general replay mechanism involves a complete interpretation of the justification struc-
tures in the next context, and development of adequate actions to be taken when transformed
justifications are no longer valid. When solving new problems similar to past cases, one
can envision two approaches for derivational replay:

A. The satisficing approach—Minimize planning effort by solving the problem as directly
as possible, recycling as much of the old solution as permitted by the justifications.

B. The optimizing approach—Maximize plan quality by expanding the search to consider
alternatives of arbitrary decisions and to re-explore failed paths if their causes for failure
are not present in the new situation.

At present we have implemented in full the satisficing approach, although work on estab-
lishing workable optimizing criteria may make the optimizing alternative viable (so long
as the planner is willing to invest the extra time required). Satisficing also accords with
observations of human planning efficiency and human planning errors.

In the satisficing paradigm, the system is fully guided by its past experience. The syntac-
tic applicability of an operator is always checked by simply testing whether its left-hand
side matches the current state. Semantic applicability is checked by determining whether
the justifications hold (i.e., whether there is still a reason to apply this operator). For all
the choice points, the problem solver also tests the validity of the justifications (it semantic
applicability, or rather its "desirability" in the new situation). In case the choice remains
valid in the current problem state, it is merely copied, and in case it is not valid the imple-
mented system has two alternatives:

1. Replan at the particular failed choice, e.g., establishing the current subgoal by other
means (or to find an equivalent operator, or equivalent variable bindings), substituting
the new choice for the old one in the solution sequence, or
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2. Re-establish the failed condition by adding it as a prioritized goal in the planning, and
if achieved simply insert the extra steps into the solution sequence.

In the first case (substitution), deviations from the retrieved solution are minimized by
returning to the solution path after making the most localized substitution possible.

The second case occurs, for example, when the assumptions for the applicability of an
operator fail. The system then tries to overcome the failed condition, and if it succeeds,
it returns to the exact point in the derivation and proceeds as if nothing had gone wrong
earlier. If the extra steps performed do not interfere with the already replayed case steps,
the extension occurs without further problems. It may also happen that future steps in the
case continue to fail and the case is abandoned.

Justification structures also encompass the record of past failures in addition to the subgoal-
ing links (Kambhampati, 1989). This allows both the early pruning of current alternatives
that were experienced to have failed in the past, and the exploration of alternatives for which
the past reason of failure does not exist in the current situation. Furthermore, the replay
mechanism in the context of casual commitment as opposed to least commitment allows
naturally to combine guidance from several past problem-solving episodes (Veloso, 1991).
Replicated adapted decisions can be interleaved and backtracked upon within the totally
ordered reasoning plan.

3.1. Pursuing the ONE-WAX-ROCKET example

Let us return to the ONErWAY-ROCKETproblem introduced in section 2.2 to illustrate briefly
the derivational replay process. We show the results obtained in the problems of moving
three objects and four objects from locA into locB in table 1. Each row of the table refers
to one new problem, namely, the two- (2objs), three- (Sobjs), and four-object (4objs) prob-
lems. We show the average running time of NOLIMIT without analogy (base search) and
using analogical guidance from one of the other cases.2 We performed a large number of
runs where the choices were taken randomly. Hence, the numbers shown represent the
average among a large spectrum of possible search situations.

The solution is replayed whenever the same step is a possible step and the justifications
hold. For example, in using the two-object case as guidance to the three- (or four-) object
problem, the failure justification for moving the rocket—"no-relevant-ops (at ROCKET
locA)'—is tested, and this step is not replayed until all the objects are loaded into the rocket.
The improvements obtained are high, as the new cases are extensions of the previous cases
used for guidance. Maximal improvement is achieved when the case and the new problem

Table I. Replaying a justified past solution.

New Prob

2objs
Sobjs
4objs

Base Search

4.5s
14.75s

117.5s

Replayed Cases

Case 2objs

2s
4.75s
7.75s

Case 3objs

2s
3.25s
7.75s

Case 4objs

2s
3.25s
5.75s
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differ substantially (two-objects and four-objects, respectively). Allen and Langley (1990)
obtained similar results in simple domains by replaying one-step past cases as opposed
to a complete sequence of problem-solving decisions.

From these results we also note that it is better to approach a complicated problem, like
the four-object problem, by first generating automatically a reduced problem (Polya, 1945),
such as the two-object problem, then gaining insight solving the reduced problem from
scratch (i.e., building a reference case), and finally solving the original four-object problem
by analogy with the simpler problem. The running time of this two-step process still adds
up to less than trying to solve the extended problem directly, without analog for guidance:
4.5 s + 7.75 s = 12,25 seconds (solving the two-object from scratch (4.5 s) + the deriva-
tional replay of the two-object for the four-object problem (7.75 s)) versus 117.5 seconds
for solving the four-object problem from scratch.

