Journal of Artificial Intelligence Research 13 (2000) 189-226 Submitted 6/99; published 10/00

OBDD-based Universal Planning for Synchronized Agents
in Non-Deterministic Domains

Rune M. Jensen RUNEJ@QCS.CMU.EDU
Manuela M. Veloso MMV@QCS.CMU.EDU

Computer Science Department, Carnegie Mellon University

Pittsburgh, PA 15213-3891, USA

Abstract

Recently model checking representation and search techniques were shown to be ef-
ficiently applicable to planning, in particular to non-deterministic planning. Such plan-
ning approaches use Ordered Binary Decision Diagrams (0BDDs) to encode a planning
domain as a non-deterministic finite automaton and then apply fast algorithms from model
checking to search for a solution. 0OBDDs can effectively scale and can provide univer-
sal plans for complex planning domains. We are particularly interested in addressing the
complexities arising in non-deterministic, multi-agent domains. In this article, we present
UMOP, a new universal 0BDD-based planning framework for non-deterministic, multi-agent
domains. We introduce a new planning domain description language, NADL, to specify
non-deterministic, multi-agent domains. The language contributes the explicit definition
of controllable agents and uncontrollable environment agents. We describe the syntax and
semantics of NADL and show how to build an efficient 0BDD-based representation of an
NADL description. The uUMOP planning system uses NADL and different 0BDD-based uni-
versal planning algorithms. It includes the previously developed strong and strong cyclic
planning algorithms. In addition, we introduce our new optimistic planning algorithm
that relaxes optimality guarantees and generates plausible universal plans in some domains
where no strong nor strong cyclic solution exists. We present empirical results applying
UMOP to domains ranging from deterministic and single-agent with no environment actions
to non-deterministic and multi-agent with complex environment actions. UMOP is shown
to be a rich and efficient planning system.

1. Introduction

Classical planning involves the automatic generation of actions to traverse a state space to
achieve specific goal states. Various algorithms have been developed to address the state-
action representation and the search for actions. Traditionally these algorithms have been
classified according to their search space representation as either state-space planners (e.g.,
PRODIGY, Veloso et al., 1995) or plan-space planners (e.g., ucpPoP, Penberthy & Weld,
1992).

A new research trend has been to develop new encodings of planning problems in order
to adopt eflicient algorithms from other research areas, leading to significant developments
in planning algorithms, as surveyed by Weld (1999). This class of planning algorithms
includes GRAPHPLAN (Blum & Furst, 1997) that uses a flow-graph encoding to constrain
the search and sATPLAN (Kautz & Selman, 1996) that encodes the planning problem as a
satisfiability problem and uses fast model satisfaction algorithms to find a solution.

©2000 Al Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

JENSEN & VELOSO

Recently, another new planner MBP (Cimatti et al., 1997) was introduced that encodes a
planning domain as a non-deterministic finite automaton (NFA) represented by an Ordered
Binary Decision Diagram (0BDD, Bryant, 1986). In contrast to the previous algorithms,
MBP effectively extends to non-deterministic domains producing universal plans as robust
solutions. Due to the scalability of the underlying model checking representation and search
techniques, it can be shown to be a very efficient non-deterministic planner (Cimatti et al.,
1998a, 1998b).

One of our main research objectives is to develop planning systems suitable for planning
in uncertain, single, or multi-agent environments (Haigh & Veloso, 1998; Veloso et al., 1998;
Stone & Veloso, 1998). The universal planning approach, as originally developed (Schop-
pers, 1987), is appealing for this type of environments. A universal plan is a set of state-
action rules that aim at covering the possible multiple situations in the non-deterministic
environment. A universal plan is executed by interleaving the selection of an action in the
plan and observing the resulting effects in the world. Universal planning resembles the
outcome of reinforcement learning (Sutton & Barto, 1998), in that the state-action model
captures the uncertainty of the world. Universal planning is a precursor approach,! where all
planning is done prior to execution, building upon the assumption that a non-deterministic
model of the execution environment can be acquired, and leading therefore to a sound and
complete planning approach.

However, universal planning has been criticized (e.g., Ginsberg, 1989), due to a poten-
tial exponential growth of the universal plan size with the number of propositions defining
a domain state. An important contribution of MBP is thus the use of OBDDs to represent
universal plans. In the worst case, this representation may also grow exponentially with the
number of domain propositions, but because OBDDs are very compact representations of
boolean functions, this is often not the case for domains with a regular structure (Cimatti
et al., 1998a). Therefore, 0BDD-based planning seems to be a promising approach to uni-
versal planning.

MBP specifies a planning domain in the action description language AR (Giunchiglia
et al., 1997) and translates it to a corresponding NFA, hence limited to planning prob-
lems with finite state spaces. The transition relation of the automaton is encoded as an
0BDD that allows for the use of efficient breadth-first search techniques developed for model
checking (McMillan, 1993). MBP includes two algorithms for universal planning. The strong
planning algorithm tries to generate a plan that is guaranteed to achieve the goal for all of
the possible outcomes of the non-deterministic actions. If no such strong solution exists,
the algorithm fails. The strong cyclic planning algorithm returns a strong solution, if one
exists, or otherwise tries to generate a plan that may contain loops but is guaranteed to
achieve the goal, given that all cyclic executions eventually terminate. If no such strong
cyclic solution exists, the strong cyclic planning algorithm fails.

In this article we present our oBDD-based planning system, umopr (Universal Multi-
agent OBDD-based Planner), that uses a new 0BDD-based encoding, generates universal
plans in multi-agent non-deterministic domains, and includes a new “optimistic” planning
algorithm.

1. The term precursor originates in Dean et al. (1995) in contrast to recurrent approaches that replan to
recover from execution failures.

190

OBDD-BASED UNIVERSAL PLANNING

Our overall approach for designing an 0OBDD-based planner is similar to the approach
developed for MBP. Our main contribution is an efficient encoding of a new front end domain
description language, NADL (Non-deterministic Agent Domain Language). NADL has more
resemblance with previous planning languages than the action description language AR
currently used by MBP. It has powerful action descriptions that can perform arithmetic
operations on numerical domain variables. Domains comprised of synchronized agents can
be modelled by introducing concurrent actions based on a multi-agent decomposition of the
domain.

In addition, NADL introduces a separate and explicit environment model defined as a
set of uncontrollable agents, i.e., agents whose actions cannot be a part of the generated
plan. NADL has been carefully designed to allow for eflicient oBDD-encoding. Thus, umoPp
contributes a partitioned transition relation representation of the NFA that is known from
model checking to scale up well (Burch et al., 1991; Ranjan et al., 1995). Our empirical
experiments suggest that this is also the case for umopr.

