
Merge Strategies for Multiple Case Plan Replay
�

Manuela M. Veloso

Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213-3891, U.S.A.

mmv@cs.cmu.edu, http://www.cs.cmu.edu/˜mmv

Abstract. Planning by analogical reasoning is a learning method that consists
of the storage, retrieval, and replay of planning episodes. Planning performance
improves with the accumulation and reuse of a library of planning cases. Retrieval
is driven by domain-dependent similarity metrics based on planning goals and
scenarios. In complex situations with multiple goals, retrieval may find multiple
past planning cases that are jointly similar to the new planning situation. This
paper presents the issues and implications involved in the replay of multiple
planning cases, as opposed to a single one. Multiple case plan replay involves the
adaptation and merging of the annotated derivations of the planning cases. Several
merge strategies for replay are introduced that can process with various forms of
eagerness the differences between the past and new situations and the annotated
justifications at the planning cases. In particular, we introduce an effective merging
strategy that considers plan step choicesespecially appropriate for the interleaving
of planning and plan execution. We illustrate and discuss the effectiveness of the
merging strategies in specific domains.

1 Introduction, Related Work, and Motivation

Case-based planning and derivational analogy have been of interest to several re-
searchers, who continue to investigate the singularities of using case-based reasoning in
a planningframework. Many advances have been made in this context, buildingupon the
pioneering CHEF [Hammond, 1986] and derivational analogy [Carbonell, 1986] work.
CHEF showed how to explain plan failure and reason about failure for case indexing
and retrieval. Derivational analogy introduced and showed the need to be reminded of
the solution derivation rather than only of the final solution.

Several efforts have been following this line of research. Naming a few systems that
address core planning problems helps to motivate this work and the interest in the area.
PRIAR [Kambhampati and Hendler, 1992] notably formalizes and demonstrates the use
of dependency links for plan reuse in hierarchical planning. Prodigy/Analogy [Veloso,
1994] develops the full derivational analogy approach and contributes an extensive
analysis of the impact on planning efficiency of using the combination of case-based
and state-space nonlinear planning. SPA [Hanks and Weld, 1995] is a simple and ele-
gant interpretation of case-based plan adaptation, using SNLP as a plan-space planning
approach. Using this same base-level planning approach and also building upon the

�

This research is sponsored as part of the DARPA/RL Knowledge Based Planning and Scheduling
Initiative under grant number F30602-95-1-0018. Thanks to Michael Cox and the anonymous
reviewers for their comments on this paper.

Prodigy/Analogy approach, CAPLAN [Muñoz-Avila et al., 1994] has been signifi-
cantly extending the indexing and retrieval techniques and applying the paradigm to
realistic domains, such as manufacturing. Similarly, DerSNLP [Ihrig and Kambham-
pati, 1994] is another successful implementation of derivational replay in SNLP. Several
other systems, provide specific strong approaches to aspects of the case-based planning
paradigm. For example, Dejà-vu [Smyth and Keane, 1995] shows how retrieval can use
a prediction of the adaptation cost, PARKA [Kettler et al., 1994] demonstrates mas-
sively parallel effective invocations to case memory during planning, and [López and
Plaza, 1993] views medical diagnosis as a reactive planning task.

One of the interesting and less explored (or explained) aspects of the case-based
planning paradigm is the use of multiple plans during the adaptation phase. In complex
planning situations with multiple goals, a single past case that is similar to the complete
new situation may not be found. However, several planning cases may be found that cover
independent subparts of the new planning situation in a complementary way. Planning
can then be viewed as the process of merging and adapting these multiple complementary
planning cases. The effective use of multiple cases in planning is a challenging issue
and is the focus of this work. This paper reports on our work in Prodigy/Analogy
investigating and developing different plan merging strategies for analogical replay. A
few other systems, such as [Redmond, 1990], and ASP-II [Alexander and Tsatsoulis,
1991] have addressed the use of multiple plans, although not necessarily in the replay or
adaptation phase. An interesting recent effort in the Nicole system [Ram and Francis,
1996] explores the use of multiple alternative planning cases during reuse, as opposed
to multiple complementary plans as carried out in Prodigy/Analogy.