We note that whereas we have implemented the nonlinear problem solver, the case for-
mation module, and the analogical replay engine, we have not yet addressed the equally
interesting problem of automated generation of simpler problems for the purpose of gain-
ing relevant experience. That is, PRODIGY will exploit successfully the presence of simpler
problems via derivational analogy, but cannot create them as yet.

To show some additional results from two other substantially more complicated domains,
we first discuss the case retrieval strategy followed.

4. Case retrieval: The similarity metric

Several research projects study the problem of assigning adequate similarity metrics (recent
work includes Bareiss & King, 1989; Kolodner, 1989; Porter et al., 1989). Our approach
relies on an incremental understanding of an increasingly more appropriate similarity metric.
In Veloso and Carbonell (1989), we introduced our proposed memory model, SMART (stand-
ing for Storage in Memory and Adaptive Retrieval over Time). NOLIMIT, the nonlinear
analogical problem solver, provides SMART the information about the utility of the candidate
cases suggested as similar in reaching a solution. This information is used to refine the
case library organization and in particular the similarity metric. In this section we analyze
two similarity metrics with different degrees of problem-context sensitivity. We first intro-
duce a simple direct similarity metric and proceed to refine it by analyzing the derivational
trace produced by the analogical problem solver.

4.1. A direct similarity metric

Let S be the initial state and 8 be the goal statement, both given as conjunctions of literals.
A literal is an instantiated predicate, i.e., literal = (predicate argument-value*). As an exam-
ple, (inroom key12 rooml) is a literal where inroom is the predicate and key12 and rooml
are its instantiated arguments.

Each past case P in memory is indexed by the corresponding initial state and goal state-
ment, respectively Sp and Qp. When a new problem P' is given to the system in terms
of its Sp and SP, retrieving one (or more) analog consists in finding a similar past case
by comparing these two inputs Qp and §p to the indices of past cases.
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Definition 1. We say that a conjunction of literals L = llt ..., ln directly matches a con-
junction of literals L' = l[, ..., lm under a substitution a with match value 6, if there
are 5 many literals in L that directly match some literals in L' under a. A literal I directly
matches a literal I', iff

• The predicate of I is the same as the predicate of I'.
• Each argument of I is of the same class (type) as its corresponding argument of I'.

In this case, there is a substitution a, such that I = a(l').

As an example, the literal (inroom boxl rooml) directly matches the literal (inroom boxA
roomX), where boxl and boxA are both of class BOX and rooml and roomX are of class
ROOM. Under the substitution a = {boxl/boxA, rooml/roomX}, (inroom boxl rooml)
= a ((inroom boxA roomX)).

We first compute a simple partial match value between problems as the sum of the match
value of their corresponding initial states and goal statements calculated independently,
as presented in definition 2.

Definition 2. Let P and P' be two particular problems, respectively with intiial states Sp

and§p and goal Qp and Qp. Let 8^P)'P be the match value of Qpand Qp, under some
substitution a. Let &$-p^'p be the match value of §>p and S p, under the substitution a. Then
we say that the two problems P and P' directly match with match value &0('">-1" = K*P)-P'
+ 6^P)'P under substitution a.

The partial match value of two problems is substitution dependent. As an example, con-
sider the goal 8 = {(inroom key!2 rooml), (inroom boxl rooml)}, and the goal 8' =
{(inroom key 13 room4), (inroom key4 room2), (inroom box53 room4)}. Then g directly
matches 8' with match value 6 = 2 under the substitution a = {keyl2/key!3, rooml/room4,
boxl/box53}, and match value 6 = 1 under the substituion a' = {keyl2/key!4,
rooml/room2}.

In a first experiment we used this direct similarity metric to evaluate the partial match
between problems, not considering therefore any relevant correlations between the initial
states and the goal statements. The procedure in figure 7 retrieves the set of the most similar
past cases.

4.1.1. Examples in the process-job planning and extended-STtups domains

We ran NOLIMIT without analogy over a set of problems in the process-job planning and
in the extended-STRIPS domains.3 We accumulated a library of cases. In order to factor away
other issues in memory organization, the case library was simply organized as a linear
list of cases. We then ran again a new set of problems using the case library.

The dotted curves in figures 8(a) and (b) show the results for these two domains. We
plotted the average cumulative number of nodes searched. We note from the results that
analogy showed an improvement over base search (dashed curves): a factor of 1.5-fold higher
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Figure 7. Retrieving the most similar past cases.