Uwmor includes the previously developed algorithms for 0BDD-based universal planning.
In addition, we introduce a new “optimistic” planning algorithm that relaxes optimality
guarantees and generates plausible universal plans in domains where no strong nor strong
cyclic solution exists.

The article is organized as follows. Section 2 discusses previous approaches to planning
in non-deterministic domains. Section 3 gives a brief overview of 0BDDs and NFA encod-
ings. It may be skipped by readers already familiar with the subject. Section 4 introduces
NADL, shows how to encode a planning problem, and formally describes the syntax and
semantics of this description language in terms of an NFA. We also discuss the properties of
the language based on an example and argue for our design choices. Section 5 presents the
0BDD representation of NADL domain descriptions. Section 6 describes the different algo-
rithms that have been used for 0BDD-based planning and introduces our optimistic planning
algorithm. Section 7 presents empirical results in several planning domains, ranging from
single-agent and deterministic ones to multi-agent and non-deterministic ones. We experi-
ment with previously used domains and introduce two new ones, namely a power plant and
a soccer domain, as non-deterministic, multi-agent planning problems. Finally, Section 8
draws conclusions and discusses directions for future work.

2. Related Work

Recurrent approaches performing planning interleaved or in parallel with execution have
been widely used in non-deterministic robotic domains (e.g., Georgeff & Lansky, 1987; Gat,
1992; Wilkins et al., 1994; Haigh & Veloso, 1998). A group of planners suitable for recurrent
planning is action selectors based on heuristic search (Koenig & Simmons, 1995; Bonet et al.,
1997). The min-max LRTA* algorithm (Koenig & Simmons, 1995; Smirnov et al., 1996) can
generate suboptimal plans in non-deterministic domains through a search and execution
iteration. The search is based on a heuristic goal distance function that must be provided
for a specific problem. The asp algorithm (Bonet et al., 1997) uses a similar approach
and further defines a heuristic function for STRIPS-like (Fikes & Nilsson, 1971) action
representations. In contrast to min-max LRTA*, AspP does not assume a non-deterministic

191

JENSEN & VELOSO

environment, but is robust to non-determinism caused by action perturbations (i.e., that
another action than the planned action is chosen with some probability).

In general, recurrent approaches are incomplete because acting on an incomplete plan
can make the goal unachievable. Precursor approaches perform all decision making prior to
execution and thus may be able to generate complete plans by taking all possible effects of
actions into account. However, they rely on a complete model of the world’s uncertainty.

The precursor approaches include conditional (Etzioni et al., 1992; Peot & Smith, 1992;
Blythe & Veloso, 1997), probabilistic (Drummond & Bresina, 1990; Dean et al., 1995;
Blythe, 1998) and universal planning (Schoppers, 1987; Cimatti et al., 1998a, 1998b; Ka-
banza et al., 1997). For example, the cNLP partial order, conditional planner handles non-
determinism by constructing a conditional plan that accounts for each possible situation
or contingency that could arise (Peot & Smith, 1992). At execution time it is determined
which part of the plan to execute by performing sensing actions that are included in the
plan to test for the appropriate conditions.

Probabilistic planners try to maximize the probability of goal satisfaction, given condi-
tional actions with probabilistic effects. Drummond and Bresina (1990) represent plans as
a set of Situated Control Rules (SCRs) (Drummond, 1989) mapping situations to actions.
The planning algorithm begins by adding SCRs corresponding to the most probable exe-
cution path that achieves the goal. It then continues adding SCRs for less probable paths
and may end with a complete plan taking all possible paths into account.

Universal plans differ from conditional and probabilistic plans by specifying appropriate
actions for every possible state in the domain. Like conditional and probabilistic plans,
universal plans require the world to be accessible in order to execute the plan.

Universal planning was introduced by Schoppers (1987) who used decision trees to rep-
resent plans. Recent approaches include Kabanza et al. (1997) and Cimatti et al. (1998a,
1998b). Kabanza et al. (1997) represents universal plans also as a set of Situated Control
Rules. Their algorithm incrementally adds SCRs to a final plan in a way similar to Drum-
mond and Bresina (1990). The goal is a formula in temporal logic that must hold on any
valid sequence of actions.

Reinforcement Learning (RL) (Sutton & Barto, 1998) can also be regarded as universal
planning. In RL the goal is represented by a reward function in a Markov Decision Process
(MDP) model of the domain. In the precursor version of RL, the MDP is assumed to be
known and a control policy maximizing the expected reward is found prior to execution.
The policy can either be represented explicitly in a table or implicitly by a function (e.g.,
a neural network). Because RL is a probabilistic approach, its domain representation is
more complex than the domain representation used by a non-deterministic planner. Thus,
we may expect non-deterministic planners to be able to handle domains with a larger state
space than RL. But RL may produce policies with a higher quality than a universal plan
generated by a non-probabilistic, non-deterministic planner. Moreover, in the recurrent
version, RL learns the world model during execution and thus does not require a complete
world model prior to execution. Though, in theory it needs infinite execution examples to
converge to the optimal universal plan.

All previous approaches to universal planning, except Cimatti et al. (1998a, 1998b), use
an explicit representation of the universal plan (e.g., SCRs). Thus, in the general case, an

192

OBDD-BASED UNIVERSAL PLANNING

exponential size of the plan in the number of propositions defining a domain state must be
expected, as argued by Ginsberg (1989).

The compact and implicit representation of universal plans obtained with OBDDs does
not necessarily grow exponentially for regularly structured domains as shown by Cimatti
et al. (1998a). Further, the 0BDD-based representation of the NFA of a non-deterministic
domain enables the application of efficient search algorithms from model checking capable
of handling very large state spaces.

3. Introduction to OBDDs

An Ordered Binary Decision Diagram (Bryant, 1986) is a canonical representation of a
boolean function with n linear ordered arguments z, g, ..., Z,.

An OBDD is a rooted, directed acyclic graph with one or two terminal nodes of out-degree
zero labeled 1 or 0, and a set of variable nodes u of out-degree two. The two outgoing edges
are given by the functions high(u) and low(u). Each variable node is associated with a
propositional variable in the boolean function the OBDD represents. The graph is ordered
in the sense that all paths in the graph respect the ordering of the variables.

An oBDD representing the function f(z,z2) = 21 A 22 is shown in Figure 1. Given an
assignment of the arguments z; and z,, the value of f is determined by a path starting at
the root node and iteratively following the high edge, if the associated variable is true, and
the low edge, if the associated variable is false. The value of f is True or Fulse if the label
of the reached terminal node is 1 or 0, respectively.

0 1

Figure 1: An 0oBDD representing the function f(z1,z2) = 1 A z3. High and low edges are
drawn as solid and dotted lines, respectively.