This paper introduces several strategies to merge multiple planning cases during
the adaptation phase (i.e., the replay phase in Prodigy/Analogy). These strategies are a
refinement of the ones briefly discussed in [Veloso, 1994] within a re-implementation
of Prodigy/Analogy integrated with the new Prodigy4.0 planner [Veloso et al., 1995].
In analogical derivational replay, the merge algorithms are dependent on the underlying
generative planning algorithm. In Section 2, we briefly introduce the Prodigy4.0 gener-
ative planner as the substrate planner of Prodigy/Analogy. We focus on explaining two
main decision points of the planner and on showing the guidance that analogical replay
can provide to improve planning efficiency. The remainder of the paper introduces dif-
ferent replay strategies for multiple plans. Section 3 sets the ground for the next sections
by presenting serial replay as a simple strategy to replay a single case. Sections 4 and 5
present sequential replay and ordering-based interleaved replay, respectively. Section 6
introduces the novel choice-and-ordering-based interleaved replay. We illustrate our
developed strategies in different domains. Finally, Section 7 concludes the paper with a
summary of the contributions of the paper.

2 Improving Planning Efficiency: Replay of Planning Decisions

Planning is a complex task for which learning from past experience can improve
planning performance along the three following dimensions: planning efficiency, task
action model, and quality of plans generated [Veloso et al., 1995]. Prodigy/Analogy
is a case-based learning algorithm specifically designed to improve planning effi-

ciency. Therefore, it is important to understand what are the potential sources of
planning inefficiency. Planning performance is dependent on the underlying planning
algorithm and can vary with a great number of factors [Veloso and Blythe, 1994,
Veloso and Stone, 1995]. Hence identifying universal causes of inefficiency for all
domains and planning algorithms is not possible. We focus on explaining our plan-
ner’s decision points, as opposed to its many other features, e.g., action representation,
conditional planning, control knowledge, abstraction planning, or user interface.

2.1 Planning Decisions in Prodigy4.0

Prodigy4.0 combines state-space search corresponding to a simulation of plan execution
of the plan and backward-chaining responsible for goal-directed reasoning. A formal
description of Prodigy4.0 can be found in [Veloso et al., 1995].

As opposed to the early state-space planners, such as Strips [Fikes and Nilsson,
1971] and Prodigy2.0 [Minton et al., 1989], Prodigy4.0 performs a nonlinear state-
space search by allowing the interleaving of subplans for different goals. At each point
in its search, until the goal has been achieved, Prodigy4.0 faces both a set of goals that
still need to be achieved and a set of plan steps (operators) already selected to achieve
other goals. Some of these already selected plan steps may have all of its preconditions
satisfied in the planner’s state. When that is the case, Prodigy4.0 chooses between
applying a plan step or continue planning for a pending goal, i.e., a goal that still needs
to be planned for. Figure 1 shows these two main decisions.

Choose an operator to apply

Back-ChainerOperator-Application

Choose an operator
that achieves this literal

Decide whether to apply an operator

Choose an instantiation for
the variables of the operator

Choose an unachieved literal

or to continue planning for other goalsapply extend

COMMIT TO STEP ORDER

COMMIT TO CHOICE OF STEP

Top-Level

Fig. 1. Two Main Decisions while Planning: Step Order and Step Choice.

Applying an operator provides a new planning state. This decision is equivalent
to a commitment in plan step order and therefore early simulation of plan execution
while planning. Planning for a goal involves the selection of a specific step (instantiated
operator) to achieve the goal. In some cases, selecting such a step can be easier, if
updated state information can be taken into account. In a nutshell, we can view the
planning search process depending on these two main choices, namely step ordering and
choice of plan step. These two decisions are directly related to planning efficiency. For
completeness, Prodigy4.0 can backtrack over all its choices, and eventually will generate

a solution plan, if one exists. However, the planning efficiency, i.e., the performance of
the algorithm in its search, depends on the choices made during the search process.

2.2 Analogical Replay as Guidance to Planning Decisions

Analogical reasoning in Prodigy/Analogy achieves the integration of case-based rea-
soning and generative planning. It provides guidance for the planning choices and can
therefore improve Prodigy4.0’s planning efficiency. Essentially, Prodigy/Analogy intro-
spects into the Prodigy4.0’s planning episode after the search process to generate a plan,
and generates a planning case by capturing several justifications for why choices are
made. Case indexing includes the goal and the solution-relevant initial state (footprint).
Retrieval compares new and past goals and problem states and returns a set of planning
cases to cover the new planning situation. Analogical replay involves validating and
replaying the retrieved case [Veloso, 1994].