Figure 8, Comparison in the process-job planning and extended-STRIPS domains.

for the process-job planning and scheduling domain and 2.0-fold for the extended-STRiPS
domain. (We will see later the meaning of the solid curves.) In general the direct similarity
metric leads to acceptable results. However, analyzing the results, we notice that the straight-
forward similarity metric does not always provide the best guidance when there are several
conjuncts in the goal statement.

The problem of matching conjunctive goals turns out to be rather complex. Since con-
junctive goals may interact, it is not at all clear that problems are more similar based simply
on the number of literals that match the initial state and the goal statements. Noticing therefore
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that matching conjunctive goals involves reasoning over a large lattice of problem config-
urations, we developed a new similarity metric by refining the indexing based on the deri-
vational trace of a past solution.

4.2. The foot-print similarity metric

The derivational trace identifies for each goal the set of weakest preconditions necessary
to achieve that goal. Then recursively we create the foot-print of a user-given goal conjunct
by doing a goal regression, i.e., projecting back its weakest preconditions into the literals
in the initial state (Waldinger, 1981; Mitchell et al., 1986). The literals in the initial state
are therefore categorized according to the goal conjunct that employed them in its solution.

Definition 3. For a given problem P and corresponding solution, a literal in the initial
state is in the foot-print of a goal conjunct g, iff it is in the set of the weakest preconditions
of g according to the derivational trace of the solution.

The purpose of retrieving a similar past case is to provide a problem-solving episode
to be replayed for the construction of the solution to a new problem. We capture into the
similarity metric the role of the initial state in achieving the different goal conjuncts with
respect to a particular solution found. Details of particular initial state configurations are
not similar per se. Instead they are similar as a function of their relevance in the solution
encountered.

In figure 9(a) we show the initial state and in figure 9(b) the goal statement of an exam-
ple problem from the extended-STRIPS domain. Rooms are numbered at the corner of their
picture and doors are named according to the rooms they connect. Doors may be open,
closed, or locked. In particular, door24 connects the rooms 2 and 4 and is locked. Door34

Figure 9. Problem situation in the extended-STRIPS domain. The goal statement is a partial specification of the
final desired state: the location of other objects and the status of other doors remained unspecified.
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is closed and, for example, door12 is open. The number of the boxes can be inferred by
the attached description of the initial state.

Assume NOLIMIT solved the problem in figure 9 by first pushing boxl from rooml into
room2. In order to open door34, the robot then goes to room3 back through rooml. The
actual solution searched for and found would be the plan (GOTO-BOX boxl) (PUSH-THRU-
DOOR boxl door 12) (GO-THRU door12 rooml) (GOTO-DOOR door13) (GO-THRUdoor13
room3) (GOTO-DOOR door34) (OPEN-DOOR door34). For this particular solution, for
example, the key24 for the locked door24 does not play any role in achieving the goals
and it is not, therefore, a relevant literal in the initial state of this problem, if this problem-
solving episode is to be replayed. In figure 10(a) we show the actual foot-print of the initial
state corresponding to this first solution to the problem. The foot-print-state-goal slot asso-
ciates each literal in the initial state with list of goals that it contributed to achieve. Note
that nil means that the literal was not used for any goal.

However, NOLIMIT could have encountered a different solution to this problem. The robot
can push boxl opportunistically on its way to open door34. It pushes then boxl through
door24 into room2, after unlocking door34. The actual solution searched for and found
would be the plan (GOTO-BOX boxl) (PUSH-THRU-DOOR boxl door13) (PUSH-TO-DOOR
boxl door34) (OPEN-DOOR door34) (PUSH-THRU-DOOR boxl door34) (GOTO-KEY
key24) (PICK-UP key24) (GOTO-DOOR door24) (UNLOCK-DOOR door24) (OPEN-DOOR

Figure 10. Two foot-prints in the extended-STRIPS domain for different solutions to the same problem. The initial
state literals are associated with the goal conjunct(s) they contributed to achieve, according to the goal regression
of the different plans encountered.
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door24) (GOTO-BOX box 1) (PUT-DOWN key24) (PUSH-THRU-DOOR box 1 door 24). Now
in this way of solving the problem, the key24 for the locked door24 is a relevant literal
in the initial state of this problem if this problem-solving episode is to be replayed. Figure
10(b) shows the actual foot-print of the initial state for this solution.