An 0BBD graph is reduced so that no two distinct nodes » and v have the same variable
name and low and high successors (Figure 2a), and no variable node u has identical low
and high successors (Figure 2b).

The 0BDD representation has two major advantages: First, it is an efficient represen-
tation of boolean functions because the number of nodes often is much smaller than the
number of truth assignments of the variables. The number of nodes can grow exponential
with the number of variables, but most commonly encountered functions have a reasonable
representation. Second, any operation on two OBDDs, corresponding to a boolean operation
on the functions they represent, has a low complexity bounded by the product of their node
counts (Bryant, 1986).

193

JENSEN & VELOSO

(b)

Figure 2: Reductions of 0BDDs. (a) nodes associated to the same variable with equal low
and high successors will be converted to a single node. (b) nodes causing redun-
dant tests on a variable are eliminated.

A disadvantage of 0BDDs is that the size of an OBDD representing some function is very
dependent on the ordering of the variables. To find an optimal variable ordering is a co-
NP-complete problem in itself, but as illustrated in Figure 3 a good heuristic for choosing
an ordering is to locate related variables near each other (Clarke et al., 1999).

@ (b)

Figure 3: This Figure shows the effect of variable ordering for the expression (z1 A y1) V
(2 Ay2) V (z3 A ys). The oBDD in (a) only grows linearly with the number of
variables in the expression, while the 0BDD in (b) has an exponential growth.
The example illustrates that placing related variables near to each other in the
ordering often is a good heuristic.

OBDDs have been successfully applied to model checking. In model checking the behavior
of a system is modelled by a finite state automaton with the transition relation represented
as an OBDD. Desirable properties are checked by using OBDD manipulations to analyze the
state space of the system (Clarke et al., 1986; McMillan, 1993).

194

OBDD-BASED UNIVERSAL PLANNING

Interestingly, a similar approach can be used for solving non-deterministic planning
problems. As an example, consider the NFA representation of a non-deterministic planning
domain shown in Figure 4a. In this domain there are four states given by the four possible
value assignments of the two boolean state variables z; and zg. Inputs to the NFA denote
actions in the domain and are defined by the boolean variable a. The OBDD representing
the transition relation T'(a, z1, 29, 2], 2%) of the NFA is shown in Figure 4b. The definition
of T is straightforward: for some assignment of its arguments, 7 is true iff action a causes
a transition from the current state given by the value of z; and z3 to the next state given
by the value of 2} and z%.2 Note that the OBDD representing 7" for the example turns out
not to depend on .

Figure 4: A planning domain represented as an NFA is shown in (a). States are defined
by boolean state variables z; and x5, and the action input to the NFA is given
by the boolean variable a. The symbolic representation of the transition relation
of the NFA is shown in (b). In (c), P, is the set of state action pairs for which,
execution of the action can lead to the goal. The symbolic representation of P
is shown in (d). It is obtained from the transition relation by restricting the next
state to 01.

Assume that the state 01 is a goal state G. A key operation, when generating a universal
plan for achieving G, is to find all the state action pairs (s,a) such that G can be reached
from s by executing a. This set is labeled P, in Figure 4c. To find P, from T we constrain
z to False and 2!, to True in T. This reduces T to the oBDD shown in Figure 4d. The
resulting OBDD represents P, with the states described in the current state variables x;

2. Another notation like z; and x;4+1 could have been used for current and next state variables. We have
chosen the quote notation because it is the common notation in model checking.

195

JENSEN & VELOSO

and z,. Logically we performed the operation 3z, z’.—z] A 2}, AT to obtain the 0BDD
representing P .

4. The NADL Description Language

In this section, we first discuss the properties of NADL based on an informal definition of
the language and a domain encoding example. We then describe the formal syntax and
semantics of NADL.

An NADL domain description consists of: a definition of state variables, a description of
system and environment agents, and a specification of an initial and goal condition.

The set of state variable assignments defines the state space of the domain. An agent’s
description is a set of actions. The agents change the state of the world by performing actions
that are assumed to be executed synchronously and to have a fixed and equal duration. At
each step, all of the agents perform exactly one action, and the resulting action tuple is
a joint action. The system agents model the behavior of the agents controllable by the
planner, while the environment agents model the uncontrollable world. A valid domain
description requires that the system and environment agents constrain a disjoint set of
variables.

An action has three parts: a set of state variables, a precondition formula, and an
effect formula. Intuitively the action takes responsibility of constraining the values of the
state variables in the next state. It further has exclusive access to these variables during
execution. In order for the action to be applicable, the precondition formula must be
satisfied in the current state. The effect of the action is defined by the effect formula that
must be satisfied in the next state. To allow conditional effects, the effect expression can
refer to both current and next state variables, where the next state variables need to be a
part of the set of constrained variables of the action. All next state variables not constrained
by any action in a joint action maintain their value.

The initial and goal condition are formulas that must be satisfied in the initial state and
the final state, respectively.

There are two causes for non-determinism in NADL domains: (1) actions not restrict-
ing all their constrained variables to a specific value in the next state, and (2) the non-
deterministic selection of environment actions.

A simple example of an NADL domain description is shown in Figure 5. The domain
describes a planning problem for Schoppers’ (1987) robot-baby domain. The domain has
two state variables: a numerical one, position pos with range {0, 1, 2,3} and a propositional
one, robot_works. The robot is the only system agent and it has two actions Lift-Block and
Lower-Block. The Lift-Block (and Lower-Block) action has a conditional effect described
by an if-then-else operator (—): if robot_works is true then Lift-Block increases the block
position by one else the block position is unchanged. The baby is the only environment
agent and it has one action Hit-Robotl. Because each agent must perform exactly one action
at each step, there are two joint actions (Lift- Block, Hit-Robot) and (Lower-Block, Hit-Robot).
Initially robot_works is assumed to be true, the robot is assumed to hold a block at Position
0, and its task is to lift it up to Position 3.

The variable robot_works can be made false by the baby. The baby’s action Hit-Robol is
non-deterministic, as it only constrains robot_works by the effect expression —robot_works =

196

OBDD-BASED UNIVERSAL PLANNING

variables
nat(4) pos
bool robot_works
system
agt: Robot
Lift-Block
con: pos
pre:pos < 3
eff: robot_works — pos’ = pos + 1, pos’ = pos
Lower-Block
con: pos
pre: pos > 0
eff: robot_works — pos’ = pos — 1, pos’ = pos
environment
agt: Baby
Hit-Robot
con: robot _works
pre: true
eff: —robot_works = —robot_works'
initially
pos = 0 A robot_works
goal
pos = 3

Figure 5: An NADL domain description.