In this section, we illustrate through a simple example the reduction in search effort
that can be provided by analogical reasoning. Consider the planning domain introduced
by [Barrett and Weld, 1994] and shown in Figure 2(a). We show a sample illustrative
planning problem in this domain and the corresponding solution in Figure 2(b).

Operator:
���

Problem:
preconds: � � – Initial state: � 1 � � 2 � � 3 � � 4 � � 5

adds: � � – Goal: � 2 � � 3 � � 4 � � 1 � � 5

deletes: ���	� ��

����� – Solution:
�

1 � � 2 � � 3 � � 4 � � 5

(a) (b)

Fig. 2. Illustrative example: (a) Domain consists of � operators, each of the form
� �

shown,
��� 1 ��������� � [Barrett and Weld, 1994]; (b) Sample problem and solution.

This artificially-builtdomain can lead to a complex search, because there is a unique
solution for each problem in an exponential search space. (It can be viewed as a search
for a needle in a hay stack.) The complexity does not come from the choice of plan steps,
as there is a single operator that can achieve each goal, e.g., goal � 3 is achieved (added)
only by operator � 3. The complexity comes from finding the correct step ordering.
When Prodigy4.0 uses the specific order in which goals are given and uses that ordering
to eagerly commit to plan step orderings, it searches a large space.

Figure 3(a) shows part of the final branch from the Prodigy4.0’s search tree while
generating a solution to the problem introduced above. The trace shows a sequence of
numbered choices of goals (represented in parenthesis), operators (represented within
angle brackets), and applied operators (represented in upper-case letters in angle brack-
ets). The interested reader can work out the problem and confirm the generation of the
solution. (The trace further shows the depth of each search node – the first number on
the line – and the number of alternative goals not explored at that search level – the
information within the square brackets at the end of the line.) A major fact to notice,
however, is that 305 nodes can be searched in this simple problem.

Prodigy/Analogy can store a solution derivation into a planning case. Figure 3(b)
shows the trace of the search guided by a planning case that solves the same problem.

2 n2 (done)
4 n4 <*finish*>
5 n5 (g2) [g:4]
7 n7 <a2>
8 n289 (g1) [g:1]

10 n291 <a1>
11 n292 <A1> [g:3]
12 n293 <A2> [g:3]
13 n294 (g3) [g:2]
15 n296 <a3>
16 n297 <A3> [g:2]
17 n298 (g4) [g:1]
19 n300 <a4>
20 n301 <A4> [g:1]
21 n302 (g5)
23 n304 <a5>
24 n305 <A5>

Achieved top-level goals.
Solution:

<a1>
<a2>
<a3>
<a4>
<a5>

#<PRODIGY result: t, 1 sol,
11.683 secs, 305 nodes>

(a)

2 n2 (done)
4 n4 <*finish*>
5 n5 (g2) "c5" 5 -- goal (g2)
7 n7 <a2> "c5" 6 -- operator a2
8 n8 (g1) "c5" 289 -- goal (g1)
10 n10 <a1> "c5" 290 -- operator a1
11 n11 <A1> "c5" 292 -- apply "c5" 291
12 n12 <A2> "c5" 293 -- apply "c5" 7
13 n13 (g3) "c5" 294 -- goal (g3)
15 n15 <a3> "c5" 295 -- operator a3
16 n16 <A3> "c5" 297 -- apply "c5" 296
17 n17 (g4) "c5" 298 -- goal (g4)
19 n19 <a4> "c5" 299 -- operator a4
20 n20 <A4> "c5" 301 -- apply "c5" 300
21 n21 (g5) "c5" 302 -- goal (g5)
23 n23 <a5> "c5" 303 -- operator a5
24 n24 <A5> "c5" 305 -- apply "c5" 304
End of current guiding case.

Achieved top-level goals.
Solution:

<a1> (case "c5" 291)
<a2> (case "c5" 7)
<a3> (case "c5" 296)
<a4> (case "c5" 300)
<a5> (case "c5" 304)

#<PRODIGY result: t, 1 sol,
0.75 secs, 24 nodes>

(b)

Fig. 3. (a) Prodigy4.0 can search 305 nodes for a solution to the problem shown in Figure 2(b)
(partial trace shown). This solution and its derivation is stored in a planning case,"c5"; (b)
Analogical replay using "c5" guides planning for the same problem, finding immediately the
solution with only 24 nodes searched. (The format of the traces was adapted for presentation.)