We formally define the new similarity metric that evaluates the degree (or value) of match
of the initial state as a function of the goal conjuncts that directly matched. This similarity
emphasizes goal-oriented behavior (Kedar-Cabelli, 1985; Hammond, 1986) even more than
the one introduced earlier by focusing only on the goal-relevant portions of the initial state
(Hickman & Larkin, 1990; Pazzani, 1990), as determined by the problem solver for each
case in the library.

Definition 4. We say that the initial state S foot-print matches an initial state S' under
a substitution a and given matched goals g™, ..., g™ with match value 5, iff there are
d many literals I in S, such that (i) I directly matches some literal I' in §>' under a, and
(ii) I is in the foot-print of some goal g™, for i = 1, .. ., m.

When assigning a match value to two problems, we do not consider now only the number
of goals and literals that match in the initial state. Instead, we also use the unified goals
themselves to determine the match degree of the initial state.

We change steps 4 and 8 of the procedure presented in figure 7 according to definition
4. Step 4 computes the match value for the goal statements but further return which goals
matched, and in step 8 we use these goals to compute the match value for the initial states.
The rest of the algorithm is invariant to selection of similarity metric.

4.2.1. Further search-reduction examples

We ran new experiments with this foot-print similarity metric in the extended-STRiPS and
process-job planning domains. The solid curves in figures 8(a) and 8(b) show the results
for these two domains. We note that the results with the foot-print similarity metric show
a 2.0-fold improvement over the base search for the process-job planning and scheduling
domain and a 2.6-fold-improvement for the extended-STRIPS domain. The curves obtained
do not represent the best improvement expected, as the set of 40 problems used does not
completely cover the full range of problems in either domain. One of the directions of
our current research is to develop techniques for learning similarity metrics by further auto-
matically analyzing the analogical replay mechanism.4

To scale the system well in both the size and diversity of domains, we have currently
a 1000-case library in a complex logistics transportation domain. In this domain, packages
are to be moved among different cities. Packages are carried within the same city in trucks
and across cities in airplanes. Trucks and airplanes may have limited capacity. At each
city there are several locations, e.g., post offices and airports. Although our analysis in
this large-scaled domain is not complete yet, the results so far show high positive transfer,
including total memory retrieval and problem-solving times, thus demonstrating the scale
capabilities of our methods.
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4.3. Trading off retrieval and search costs

In pure general-purpose problem solvers, the cost of search is exponential in the length
of the solution. (We refer to systems that search without any control knowledge to prune
the search space of possible operators.) In pure case-based reasoning systems the cost of
retrieval is very high, as the system fully relies on retrieving the best case in memory to
maximize its chance of successful adaptation.

In the analogical version of PRODIGY, where we integrate a search-based problem solver
with an analogical reasoner, we balance the cost of retrieving and the predicted search
cost (Veloso & Carbonell, 1991b). We show how we balance the cost of retrieval as a func-
tion of the degree of partial match. In the retrieval procedure of figure 7, suppose that the
memory is organized in a discrimination network (as we are currently developing). The
organization of the memory is such that the indices for the cases are less relevant as we
move away from the root of the discrimination network. Given a new problem P' with
initial state §>p' and goal Qp', we can compute the absolute maximum possible match value,
absolute_max_match = length (Qp') + length (Sp').

In general, we integrate analogy and search to reduce the size of the search space in
terms of the number of nodes searched and consequently achieve an improvement in running
time. Harandi and Bhansali (1989) concluded that analogy would be useful if the time to
find analogs is small and the degree of similarity is high. Hickman, Shell, and Carbonell
(1990) also show that internal analogy can reduce the search cost. We show now that there
is an optimal range of retrieval time to spend searching for candidate analogs. Intuitively,
the deeper that memory is searched, the better the analog and the less search required
by the problem solver. However, searching memory also takes time. Is there, hence, an
optimal amount of effort to spend searching memory?

We assume that the memory is organized in such a way that the confidence on the match
degree increases monotonically with retrieval time (Kolodner, 1984; Schank, 1982), though
not necessarily in a linear manner. Assume also that there is always one (or more) case
available to return when retrieval is halted. If the retrieval time increases, the match value
between the case returned and the new problem might increase. We now formalize this
model. Let

• tr be the time spent to retrieve a similar past case,
• 5, be the match value between the case retrieved and the new problem, as a function

of tr,
• m be the absolute__max__match as introduced above, and
• d be the percentage of deviation from the absolute_max_match of the match value of

the case retrieved if the retrieval time is null (or close to null).

To capture the fact that the math value may increase with the retrieval time, we say that

where C and a are constants.
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Figure 11. Three different curves for the match value as a function of the retrieval time.