—robot _works’. Thus, when robot_works is true in the current state, the effect expression
of Hil-Robot does not apply, and robol_works can either be true or false in the next state.
On the other hand, if robol_works is false in the current state, Hil-Robot keeps it false in
the next state. The Hil-Robot action models an aspect of the environment not controlled
by the robot agent, in this case a baby, by its effects on robot_works. In the example
above, robol_works stays false when it has become false, reflecting that the robot cannot
spontaneously be fixed by a hit of the baby, or any other action in the environment.

An NFA representing the domain is shown in Figure 6. The calculation of the next
state value of pos in the Lift-Block action shows that numerical variables can be updated
by an arithmetic expression on the current state variables. The update expression of pos
and the use of the if-then-else operator further demonstrate the advantage of using explicit
references to current state and next state variables in effect expressions. NADL does not
restrict the representation by enforcing a structure separating current state and next state
expressions. The if-then-else operator has been added to support complex conditional effects
that often are efficiently and naturally represented as a set of nested if-then-else operators.

The explicit representation of constrained state variables enables any non-deterministic
or deterministic effect of an action to be represented, as the constrained variables can be
assigned to any value in the next state that satisfies the effect formula. It further turns out
to have a clear intuitive meaning, as the action takes the “responsibility” of specifying the
values of the constrained variables in the next state.

197

JENSEN & VELOSO

robot_works

=8 O O O
P

e @@~ @0

1 2 3 pos

Figure 6: The NFA of the robot-baby domain (see Figure 5). There is one propositional
and one numerical state variable: robot_works and pos. The (Lift-Block,Hit-
Robot) and (Lower-Block, Hit- Robot) joint actions are drawn with solid and dashed
arrows, respectively. States marked with “I” and “G” are initial and goal states.

Compared to the action description language A (Gelfond & Liftschitz, 1993) and AR
that are the only prior languages used for 0BDD-based planning (Di Manzo et al., 1998;
Cimatti et al., 1998a, 1998b, 1997), NADL introduces an explicit environment model, a
multi-agent decomposition, and numerical state variables. It can further be shown that
NADL can be used to model any domain that can be modelled by AR (see Appendix A).

The concurrent actions in NADL are assumed to be synchronously executed and to have
fixed and equal duration. A general representation allowing partially overlapping actions
and actions with different durations has been avoided, as it requires more complex temporal
planning (see e.g., O-PLAN or PARCPLAN, Currie & Tate, 1991; Lever & Richards, 1994).
Our joint action representation has more resemblance with A¢ (Baral & Gelfond, 1997) and
C (Giunchiglia & Lifschitz, 1998), where sets of actions are performed at each time step. In
contrast to these approaches, though, we model multi-agent domains.

An important issue to address when introducing concurrent actions is synergetic effects
between simultaneously executing actions (Lingard & Richards, 1998). A common example
of destructive synergetic effects is when two or more actions require exclusive use of a single
resource or when two actions have inconsistent effects like pos’ = 3 and pos’ = 2.

In NADL actions cannot be performed concurrently in the following two conditions: 1)
they have inconsistent effects, or 2) they constrain an overlapping set of state variables. The
first condition is due to the fact that state knowledge is expressed in a monotonic logic that
cannot represent inconsistent knowledge. The second condition addresses the problem of
sharing resources. Consider for example two agents trying to drink the same glass of water.
If only the first condition defined interfering actions, both agents could simultaneously
empty the glass, as the effect glass_emply of the two actions would be consistent. With the
second condition added, these actions are interfering and cannot be performed concurrently.

The current version of NADL only avoids destructive synergetic effects. It does not
include ways of representing constructive synergetic effects between simultaneous acting
agents. A constructive synergetic effect is illustrated in Baral and Gelfond (1997), where
an agent spills soup from a bowl when trying to lift it up with one hand, but not when
lifting it up with both hands. In C and A¢ this kind of synergetic effects can be represented

198

OBDD-BASED UNIVERSAL PLANNING

by explicitly stating the effect of a compound action. A similar approach could be used in

NADL but is currently not supported.

4.1 Syntax
Formally, an NADL description is a 7-tuple D = (SV, S, E, Act,d, I, G), where:

SV = PVar U NVar is a finite set of state variables comprised of a finite set of
propositional variables, PVar, and a finite set of numerical variables, NVar.

S is a finite, nonempty set of system agents.
FE is a finite set of environment agents.

Act is a set of action descriptions (c,p,e) where ¢ is the set of state variables con-
strained by the action, p is a precondition state formula in the set SForm and e is an
effect formula in the set Form. Thus (¢, p,e) € Act C 2°Y x SForm x Form. The sets
SForm and Form are defined below.

d: Agt — 24° is a function mapping agents (Agt = S U F) to their actions. Because
an action belongs to exactly one agent, d must satisfy the following conditions:

U d(a) = Act

a€Agt
Vag,ay € Agt .oy # ag = d(ay) Nd(az) =0
I € SForm is the initial condition.

G € SForm is the goal condition.

For a valid domain description, we require that actions of system agents are independent of
actions of environment agents:

U cla) n | cla) =0,
eck sesS
a€dle) acd(s)

where ¢(a) is the set of constrained variables of action a.
The set of formulas Form is constructed from the following alphabet of symbols:

A finite set of current state v and next state v’ variables, where v, v’ € SV.
The natural numbers N.

The arithmetic operators 4+, —, /, * and mod.

The relation operators >, <, <, >, = and #.

The boolean operators —,V,A,=,& and —.

199

JENSEN & VELOSO

e The special symbols true, false, parentheses and comma.

The set of arithmetic expressions is constructed from the following rules:
1. Every numerical state variable v € NVar is an arithmetic expression.
2. A natural number is an arithmetic expression.

3. If e; and ey are arithmetic expressions and @ is an arithmetic operator, then e; @ e
is an arithmetic expression.

Finally, the set of formulas Form is generated by the rules:
1. true and false are formulas.
2. Propositional state variables v € PVar are formulas.

3. If e; and ey are arithmetic expressions and R is a relation operator, then e; R e3 is
a formula.

4. If f1, f2 and f3 are formulas, so are (= f1), (f1 V fa), (/i A f2), (1 = fa), (f1 & [f2)
and (f1 = fa, f3).

Parentheses have their usual meaning and operators have their usual priority and associa-
tivity with the if-then-else operator “—” given lowest priority.

SForm C Form is a subset of the formulas only referring to current state variables.
These formulas are called state formulas.

4.2 Semantics

All of the symbols in the alphabet of formulas have their usual meaning with the if-then-else
operator fi — fa, f3 being an abbreviation for (f1 A f2) V (=f1 A f3). Each numerical state
variable v € NVar has a finite range rng(v) ={0,1,---,¢,}, where ¢, > 0.