By replaying this planning case, all choices are revalidated successfully and search is
completed avoided. This example illustrates the elementary case of search reduction
provided by direct guidance. The search reduction is a result of the following two
benefits provided by analogical replay:

� Proposal and validation of choices versus generation and search of possible alter-
natives operators and goal orderings.

� Reduction of the number of plausible alternatives – past failed alternatives are
pruned by validating the failures recorded in the past cases.
In the most common and interesting situationsof analogical replay, Prodigy/Analogy

replays one or several cases in similar (and not the exact same) situation. We address
next the complexity of the different replay strategies.

3 Serial Replay

The simplest replay situation involves using a single case and adapting it in a similar
new situation. There are three kinds of possible differences between the new and the
old situation, namely role (object), initial state, and goal differences.2 Clearly, the most

2 In [Wang and Veloso, 1994], we further consider situations in which the underlying available
actions could be different between the past and the new situation. For the purpose of this paper,
we assume a fixed set of actions.

common and challenging adaptation corresponds to the condition where we have a
combination of different roles, initial states, and goals.

Consider the situation where the retrieval procedure returns a single case to cover
the new planning roles, initial state, and goals. We introduce serial replay as the replay
strategy with the following simple characteristics:

� A single case is retrieved.
� The past case is completely replayed before planning for any new goals.

This is clearly not a particularly involved replay technique to merge the past case
into the new situation, as it postpones to the extreme reasoning about the differences
between the case and the new situation. It represents a high degree of eagerness in terms
of fully using the past case before considering the new situation. This technique has been
implemented in a partial-order planner, DerSNLP [Ihrig and Kambhampati, 1994], as
its replay strategy, where it showed to be appropriate.

Serial replay is potentially useful if the new goals correspond to minor changes to
the retrieved case which can easily be performed at the end of the planning episode. The
domain shown in Figure 4 illustrates this situation.

Operator:
� 1� � 2� Problem:

preconds: � � � �
– Initial state: � 1 � � 2 � � 3 �������

adds:
� � � � – Goal: � 4 � � 7 � � 1 �������

deletes: ���	� �

����� � �	� ��
�� ���
� � � �
 � � � Solution:

� 1
1 � � 1

2 � � 1
3 ��������� � 2

1 � � 2
2 � � 2

3 ����� �
(a) (b)

Fig. 4. Illustrative example: (a) Domain consists of 2 � operators, � of the form
� 1� and � of the

form
� 2� shown, � � 1 � � � � � � [Barrett and Weld, 1994]; (b) Sample problem and solution.

We applied serial replay in this domain following the same experimental setup
reported in [Ihrig and Kambhampati, 1994], namely, for each � -goal problem: (i)
Solve and store an � -goal problem; (ii) Replay an � -goal case to solve a ��� 1-
goal problem using serial replay. We consistently achieved a large reduction in search
space when comparing Prodigy4.0’s eager step-ordering planning procedure against
Prodigy/Analogy. An illustrative and representative sample of the results is shown in
Table 1 for several 4-goal problems following different 3-goal case plans.

Serial replay backtracks in the case and returns to the case when the justifications
(e.g. effects of the applied steps) are validated. The main advantage of replaying the
��� 1 goal problem is the selection (with the inherent pruning of alternatives) of the
right choices along all of the planning steps. Serial replay could be less efficient in
situations that involve adaptation through the choices of plan steps instead of only step
orderings and new step additions. In general, replay includes adding new steps, deleting
old steps, and merging multiple planning cases.

Any 4-goal problem in Prodigy4.0 using eager step ordering (i.e., eager state changes) corre-
sponds to searching � 10000 nodes; (Using completely delayed commitments to step orderings
for a problem with � goals corresponds to a search of 4

�
2 ��� 1 � nodes.)

Problem Guiding Case Serial Replay
Nodes Time (s)

p1-2-3-4 "case-p1-3-2" 58 1.95
p1-2-3-4 "case-p2-3-1" 58 1.98
p2-1-3-4 "case-p2-1-4" 65 2.3
p2-1-3-4 "case-p2-4-1" 65 2.3
p1-2-3-4 "case-p3-1-4" 75 2.566
p4-3-2-1 "case-p3-4-1" 75 2.666
p4-3-2-1 "case-p2-4-3" 85 2.933
p4-3-2-1 "case-p2-3-4" 85 2.867

Table 1. Sample table of results for solving 4-goal problems in the domain of Figure 4(a). The
name of the problem and guiding case captures the goals in the problem and its order, e.g.,
p4-3-2-1 is a problem with goals � 4 � � 3 � � 2 � � 1.