Figure 11 sketches three possible curves for this match value 8, as a function of the
retrieval time tr. Curves 1 and 2 show situations where the initial match is poor, i.e., with
low match degree. However, for curve 1, the rate of match-degree improvement is very
low (low a), while for curve 2 the match degree increases fast with the retrieval time. Situa-
tions 1 and 2 depict two different rates of improvement for the match result while travers-
ing down the discrimination net. Curve 3 plots a situation where the initial match is im-
mediately high and continues to improve gradually towards the maximum.

In the situations captured by curves 1 and 3, the system should not invest a long time
in retrieving a better, or best, similar past case. In both cases termination will occur because
the rate of improvement, a, is low. In case 1, the system should solve the problem by base
search, as there are no good cases, and in case 3 it should immediately start derivational
replay on the retrieved high-match case, rather than waste time seeking a marginally better
one. Situation 2 illustrates the case where retrieval time is more wisely invested.

Given the fact that the match degree is on average directly related to search savings in
problem solving, we now show analytically that there is an optimal amount of effort to
spend in searching memory for candidate analogs.

Consider that a search tree can be seen as an OR-tree, branching alternatively among
possible goal orderings and possible operators to achieve a goal. Let b be the average branch-
ing factor of the search tree, let / be the solution length for a given problem, and S be
the search effort without analogy. Then the complexity of S is 5 = 0(fce(0). (From now
on, for simplicity, we skip the order of notation, 0.) Assume that the effect of analogical
reasoning is captured in a decrease of the average branching factor b (Hickman et al., 1990).
This reduction of the search effort is in direct relationship with the match degree of the
guiding case(s). Let Sanalogy be the search spent with analogy. We can then say that, for
some linear function /,

The purpose of the integrated analogical reasoner is to improve the effort to reach a solu-
tion: memory search time plus problem solving search time. The objective is to find the
situation when this sum is much smaller than brute-force problem solving search without
any analogical guidance. We capture this goal in the inequality below, where we do not
represent, for simplicity, the function / introduced in equation (2):
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Figure 12. Retrieval time (curve 2) plus analogical search effort (curve 1).

Substituting equation (1) into equation (3), we get the final equation as a function of
the retrieval time tr:

Figure 12 sketches the left-hand side of inequality 4. Analyzing this qualitative curve,
we conclude that there is an optimal retrieval time interval, which is a function of the dynamic
match rate a. Retrieval should then stop when a given threshold is reached, namely, when
the derivative of the expected search savings approaches the incremental memory search cost.

5. Case storage: Interpreting the utility of guidance provided

Currently the cases in the case library are indexed by their goal conjuncts and initial state
(Veloso, 1991). Cases are clustered by goal, and within the same cluster, cases are all equally
close to each other.

We view the final desired behavior of the system dynamically reorganizing its case library
as the resulting interaction of the two functional modules, namely, the problem solver and
the memory manager. In a nutshell, the problem solver has the ability

1. to ask the memory manager for advice on how to solve a problem (i.e., guidance based
on past experience, stored as rally annotated derivational traces),

2. to replay the past solutions received as analogs and create an annotated solution for the
new problem based both on the guidance received from the memory manager, and on
the domain theory available, and

3. to return to the memory manager information about the utility of the guidance received
for creating the solution (i.e., the relevance of the retrieved cases) and the new justified
case (a new fully annotated derivational trace).

Memory organization will be in a closely coupled dynamic relationship with the problem-
solving engine. SMART, the memory manager, has the ability
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1. to search its case library for one or more cases solved in the past that best relate to
the new problem presented by the problem solver.

2. to reorganize and create new links between the cases stored as a function of the feedback
received from the problem solver on the utility of the guidance provided (the retrieved
case) in solving the new problem.

The problem solver and SMART communicate as shown in figure 13, where Wi is the ini-
tial world, G is the goal to be achieved, Wf is the final world, Sol is the solution found,
Analogs are the retrieved candidate cases, and Feedback represents both the new solved
problem and information about the utility of the candidate cases in reaching a solution.

In the context of the discussion above on the actions taken at replay time (see section
3), we identify four situations (see figure 14) that encode the utility as judged by the prob-
lem solver on the guidance received from memory (Veloso & Carbonell, 1989):

Fully-used (see figure 14(a)). In this situation the problem solver is able to replay the pre-
vious case, fully validating the justifications.

Figure 13. Interaction of the problem solver and the memory manager.

Figure 14. Four situations to encode the usefulness of the guidance received: (a) Fully-used: past case is fully
copied; (b) Extension: past case is copied but additional steps are performed in the new case; (c) Locally divergent:
justifications do not hold and invalidate copying pan of the past case; (d) Globally divergent: extra steps are
performed that undo previously copied steps.