The formal semantics of a domain description D = (SV, S, E, Act,d, I,G) is given in
terms of an NFA M:

Definition 1 (NFA) A Non-deterministic Finite Automaton is a 3-tuple, M = (Q, %,),
where Q is a sel of states, ¥ is a sel of input values, and § : Q x ¥ — 29 is a next state
Sfunction.

In the following construction of M, we express the next state function as a transition
relation. Let B denote the set of boolean values { True, False}. Further, let the characteristic
function A: B — B associated to a set A C B be defined by A(z) = (z € A).> Given an
NFA M we define its transilion relation T C) X X X () as a set of triples with characteristic
function T'(s,,s") = (s’ € 6(s,1)).

The set of states) of M equals the set of all possible variable assignments) = (PVar —
B) x (Nvar — N). The input ¥ of M is the set of joint actions of system agents represented

3. Note: the characteristic function has the same name as the set.

200

OBDD-BASED UNIVERSAL PLANNING

as sets. That is, {a1,az,---, a5} € ¥ if and only if (a1, az,-+, /) € [[,esd(a), where
|S| denotes the number of elements in 5.
We define the transition relation 7 : Q) X ¥ X) — B of M by:

T(s,i,8)=3j€J.i CjAL(s,j,5),

where ¢t : () X J X) — B is the transition relation for joint actions J of both system and
environment agents. The existential quantification makes the actions of environment agents
uncontrollable, since T'(s, 7, s) is true, if there exists some joint action of environment agents
i. such that the combined joint action j =i Ui, makes t(s, 7, s') true.

The transition relation ¢ is a conjunction of three relations A, F and I, (s, j,s') =
A(s, 7, ') N F(s,j,8) N1(j). Given an action ¢ = (¢, p,€), a current state s and next state
s', let P,(s) and F,(s,s’) denote the value of the precondition formula p and effect formula
e of a, respectively.

A:Q xJ xQ — Bis then defined by:

A(s,5,8) = N (Pa(s) A Ea(s,).

a€yj

A defines the constraints on the current state and next state of joint actions. A further
ensures that actions with inconsistent effects cannot be performed concurrently, as A reduces
to false if any pair of actions in a joint action has inconsistent effects. Thus, A also states
the first condition (see Section4) for avoiding interference between concurrent actions.
F:Q xJ x — Bis aframe relation ensuring that unconstrained variables maintain
their value. Let ¢(a) denote the set of constrained variables of action a. We then have:

F(S,j,S/): /\ (vzvl)v

veSV\C

where C' = [J,¢; c(a).
I :J — B ensures that concurrent actions constrain a non overlapping set of variables
and thus states the second condition for avoiding interference between concurrent actions:

1G)= A (elar) Nefa) = 0),

(a1,a2)€42

where j? denotes the set {(ay, a2) | (a1,a2) € j X j Aay # az}.

5. OBDD Representation of NADIL Descriptions

To build an 0BDD 7T representing the transition relation 7'(s,4,s’) of the NFA of a domain
description D = (SV, S, E, Act,d, I, (), we must define a set of boolean variables to repre-
sent the current state s, the joint action input 4, and the next state s’. As in Section 4.2
we first build a transition relation with the joint actions of both system and environment
agents as input and then reduce it to a transition relation with only joint actions of system
agents as input.

Joint action inputs are represented in the following way: assume action a is identified
by a number p and can be performed by agent «. a is then defined to be the action

201

JENSEN & VELOSO

of agent «, if the number expressed in binary by a set of boolean variables A,, used to
represent the actions of «, is equal to p. Propositional state variables are represented by a
single boolean variable, while numerical state variables are represented in binary by a set
of boolean variables.

Let A, ,.. "AEIEI and A, ,.. "ASISI denote sets of boolean variables used to represent

the joint action of environment and system agents. Further, let ¥ and x’fj denote the kth
boolean variable used to represent state variable v; € SV in the current and next state.
The boolean variables are ordered with the input variables first, followed by an interleaving
of the boolean variables of current state and next state variables:

Ay <= Agy < Ay <o < Ay
1

<my <y <<z <

1 n

<xin<x'vn<---<x$"<xlzl,

where m; is the number of boolean variables used to represent state variable v; and n is
equal to |SV/|. The construction of T is quite similar to the construction of 7" in Section 4.2.
An oBDD representing a logical expression is built in the standard way (Bryant, 1986).
Arithmetic expressions are represented as lists of OBDDs defining the corresponding binary
number. They collapse to single 0BDDs when related by arithmetic relations.

To build an oBDD A defining the constraints of the joint actions, we need to refer to
the values of the boolean variables representing the actions. Let i¢(a) be the function that
maps an agent « to the value of the boolean variables representing its action and let b(a)
be the identifier value of action a. Further let P(a) and E(a) denote 0BDD representations
of the precondition and effect formula of an action a. A is then given by:

A= A (i(e) =b(a) = P(a) A E(a).

Note that logical operators now denote the corresponding OBDD operators.
An 0BDD representing the frame relation F’ changes in a similar way:

F= A (A ((a)=ba) v c@)= s, =),
vesV o ¢ Agt
a € d(a)

where ¢(a) is the set of constrained variables of action « and s, = s/, expresses that all
current and next state boolean variables representing v are pairwise equal. The expression
v ¢ c(a) evaluates to True or False and is represented by the oBDD for True or False. The
action interference constraint I is given by:

i = A (i(ar) = blar) = i(az) # b(a)) A
(a1, a9) € S?
(a1,az) € cloq, az)

202

OBDD-BASED UNIVERSAL PLANNING

A (ien) = blar) = i(a2) # blaz)),
(041, 042) c E2
(a1,az) € claq, az)

where c(ay, ag) = {(a1, a2) | (a1, az2) € d(ay) x d(az) A c(ar) Ne(az) # 0}

Finally the 0BDD representing the transition relation 7" is the conjunction of A, I and
I with action variables of the environment agents existentially quantified:

T=34.,,-,A

5.1 Partitioning the Transition Relation

The algorithms we use for generating universal plans all consist of a backward search from
the states satisfying the goal condition to the states satisfying the initial condition. Empir-
ical studies in model checking have shown that the most complex operation for this kind
of algorithms normally is to find the preimage of a set of visited states V (Ranjan et al.,
1995).

Definition 2 (Preimage) Given an NFA M = (Q,%,6§) and a set of states V C Q, the
preimage of V is the sel of states {s|s € Q NTi € X, s" € §(s,1).5 € V}.