4 Sequential Replay

Adding new steps to a planning case is a common case adaptation found in analogical
derivational replay. The reasons why steps need to be added to a planning case include
the following two situations:

� New state misses precondition(s) of past applied step. For example, analogical replay
finds a decision to apply a step with � preconditions; in the past case situation, there
were �	�
� preconditions true in the state; in the new state, there are � preconditions
true, with ���
����� ; extra planning is therefore needed to account for the extra
� ��� unsatisfied preconditions.

� And the more interesting situation in which merging multiple plans requires adding
new steps to combine individual cases.
Sequential replay is a technique that we developed to account for the situation where

retrieval can provide information about the order in which multiple cases should be re-
played. We developed this merge technique for the application of analogical replay to
route planning [Haigh and Veloso, 1995, Haigh et al., 1997]. The geometric characteris-
tics of the map used by the retrieval procedure allow for the specification of an ordering
between multiple planning cases. Sequential replay has the following features:

� Guiding cases are ordered by the retrieval procedure.
� Each case is replayed sequentially in the retrieved order.
� Merging occurs by planning to connect the planning cases.

The sequential replay algorithm attempts to validate each step proposed by the cases.
Usually case steps are viable in the current situation, but two situations exist when a
choice may not be viable:

1. when a case step is not valid, i.e., when a choice made in the case is not applicable
in the current situation, e.g. a route segment is closed for construction, and

2. when a step is not reached yet, i.e., the next step is not yet in the set of adjacent
reachable states from the current step, e.g. when there is a gap between cases.

Empirical results using a real map of the city of Pittsburgh [Haigh et al., 1997]
showed that the sequential replay is effective due to its three main features: its com-
bination of retrieval of ordered situational-dependent similar past routing cases; its
revalidation of the availability of the case segments used; and its ability to do extra
planning when needed.

5 Ordering-Based Interleaved Replay

We introduce interleaved replay as a merge strategy that reasons about the decisions in
the multiple planning cases before committing to a particular merge ordering. Interleaved
replay does not have a pre-defined merge ordering and it considers the different past
cases and the new situation in equal standing while making merging decisions.

Ordering-based interleaved replay is a strategy to merge planning cases that reasons
specifically about plan step ordering commitments in the past cases. Ordering-based
interleaved replay has the following features:

� Guiding cases are not ordered in any predefined order.
� Each case is replayed until a step ordering commitment is found.
� Planning is done for new goals until step ordering commitments are needed.
� Merging occurs by reasoning about the ordering constraints among different steps.
� As usual, new steps are added and old steps are deleted when needed.

Cases and new plan steps for new goals are ordered using the ordering dependencies
illustrated shown in Figure 5.

g
...
...

...

...
g

p:

a:

d:

p:

a:

d:

USER - CONSUMER

...

...
g

...
g
...

p:

a:

d:

p:

a:

d:

CONSUMER - PRODUCER

...
g
...

g
...
...

p:

a:

d:

p:

a:

d:

PRODUCER - USER

(b)

(a)

(c)

Fig. 5. Illustration of Plan Step Ordering Constraints. (p, a, and d represent the preconditions,
adds and deletes of an operator, respectively.) For example, in (b) a step that needs a goal should
precede a step that deletes that goal.

Deleting old steps occurs in the dual situations of the ones where new steps are
found to be needed, namely:

� State provides precondition(s) of past applied step. For example, analogical replay
finds a decision to apply a step with � preconditions; in the past case situation, there
are � � � preconditions true in the state; in the new state, there are � , preconditions
true, with �	�
� �
� ; planning for for the � ��� unsatisfied preconditions in the

past case are not needed; replay deletes all the planning done dependent on the
� � � goals no longer necessary, by removing all the steps introduced for these
goals; the annotated justificationsat the case decisions provide the necessary linking
information for this adaptation.

� And the more interesting situation in which merging multiple plans may identify
repetition of steps in the different cases; analogical replay skips the repetition.

Figure 6 shows an illustration of the ordering-based interleaved replay procedure in
the one-way rocket domain [Veloso, 1994].