75



270 M.M. VELOSO AND J.G. CARBONELL

Extension (see figure 14(b)). The guiding case is fully used, but there is some extra work
done to re-establish a failed condition. These extra steps taken do not invalidate the suc-
cessfully used guidance; they are spliced into the resulting solution.

Locally Divergent (see figure 14(c)). The case suggested and the current one diverge due
to some failed justification after an initial successful replay. The two cases fully diverge
from that point, though again the new steps performed do not interfere with the earlier
steps performed under the case guidance.

Globally Divergent (see figure 14(d)). The replay diverges from the retrieved case, and
fully-justified decisions prior to the divergence point must be undone, because the prob-
lem solver switches to a different strategy (e.g., attempts different operators for the top-
level goals).

These four situations determine the reorganization of memory when the new case is to
be stored back into memory. We are exploring precise algorithms to address each of these
situations in particular. An informal discussion follows below on how we expect these situa-
tions to be handled.

If a case was fully used under a particular substitution, SMART will generalize its data
structure over this match, updating the indices to access these cases (Veloso & Carbonell,
1989). If the new case is an extension of the previous case, the conditions that lead into
the adaptation and extension work are used to differentiate the indexing of the two cases.
Generalization should also occur on the common parts of the case. The situations where
the two cases diverge represent a currently incorrect memory concept of similarity or lack
of knowledge. The fact that the retrieval mechanism suggested a past case as being most
similar to the new problem, and that the problem solver could not fully use the past case
or even extend it, indicates either the sparsity of better cases in memory or a similarity
function that ignores an important discriminant condition. SMART will have to either specialize
variables in the memory data structures due to previous overgeneralization or completely
set apart the two cases in the decision structure used for retrieval.

We distinguish two categories of indices for stored cases, namely, problem- and search-
dependent ones. Problem-dependent indices derive from the description of the initial state
of the world and the goal statement. Search-dependent indices are related to the justifica-
tion structure built by the problem solver during its search process for a solution to the
problem. As an example, suppose that at a certain choice point, only one alternative is
available, i.e., there is only one way of achieving a particular goal. The justification at
a choice point referring to a unique alternative available is a strong index for this case.
This choice point is a bottleneck in the search path. In the new situation, if this justification
is still valid and this unique alternative fails, the remaining portion of the solution cannot
be replayed easily. Hence, we plan to extract memory indices from the justification struc-
ture, and use them at retrieval time to prune the set of candidate analogs more adequately.

6. Conclusion

The results reported here demonstrate the feasibility of derivational analogy as a means
to integrate general problem solving with case-based reasoning. In summary, we have
shown that
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• A general problem solver, such as NOLIMIT, can successfully create its own case library
by recording solution traces and their accompanying justification structure.

• Derivational analogy can exploit past cases to solve new but similar problems, and do
so significantly faster than standard problem solving without the benefit of accumulated
cases.

• A rich derivational structure can yield improvements over direct trial-and-error replay
of cases for related but non-identical problems. The justification structure permits the
case transfer to be partial when total transfer cannot be justified.

• The integration of the two problem-solving paradigms, namely, general problem solving
and case-based reasoning, can be explored to minimize the trade-off between memory
and search. Problem-solving search cost can be significantly reduced by replaying past
similar derivational traces of problem-solving episodes, and incrementally better similar-
ity metrics can be learned by interpreting the behavior of the problem solver replaying
retrieved cases.

• Finally, an efficient balancing of the costs of retrieval and search can help the integrated
system to dynamically scale up its case library.

However, the research into full-fledged case-based reasoning and machine learning in
the context of NOLIMIT, the PRODIGY nonlinear problem solver is still in progress. The
tight integration between the analogical replay and the problem solver enables cases to be
used at any level of problem solving, from the entire solution structure to the achievement
of individual subgoals deep in the goal tree. A new large or multi-part problem may therefore
be solved by appealing to multiple smaller cases. The full implementation of the SMART
memory model is also in progress.

We showed how derivational analogy differs from standard case-adaptation methods in
several dimensions. The most significant one is that a case consists not of a rigid data struc-
ture, which may be retrieved, applied, and at best "tweaked," but rather of a network of
fully justified advice to the problem solver, directing its decision making in future similar
situations. Another dimension is the coverage attained from a case. It may be used in whole
or in part, due to the flexibility of the replay procedure.