A preimage is said to exist, if it is nonempty. Note that states already belonging to V' can
also be a part of the preimage of V. Assume that the set of visited states are represented by
an OBDD expression V on next state variables and that, for iteration purposes, we want to
generate the preimage P also expressed in next state variables. For a monolithic transition
relation 7 we then calculate:

U = 32.TAV)[Z/Z]

P = .U

where i, Z and Z’ denote input, current state and next state variables, and [Z/Z'] denotes
the substitution of current state variables with next state variables. The set expressed by
U consists of state input pairs (s,7), for which the state s belongs to the preimage of V' and
the input ¢ may cause a transition from s to a state in V. The input of an NFA representing
a planning domain is a set of actions. Thus, for a planning domain the elements in U
are state-action pairs. The generated universal plans of the universal planning algorithms
presented in the next section are sets of these state-action pairs. We refer to the state-action
pairs as state-action rules, because they associate states to actions that can be performed
in these states.

The 0BDD representing the transition relation 7' and the set of visited states V tends
to be large, and a more efflicient computation can be obtained by performing the existential
quantification of next state variables early in the calculation (Burch et al., 1991; Ranjan
et al., 1995). To do this, the transition relation has to be split into a conjunction of partitions
T = Tl AR Tn allowing the modified calculation:

= (37, T A3 ToA 3BT, . TLAV)) -)[F/]
.U

e S

203

JENSEN & VELOSO

That is, 7} can refer to all variables, T, can refer to all variables except T, T5 can refer to
all variables except @} and &, and so on.

As shown by Ranjan et al. (1995) the computation time used to calculate the preimage is
a convex function of the number of partitions. The reason for this is that, for some number
of partitions, a further subdivision of the partitions will not reduce the total complexity,
because the complexity introduced by the larger number of OBDD operations is higher than
the reduction of the complexity of each OBDD operation.

The representation of the logical expression for each relation A, F' and I has been care-
fully chosen such that it consists of a conjunction of subexpressions that only refer to a small
subset of next state variables. This representation allows us to sort out the subexpressions
in conjunctive partitions with near optimal sizes that satisfy the above requirements.

6. OBDD-based Universal Planning Algorithms

We first describe two prior algorithms for OBDD-based universal planning and discuss which
kind of domains they are suitable for. We then present a new algorithm called optimistic
planning that is suitable for some domains not covered by the prior algorithms.

The three universal planning algorithms discussed are all based on an iteration of preim-
age calculations. The iteration corresponds to a parallel backward breadth-first search start-
ing at the goal states and ending when all initial states are included in the set of visited
states (see Figure 7). The main difference between the algorithms is the way the preimage

is defined.

Figure 7: An illustration of the parallel backward breadth-first search used by 0BDD-based
universal planning algorithms, computing preimages Prel, Pre2 and Pre3.

6.1 Strong and Weak Preimages

Cimatti et al. (1998a) introduces two different kinds of preimages called strong and weak
preimages. A strong preimage is defined by:

Definition 3 (Strong Preimage) Given an NFA M = (Q,%,6§) and a set of states V C
Q, the strong preimage of V' is the set of states {s|s € Q NTJi € X.5(s,7) CV}.

Thus, for a state s belonging to the strong preimage of a set of states V, there exists at least
one action ¢ where all the transitions from s associated with ¢ lead into V. Consider the

204

OBDD-BASED UNIVERSAL PLANNING

example shown in Figure 8. The dots and arrows in this figure denote states and transitions
for an NFA with a single non-deterministic action. For the set of states GS shown in the
figure, the three states having a transition into GS are the strong preimage of GS (indicated
by a solid ellipse and labelled prel), as all transitions from these states lead into GS.

A weak preimage is equal to an ordinary preimage as defined in Definition 2. Thus,
in Figure 8 all the strong preimages are also weak preimages, but the preimages shown by
dashed ellipses are only weak preimages, as the dashed transitions do not satisfy the strong
preimage definition.

Figure 8: Strong and weak preimage calculations. Solid ellipses denote preimages that are
both strong and weak, while dashed ellipses denote preimages that are only weak.
Only one action is assumed to exist in the domain. Transitions causing a state
to belong to a weak preimage rather than a strong preimage are drawn dashed.
The set of goal states is marked “GS”.

6.2 Strong and Strong Cyclic Planning

A strong or strong cyclic plan is the union of the state-action rules U found when calculating
the preimages necessary for covering the set of initial states (U is defined in Section 5).

Strong planning only considers strong preimages. If a sequence of strong preimages
starting at the set of goal states can be calculated, such that the set of initial states is
covered, strong planning succeeds and returns the universal plan consisting of the union
of all the state-action rules of the calculated strong preimages. Otherwise it fails (Cimatti
et al., 1998b).

Consider the example in Figure 8. As depicted in the figure, a strong preimage can
be found in the first preimage calculation, but only a weak preimage can be found in the
second calculation. Thus, strong planning only succeeds in this example, if the set of initial
states is covered by the first preimage and the set of goal states GS.

Strong planning is complete with respect to strong solutions. If a strong plan exists for
some planning problem the strong planning algorithm will return it, otherwise, it returns

205

JENSEN & VELOSO

that no solution exists. Strong planning is also optimal due to the breadth-first search.
Thus, a strong plan with the fewest number of steps in the worst case is returned.

Strong cyclic planning is a relaxed version of strong planning, because it also considers
weak preimages. Strong cyclic planning finds a strong plan, if it exists. Otherwise, when
unable to find a strong preimage the algorithm adds a weak preimage. It then tries to prune
this preimage by removing all states that have transitions leading out of the preimage and
the set of visited states V. If it succeeds, the remaining states in the preimage are added
to V and it again tries to add strong preimages. If it fails, it adds a new, weak preimage
and repeats the pruning process (Cimatti et al., 1998a).

Consider again the example in Figure 8. The shown sequence of preimage calculations
could have been computed by the strong cyclic planning algorithm. The algorithm prefers
strong preimages, if they exist, so the first added preimage (Prel) is strong. No strong
second preimage exists and the weak preimage (Pre2) cannot be pruned to only contain
states not having transitions leading out of the preimage and the set of visited states. Thus,
the strong cyclic algorithm looks for another weak preimage. This preimage (Pre3) has no
outgoing transitions, which means that the sequence of weak preimages can be terminated
and the algorithm can return to look for strong preimages (Pre4). If the set of initial states
after adding preimage Pred covers the set of initial states the algorithm succeeds, otherwise
it continues until either no strong or pruned weak preimage can be found (in which case
the algorithm fails) or the set of visited states covers the set of initial states (in which case
the algorithm succeeds).

A strong cyclic plan only guarantees progress towards the goal in the strong parts. In
the weak parts, cycles can occur. To ensure that the plan length is finite, we must assume
that transitions leading out of the weak parts eventually will be taken. The algorithm is
complete with respect to strong solutions, as a strong solution will be returned, if it exists.