2 n2 (done)
4 n4 <*finish*>
5 n5 (at obj1 locb) "case1" 5 -- goal (AT OBJ1 LOCB)
7 n7 <unload-rocket obj1 locb r1> "case1" 6 -- operator UNLOAD-ROCKET

"case1" 7 -- bindings OBJ1,LOCB,R1
8 n8 (inside obj1 r1) case "case1" 8 -- goal (INSIDE OBJ1 R1)
10 n10 <load-rocket obj1 r1 loca> "case1" 9 -- operator LOAD-ROCKET

"case1" 10 -- bindings OBJ1,LOCA,R1
11 n11 (at obj2 locb) "case2" 5 -- goal (AT OBJ2 LOCB)
13 n13 <unload-rocket obj2 locb r1> "case2" 6 -- operator UNLOAD-ROCKET

"case2" 7 -- bindings OBJ2,LOCB,R1
14 n14 (inside obj2 r1) "case2" 8 -- goal (INSIDE OBJ2 R1)
16 n16 <load-rocket obj2 r1 loca> "case2" 9 -- operator LOAD-ROCKET

"case2" 10 -- bindings OBJ2,LOCA,R1
17 n17 (at obj3 locb) unguided goal #<AT OBJ3 LOCB>
19 n19 <unload-rocket obj3 locb r1>
20 n20 (inside obj3 r1) unguided goal #<INSIDE OBJ3 R1>
22 n22 <load-rocket obj3 r1 loca> [1]
23 n23 <LOAD-ROCKET OBJ2 R1 LOCA> "case2" 11 -- apply "case2" 10
24 n24 (at r1 locb) "case2" 12 -- goal (AT R1 LOCB)
26 n26 <move-rocket r1> "case2" 14 -- operator MOVE-ROCKET

"case2" 15 -- bindings R1
27 n27 <LOAD-ROCKET OBJ1 R1 LOCA> "case1" 11 -- apply "case1" 10
Goal (AT R1 LOCB): Goal causes a goal loop or is true in state.
Marking all dependent steps to be skipped. Advancing case.
28 n28 <LOAD-ROCKET OBJ3 R1 LOCA> apply unguided
29 n29 <MOVE-ROCKET R1> "case2" 16 -- apply "case2" 15
30 n30 <UNLOAD-ROCKET OBJ2 LOCB R1> "case2" 17 -- apply "case2" 7
End of current guiding case.
Switching to the last available case.
31 n31 <UNLOAD-ROCKET OBJ1 LOCB R1> "case1" 17 -- apply "case1" 7
End of current guiding case.
31 n32 <UNLOAD-ROCKET OBJ3 LOCB R1> apply unguided

Achieved top-level goals.
Solution:

<load-rocket obj2 r1 loca> ("case2" 10)
<load-rocket obj1 r1 loca> ("case1" 10)
<load-rocket obj3 r1 loca>
<move-rocket r1> ("case2" 15)
<unload-rocket obj2 locb r1> ("case2" 7)
<unload-rocket obj1 locb r1> ("case1" 7)
<unload-rocket obj3 locb r1>

#<PRODIGY result: T, 0.467 secs, 32 nodes, 1 sol>

Fig. 6. Illustration of Ordering-based Interleaved Replay. (The format of the trace was adapted
for presentation.)

In this domain, objects can be loaded into and unloaded to a rocket carrier, which can
only move once from the initial to the goal location. Two goals of a new 3-goal problem
are solved guided by two cases and the third goal is unguided. The trace representation

is the same as used before. To note in the replay procedure are: the interleaved use of
the two cases, case1 and case2, the deletion of repeated steps unnecessary steps after
node n27, and the ordering-based switching points among the cases and the unguided
goal (see nodes n11, n17, n23, n27, and n28).

6 Choice-and-Ordering-Based Interleaved Replay

Ordering-based interleaved replay reasons effectively about step-ordering commitments.
As we noted earlier, however, step choice planning decisions may influence planning
efficiency. Here we introduce choice-and-ordering-based interleaved replay, which goes
beyond step orderings and reasons about the use of state information for step choices.