Finally, we also note that derivational analogy differs from other learning methods in
PRODIGY. Static analysis and construction of abstraction hierarchies (Etzioni, 1990a; Knob-
lock, 1991) provide eager learning mechanisms. Domain definitions are precompiled into
more efficient forms. Explanation-based learning (Minton, 1988) is dynamically triggered
but when applied performs a full weakest-precondition proof procedure requiring a complete
domain theory. Therefore, it combines aspects of eager and lazy learning. Derivational
analogy takes the extreme point in the spectrum, as no processing is done on the cases as
they are recorded. Instead, all the processing is done at replay time (initial retrieval, deriva-
tional replay, and memory-feedback-adjustment). Learning, therefore, is done only on an
"if-needed" basis. It is the ultimately lazy machine learning method. Note that we are
not claiming superiority of one method over others. Instead, we believe that each method
has its role, depending upon the characteristics of the domain, the problem, and the kind
of solution required. PRODIGY, in fact, includes all these learning methods, and determin-
ing the appropriate principles for effective integration and selection among them is a high-
priority topic on our research agenda.
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Appendix: The PRODIGY architecture

PRODIGY is a general problem solver combined with several learning modules. The problem
solver is an advanced operator-based planner that includes a simple reason-maintenance
system and allows operators to have conditional effects. All of PRODIGY'S learning modules
share the same general problem solver and the same domain representation language. Learn-
ing methods acquire domain and problem-specific control knowledge.

A.l. The problem solver

PRODIGY'S basic reasoning engine is a general-purpose problem solver and planner that
searches for sequences of operators (i.e., plans) to accomplish a set of goals from a specified
initial state description. Search control in PRODIGY is governed by a set of control rules
that apply at each decision point, and may consist of heuristic preferences or definitive
selections. Control rules may be domain independent or (more typically) domain specific.
The control language allows the problem solver to represent and learn control information
about the various problem-solving decisions, such as selecting which goal/subgoal to address
next, which operator to apply, what bindings to select for the operator, or where to back-
track in case of failure. Different disciplines for controlling decisions can be incorporated
(Drummond & Currie, 1989).

A domain is specified as a set of operators, inference rules, and control rules. Addition-
ally the entities of the domain are organized in a type hierarchy. Each operator (or inference
rule) has a precondition expression that must be satisfied before the operator can be applied,
and an effects-list that describes how the application of the operator changes the world.
Precondition expressions are well-formed formulas in a typed first-order predicate logic
encompassing negation, conjunction, disjunction, and existential and universal quantifica-
tion. The effects-list indicates atomic formulas that should be added or deleted from the
current state when the operator is applied, reflecting the actions of the operator in the world.
In addition one can also include conditional effects that specify transformations to the world
as a function of its current state at application time.

A problem consists of an initial state and a goal expression. To solve a problem, PRODIGY
must find a sequence of operators that, if applied to the initial state, produces a final state
satisfying the goal expression.

The derivational analogy work in PRODIGY takes place in the context of a nonlinear prob-
lem solver capable of searching through the space of all alternative instantiated operators
and all possible orderings of the set of pending goals (Veloso, 1989). The system is called
NOLIMIT, standing for Nonlinear problem solver using casual commitment. Nonlinear plan-
ning was developed to deal with problems like Sussman's anomaly, which could not be
solved by rudimentary linear planners such as STRIPS (Pikes & Nilsson, 1971; Sussman,
1973). Least-commitment planners handle this anomaly by deferring decisions while building
the plan (Sacerdoti, 1975; Wilkins, 1989). These planners typically output a partially ordered
plan as opposed to a totally ordered one, and consequently the term nonlinear plan is used.
However, the essence of the nonlinearity is not in the fact that the plan is partially ordered,
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but in the fact that a plan need not be a linear concatenation of complete subplans,each
for a goal presumed independent of all others (Veloso, 1989). We follow instead a casual-
commitment approach (Minton et al., 1989), as opposed to a least-commitment approach,
to the nonlinear planning problem. Alternatives are generated and tested incrementally and
all decision points (operator selections, goal orderings, backtracking points, etc.) are open
to introspection and reconsideration.

The basic search procedure is, as in the linear planner (Minton et al., 1989), a means-
ends analysis in backward chaining mode. Basically, given a goal literal not true in the
current world, the planner selects one operator that adds (in case of a positive goal, or
deletes, in case of a negative goal) that goal to the world. We say that this operator is rele-
vant to the given goal. If the preconditions of the chosen operator are true, the operator
can be applied. If this is not the case, then the preconditions that are not true in the state
become subgoals, i.e., new goals to be achieved. The cycle repeats until all the conjuncts
from the goal expression are true in the world. NOLIMIT proceeds in this apparently simple
way. Its nonlinear character stems from working with a set of goals in this cycle, as opposed
to the top goal in a goal stack. Dynamic goal selection enables NOLIMIT to interleave plans,
exploiting common subgoals and addressing issues of resource contention. The skeleton
of NOLJMIT'S search algorithm is shown in figure 15.