6.3 Strengths and Limitations of Strong and Strong Cyclic Planning

An important reason for studying universal planning is that universal planning algorithms
can provide state-action rules to completely handle a non-deterministic environment. Thus,
if a plan exists for painting the floor, an agent executing a universal plan will always
avoid painting itself into the corner or reach any other unrecoverable dead-end. Strong
planning and strong cyclic planning algorithms contribute by providing complete 0BDD-
based algorithms for universal planning.

Unfortunately, real-world domains can have dead-ends that are not always avoidable.
Consider, for example, Schoppers’ robot-baby domain described in Section 4. As depicted
in Figure 6, no universal plan represented by a set of state-action rules can guarantee the
goal to be reached in a finite or infinite number of steps, as all relevant actions may lead to
an unrecoverable dead-end.

A more interesting example is how to generate a universal plan for a system that can
be in a bad state, good state or an unrecoverable failed state (dead-end). Assume that
actions can be executed that can bring the system from any bad state to a good state, but
environment actions unfortunately can also make the system stay in a bad state or even
change to an unrecoverable failed state (see Figure 9). No strong nor strong cyclic solution

206

OBDD-BASED UNIVERSAL PLANNING

can be found, because an unrecoverable state can be reached from any initial state. An
example of such a domain (a power plant) is studied in Section 7.1.2.

e
AN

Unrecoverable
Failed

States
(Dead-Ends)

Figure 9: Abstract description of the NFA of a system with unrecoverable states.

Another limitation of strong and strong cyclic planning is the inherent pessimism of
these algorithms. Consider for example the domain (Domain 1) illustrated in Figure 10.
The domain consists of n + 1 states and two different actions (dashed and solid).

Figure 10: Domain 1. The NFA of a domain with two actions (drawn as solid and dashed
arrows) illustrating the possible loss of short plan lengths when preferring strong
solutions. IS and GS are the initial and goal state, respectively.

The strong cyclic algorithm returns a strong plan {(0, solid), (1, solid),-- -, (n—1, solid)}.
This plan would have a best and worst-case length of n. But a strong cyclic plan {(0, dashed),
(n — 1, solid)} also exists and could be preferable because the best-case length of 1 of the
cyclic solution may have a much higher probability than the infinite worst-case length.
Strong cyclic planning will always prefer to return a strong plan, if it exists, even though a
strong cyclic plan may exist with a shorter, best-case plan length.

By adding an unrecoverable dead-end for the dashed action and making solid actions
non-deterministic (see Domain 2, Figure 11), strong cyclic planning now returns the strong
cyclic plan {(0, solid), (1,solid),---,(n — 1, solid)}. But we might still be interested in the
plan {(0, dashed), (n — 1, solid)} even though the goal is not guaranteed to be achieved.

6.4 Optimistic Planning

The analysis in the previous section shows that there are domains and planning problems for
which we may want to use a fully relaxed algorithm that always includes the best-case plan
and returns a solution even if it includes dead-ends that cannot be guaranteed to be avoided.
We introduce an algorithm similar to the strong planning algorithm that adds an ordinary
preimage in each iteration has these properties. Because state-action rules leading to unre-
coverable dead-ends may be added to the universal plan, we call this algorithm optimistic

207

JENSEN & VELOSO

0
i
|
‘ -
IS ==

O O

Figure 11: Domain 2. The NFA of a domain with two actions (drawn as solid and dashed
arrows) illustrating the possible loss short plan lengths when preferring strong
cyclic solutions. IS and GS are the initial and goal state, respectively.

planning. The algorithm is shown in Figure 12. The function Preimage(VisitedStates)
returns the set of state-action rules U associated with the preimage of the visited states.
Prune(State Actions, VisitedStates) removes the state-action rules, where the state already
is included in the set of visited states, and StatesOf(PrunedStateActions) returns the set of
states of the pruned state-action rules. UmMoOP includes the optimistic planning algorithm.
The optimistic planning algorithm is incomplete with respect to strong solutions, because it

procedure OptimisticPlanning(Init, Goal)
VisitedStates := Goal
UniversalPlan := {f
while (Init ¢ VisitedStates)
StateActions := Preimage(VisitedStates)
PrunedStateActions := Prune(StateActions, VisitedStates)
if PrunedStateActions # () then
UniversalPlan := UniversalPlan U PrunedStateActions
VisitedStates := VisitedStates U StatesOf(PrunedStateActions)
else
return “No optimistic plan exists”
return UniversalPlan

Figure 12: The optimistic planning algorithm.

does not necessarily return a strong solution, if one exists. Intuitively, optimistic planning
only guarantees that there exists some effect of a plan action leading to the goal, where
strong planning guarantees that all effects of plan actions lead to the goal.

The purpose of optimistic planning is not to substitute strong or strong cyclic planning.
These algorithms should be used in domains where strong or strong cyclic plans can be
found and goal achievement has the highest priority. Optimistic planning might be the
better choice in domains where goal achievement cannot be guaranteed or the shortest plan
should be included in the universal plan.

Consider again, as an example, the robot-baby domain described in Section 4. For this
problem the optimistic solution makes the robot try to lift the block when the position of
the block is less than 3 and the robot is working. This seems to be the only reasonable
strategy, even though no guarantee for goal achievement can be given. It is worthwhile

208

OBDD-BASED UNIVERSAL PLANNING

Domain Strong Strong Cyclic Optimistic
best | worst | best worst | best | worst
1 n n 1 oo 1 oo
2 - - n %) 1 [o%<¥5}

Table 1: The best and worst-case plan length of possible strong, strong cyclic and optimistic
plans in Domains 1 and 2 (see Figures 10 and 11).(-) means that no solution exists.
(cop) indicates that the plan length is infinite, and an unrecoverable dead-end is
reached.

constructing an optimistic plan for this kind of domains since the alternative is no plan at
all.

A similar optimistic plan is generated for the domain shown in Figure 9. For all bad
states, the optimistic plan associates an action that brings the system to a good state in
one step. This continues as long as the environment keeps the system in a bad state.
Because no strategy can be used to prevent the environment from bringing the system to
an unrecoverable dead-end, the optimistic solution is quite sensible.

For Domains 1 and 2 shown in Figures 10 and 11, optimistic planning returns a universal
plan {(0, dotted), (n — 1, solid) }. For both domains this is a universal plan with the shortest
best-case length. Compared to the strong cyclic solution the cost in the first domain is that
the plan may have an infinite length, while the cost in the second domain is that a dead-end
may be reached. The results of strong, strong cyclic, and optimistic planning in Domains 1
and 2 are summarized in Table 1.