Figure 7 sketches the general reason why state information plays a role in step
choices. Suppose an operator in the plan is applied and adds to the state some literal � 3.
(The effects of the operators, in particular if conditional or universal, are easily visible
when an operator is applied.) Now the planner encounters a goal � for which there are
4 possible operators that can achieve it. If one of the operators needs the precondition

� 3, and the preconditions of the other operators are not satisfied in the state, then the
planner may choose this operator because it does not need any further planning.

G

p4need: p1 p2 p3

if applied or executed, adds p3

Fig. 7. State Information Guides Operator Choices

The choice of a plan step has been overlooked as a source of planning efficiency,
but several concrete examples of its relevancy are introduced in [Veloso and Blythe,
1994]. Choice-and-ordering-based interleaved replay aims at using derivational analogy
to provide guidance for this difficult planning decision.

We introduce a new dependency link to be annotated in a planning case: the
information-dependent step choice link. This link is established if the choice of a plan
step depends on the following condition: a previously applied or executed step adds (or
deletes) information to the planning state that determines the choice of the plan step.
This new kind of dependency link is in addition and contrasts to the ordering links based
on interactions between preconditions and effects of planning operators (see Figure 5).

The choice-and-ordering-based interleaved replay merges cases by reasoning about
the ordering and the information-dependent step choice constraints. The procedure that
we are developing can perform the following functions:

� Consider effects of the result of operator application or execution and its impact in
plan step choices.

� Use information-dependent and step ordering links to select merge order.
� Reconsider choices of plan steps, if justification for its selection is deleted.
� Use record of failed or untried alternatives as an opportunity for exploration.

This choice-and-ordering-based merge strategy is particularly appropriate for envi-
ronments where planning and execution are interleaved and specifically in multi-agent

environments where multiple plans need to be coordinated. Execution can act as a
source of information for the planner [Pryor and Collins, 1992, Stone and Veloso,
1996]. Choice-and-ordering-based interleaved replay aims at making use of the record
in a planning case of the consequences of execution information in planning decisions.

7 Conclusion

This paper reports on our work in case-based reasoning applied to planning, in particular
on analogical replay as an integration of generative and case-based planning. We have
pursued extensive research in this area within the Prodigy/Analogysystem. In this paper,
we focus specifically on the issues involved in replaying multiple planning cases.

We introduce why the use of planning cases can reduce planning search and provide
an improvement in planning efficiency. The contributions of the paper build upon this
analysis for the introduction of several strategies that merge multiple planning cases.

We first introduce serial replay, in which a single case is replayed before planning
for any new goals in the new planning situation. Serial replay is shown to be appropriate
when the new situation is an extension of the past case. We then introduce sequential
replay where multiple cases are merged according to a predefined ordering. New steps
may be added and parts of the cases may be deleted to provide a suitable connection
between the cases. For the general case where multiple cases are presented unordered
to the replay procedure, we introduce ordering-based and choice-and-ordering-based
interleaved replay. For these two merge strategies, the replay algorithm reasons about
step orderings and information-dependent step choice commitments and constraints.
Choice-and-ordering-based interleaved replay is built upon new information-dependent
links that capture the dependency between the choice of plan steps and state information
gathered from simulation or real execution. We briefly discuss that choice-and-ordering-
based may be appropriate to multi-agent planning and execution environments. An
extensive empirical analysis of the domain-dependent tradeoffs and suitability of the
different merge strategies is part of our research agenda.

References

[Alexander and Tsatsoulis, 1991] Perry Alexander and Costas Tsatsoulis. Using sub-cases for
skeletal planning and partial case reuse. International Journal of Expert Systems Research and
Applications, 4-2:221–247, 1991.

[Barrett and Weld, 1994] Anthony Barrett and Daniel S. Weld. Partial-order planning: Evaluat-
ing possible efficiency gains. Artificial Intelligence, 67:71–112, 1994.

[Carbonell, 1986] Jaime G. Carbonell. Derivational analogy: A theory of reconstructive problem
solving and expertise acquisition. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors, Machine Learning, An Artificial Intelligence Approach, Volume II, pages 371–392.
Morgan Kaufman, 1986.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[Haigh and Veloso, 1995] Karen Zita Haigh and Manuela M. Veloso. Route planning by anal-
ogy. In Case-Based Reasoning Research and Development, Proceedings of ICCBR-95, pages
169–180. Springer-Verlag, October 1995.

[Haigh et al., 1997] Karen Z. Haigh, Jonathan Shewchuk, and Manuela M. Veloso. Exploring
geometry in analogical route planning. To appear in Journal of Experimental and Theoretical
Artificial Intelligence, 1997.