Step 1 of the algorithm checks whether the top-level goal statement is true in the current
state. If this is the case, then we have reached a solution to the problem. We can run NOLIMIT
in multiple-solutions mode, where NOLIMIT shows the solution found and continues search-
ing for more solutions, which it groups into buckets of solutions. Each bucket has different
solutions that use the same set of plan steps (instantiated operators). The set of different
totally ordered solutions within a bucket forms a potential partially ordered solution.

Step 2 computes the set of pending goals. A goal is pending, iff it is a precondition of
a chosen operator that is not true in the state. The subgoaling branch of the algorithm

figure 15. A skeleton of NOLIMIT's search algorithm.
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continues, by choosing, at step 3, a goal from the set of pending goals. The problem solver
expands this goal, by getting the set of instantiated operators that are relevant to it (step
4). NOLIMIT now commits to a relevant operator. This means that the goal just being ex-
panded is to be achieved by applying this chosen operator.

Step 2 further checks for an applicable chosen operator. An operator is applicable, iff
all its preconditions are true in the state. The operator considered to be applicable is the
last chosen operator not applied yet in the current search path. Note that we can apply
several operators in sequence by repeatedly choosing step 5 in case there are multiple applic-
able operators. Such situations occur when fulfilling a subgoal satisfies the preconditions of
more than one pending operator. The applying branch continues by choosing to apply this
operator at step 3, and applying it at step 5, by updating the state. A search path is therefore
defined by the following regular expression: (goal chosen-operator applied-operator*)*.

A. 2. The learning modules

PRODIGY'S general problem solver is combined with several learning modules. The PRODIGY
architecture, in fact, was designed both as a unified testbed for different learning methods
and as a general architecture to solve interesting problems in complex task domains. Let
us now focus on the global architecture itself, as diagrammed in figure 16.

The operator-based problem solver produces a complete search tree, encapsulating all
decisions—right ones and wrong ones—as well as the final solution. This information is
used by each learning component in different ways: to extract control rules via EBL, to

Figure 16. The PRODIGY architecture: Multiple learning modules unified by a common representation language
and a general problem solver.
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build derivational traces (cases) by the derivational analogy engine, to analyze key deci-
sions by the APPRENTICE knowledge acquisition interface, or to formulate focused
experiments.

In addition to the central problem solver, PRODIGY integrates the following learning
components:

APPRENTICE: A graphic-based user-interface that can participate in an apprentice-like
dialogue, enabling the user to evaluate and guide the system's problem solving and learn-
ing (Joseph, 1989).

EBL: An explanation-based learning facility (Minton, 1988) for acquiring control rules
from a problem-solving trace. Explanations are constructed from an axiomatized theory
describing both the domain and relevant aspects of the problem solver's architecture.
The resulting descriptions are expressed in control rule form.

STATIC: A method for learning control rules by analyzing PRODIGY'S domain descriptions
prior to problem solving (Etzioni, 1990b).

ANALOGY: A derivational analogy engine (Carbonell & Veloso, 1988; Veloso & Carbonell,
1989) that is able to replay entire solutions to similar past problems, calling the problem
solver recursively to reduce any new subgoals brought about by known differences be-
tween the old and new problems. (This article presents this module.)

ALPINE: A multi-level abstraction planning capability (Knoblock, 1991). First, the axiom-
atized domain knowledge is divided into multiple abstraction layers based on an in-depth
analysis of dependencies and interactions in the domain. Then, during problem solving,
PRODIGY proceeds to build abstract solutions and refine them by adding details from
the domain, solving new subgoals as they arise.

EXPERIMENTATION: A learning-by-experimentation module for refining domain knowl-
edge that is incompletely or incorrectly specified (Carbonell & Gil, 1990). Experimen-
tation is triggered when plan execution monitoring detects a divergence between internal
expectations and external observations. The main focus of experimentation is to refine
the factual domain knowledge, rather than the control knowledge.
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Notes

1. In Veloso et al. (1990), we show several examples in a complex logistics transportation domain.
2. These numbers are meaningful for their relative and not absolute values, as they were obtained using an initial

version of the analogical reasoner code. Actual values using a much more optimized code are up to 12 times
lower in absolute value.

3. This set is a sampled subset of the original set used by Minton (1988).
4. In fact, we currently have generated a more sophisticated similarity metric, also derived from the derivational

trace, where better improvements are noticed (Veloso, 1991).
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