[Hammond, 1986] Kristian J. Hammond. Case-based Planning: An Integrated Theory of Plan-
ning, Learning and Memory. PhD thesis, Yale University, 1986.

[Hanks and Weld, 1995] Steve Hanks and Dan S. Weld. A domain-independent algorithm for
plan adaptation. Journal of Artificial Intelligence Research, 2:319–360, 1995.

[Ihrig and Kambhampati, 1994] Laurie Ihrig and Subbarao Kambhampati. Derivational replay
for partial-order planning. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 992–997, 1994.

[Kambhampati and Hendler, 1992] Subbarao Kambhampati and James A. Hendler. A validation
based theory of plan modification and reuse. Artificial Intelligence, 55(2-3):193–258, 1992.

[Kettler et al., 1994] B. P. Kettler, J. A. Hendler, A. W. Andersen, and M. P. Evett. Massively
parallel support for case-based planning. IEEE Expert, 2:8–14, 1994.

[López and Plaza, 1993] B. López and E. Plaza. Case-based planning for medical diagnosis. In
J. Romorowski and Z. W. Ras, editors, Methodologies for Intelligent Systems (Proceedings of
ISMIS’93). Springer Verlag, 1993.

[Minton et al., 1989] Steven Minton, Craig A. Knoblock, Dan R. Kuokka, Yolanda Gil,
Robert L. Joseph, and Jaime G. Carbonell. PRODIGY 2.0: The manual and tutorial. Techni-
cal Report CMU-CS-89-146, School of Computer Science, Carnegie Mellon University, 1989.

[Muñoz-Avila et al., 1994] Héctor Muñoz-Avila, Juergen Paulokat, and Stefan Wess. Control-
ling a nonlinear hierarchical planner using case-based reasoning. In Proceedings of the 1994
European Workshop on Case-Based Reasoning, November 1994.

[Pryor and Collins, 1992] Louise Pryor and Gregg Collins. Cassandra: Planning for contingen-
cies. Technical report, The Institute for the Learning Sciences, Northwestern University, 1992.

[Ram and Francis, 1996] Ashwin Ram and Anthony G. Francis. Multi-plan retrieval and adap-
tation in an experience-based agent. In David B. Leake, editor, Case-Based Reasoning: expe-
riences, lessons, and future directions, pages 167–184. AAAI Press/The MIT Press, 1996.

[Redmond, 1990] Michael Redmond. Distributed cases for case-based reasoning; Facilitating
the use of multiple cases. In Proceedings of the Eighth National Conference on Artificial
Intelligence, pages 304–309, Cambridge, MA, 1990. AAAI Press/The MIT Press.

[Smyth and Keane, 1995] Barry Smyth and MArk T. Keane. Experiments on adaptation-guided
retrieval in case-baseddesign. In M. Veloso and Agnar Aamodt, editors, Case-BasedReasoning
Research and Development, pages 313–324. Springer Verlag, October 1995.

[Stone and Veloso, 1996] Peter Stone and Manuela M. Veloso. User-guided interleaving of plan-
ning and execution. In New Directions in AI Planning, pages 103–112. IOS Press, 1996.

[Veloso and Blythe, 1994] Manuela M. Veloso and Jim Blythe. Linkability: Examining causal
link commitments in partial-order planning. In Proceedings of the Second International Con-
ference on AI Planning Systems, pages 170–175, June 1994.

[Veloso and Stone, 1995] Manuela M. Veloso and Peter Stone. FLECS: Planning with a flexible
commitment strategy. Journal of Artificial Intelligence Research, 3:25–52, 1995.

[Veloso et al., 1995] Manuela M. Veloso, Jaime Carbonell, M. Alicia Pérez, Daniel Borrajo,
Eugene Fink, and Jim Blythe. Integrating planning and learning: The PRODIGY architecture.
Journal of Experimental and Theoretical Artificial Intelligence, 7(1):81–120, 1995.

[Veloso, 1994] Manuela M. Veloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, December 1994.

[Wang and Veloso, 1994] Xuemei Wang and Manuela M. Veloso. Learning planning knowledge
by observation and practice. In Proceedings of the ARPA Planning Workshop, pages 285–294,
Tucson, AZ, February 1994.

This article was processed using the LATEX macro package with LLNCS style