7. Empirical Results

The input to UMOP is an NADL description? and a specification of which planning algorithm
to use. This description is then converted to a set of OBDDs representing the partitioned
transition relation as described in Section 5. The OBDD representation is used by a set
of planning algorithms to generate a plan. The output of UMOP is a universal plan or
sequential plan depending on the planning algorithm. A universal plan is represented by an
OBDD. It defines for each domain state a set of joint actions that the system agents must
execute synchronously in order to achieve the goal. The implemented planning algorithms
are:

1. Strong planning.
2. Strong cyclic planning.
3. Optimistic planning.

4. Classical deterministic planning.

4. The NADL description accepted by the current implementation includes all logical operators but only the
arithmetic operators + and —. An implementation of the remaining operators is straightforward and is
part of our current work.

209

JENSEN & VELOSO

Deterministic planning can be viewed as a special case of non-deterministic planning. In
UMOP, we used the optimistic planning algorithm for the backward search of classical de-
terministic planning. (The strong or strong cyclic algorithm could also have been used, as
all the described non-deterministic algorithms behave similarly in deterministic domains.)
The only new feature of the deterministic algorithm is that a sequential plan is generated
from the universal plan by choosing an initial state and iteratively adding an action from
the universal plan until a goal state is reached. The deterministic planning algorithm has
been implemented to verify the performance of UMOP compared to other classical planners.
It has not been our intention in this work, though, to develop a fast 0BDD-based classical
planning algorithm like Di Manzo et al. (1998). Our main interest is non-deterministic,
multi-agent universal planning.

The umoP planning system is implemented in C/C++ and uses the BUDDY package
(Lind-Nielsen, 1999) for oBDD manipulations. During planning the dynamic variable re-
ordering facility of the BUDDY package is used to find a better ordering of the OBDD variables.

In the following four subsections we present results obtained with the umop planning
system in nine different domains ranging from deterministic and single-agent with no envi-
ronment actions to non-deterministic and multi-agent with complex environment actions.
All experiments were carried out on a 450 MHz Pentium PC with 1 GByte RAM running
Red Hat Linux 4.2. A more detailed description of the experiments including the complete
description of the NADL domains can be found in Jensen (1999).

7.1 Non-Deterministic Domains

We first test UMOP’s performance for some of the non-deterministic domains solved by MBP.
Next, we present a power plant domain and finally, we show results from a multi-agent soccer
domain.

7.1.1 DomAINS TESTED BY MBP

One of the domains solved by MBP is a non-deterministic transportation domain. The
domain consists of a set of locations and a set of actions like drive-truck, drive-train and
fly to move between the locations. Non-determinism is caused by non-deterministic actions
(e.g., after a drive action a truck may or may not have fuel left) and environmental changes
(e.g., fog at airports, Cimatti et al., 1998a). We defined the two domain examples tested by
MBP for strong and strong cyclic planning in NADL and ran UMOP using strong and strong
cyclic planning. Both examples were solved in less than 0.05 seconds. Similar results were
obtained with MBP. A general version of the hunter and prey or “Pursuit” domain (Benda
et al., 1986) and a beam walk domain have also been tested by MBP. The generalization
of the hunter and prey domain is not described in detail in (Cimatti et al., 1998a). Thus,
we have not been able to make an NADL implementation of this domain for a meaningful
comparison.

The problem in the beam walk domain is for an agent to walk from one end of a beam
to the other without falling down. If the agent falls, it has to walk back to the end of the
beam and try again. The finite state machine of the domain is shown in Figure 13. The
edges denote the outcome of a walk action. When the agent is on the beam, the walk action

210

OBDD-BASED UNIVERSAL PLANNING

can either move it one step further on the beam or make it fall to a location under the
beam.

up

w @@ —@ - @O

n-2 n-1 pos

Figure 13: The beam walk domain. The NADL encoding of the beam walk domain has one
propositional state variable up that is true if the agent is on the beam and false
otherwise, and a numerical state variable pos that denotes the position of the

199

agent either on the beam or on the ground. “I” and “G” are the initial state
and goal state respectively.

We implemented a generator program for NADL descriptions of beam walk domains and
produced domains with 4 to 4096 positions. Because the domain only contains two state
variables, UMOP cannot exploit a partitioned transition relation for this domain, but has to
use a monolithic representation.

The performance of UMOP and MBP is shown in Figure 14. Discounting that MBP was
run on a slower machine,’ the performance of UMOP and MBP is quite similar in this domain.
For domains where uMOP can exploit a partitioned representation, we would expect it to
be able to solve larger problems than MBP, since MBP currently can only use a monolithic
representation. Further comparisons between UMOP and MBP are on our research agenda.

7.1.2 THE PowER PLANT DOMAIN

The purpose of the remaining experiments in non-deterministic domains is to show universal
planning results for domains where the multi-agent and environment modelling features of
NADL have been used.

The power plant domain demonstrates a multi-agent domain with an environment model
and further exemplifies optimistic planning. It consists of reactors, heat exchangers, turbines
and valves. A domain example is shown in Figure 15.

In the power plant domain each controllable unit is associated with an agent such that
all control actions can be performed simultaneously. The environment consists of a single
agent that at any time can fail a number of heat exchanges and turbines and also ensures
that already failed units remain failed. A failed heat exchanger leaks water from the internal
to the external water loop and must be closed by a block action b. The energy production
from the reactor can be controlled by p to fit the demand f, but the reactor will always
produce one energy unit. To transport the energy from the reactor away from the plant at
least one heat exchanger and one turbine must be working. Otherwise the plant is in an
unrecoverable failed state, where the reactor will overheat.

5. A 266MHz Pentium II with 96 MBytes RAM was used to generate the results for MBP.

211

JENSEN & VELOSO

10000 ¢ T T T T T T T T
1000 |
100 F

10 £

Time / Sec

0.1

0.01 f UMOP o—]

MBP —+-

0001 I 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Beam Locations

Figure 14: Planning time of uMoP and MBP in the beam walk domain. The MBP data has
been extracted with possible loss of accuracy from (Cimatti et al., 1998a).

The state space of the power plant can be divided into three disjoint sets: good, bad
and failed states. In the good states, therefore the goal states, the power plant satisfies
its safety and activity requirements. In our example the safety requirements ensure that
energy can be transported away from the plant, and that failed units are shut down:

% energy can be transported away from the plant
(okh1 \/ okh2 \/ okh3 \/ okh4) /\
(okt1 \/ okt2 \/ okt3 \/ okt4) /\

% heat exchangers blocked if failed
(“okh1 => b1) /\
("okh2 => b2) /\
("okh3 => b3) /\
(“okh4 => b4) /\

% turbines stopped if failed
("oktl => s1) /\

("okt2 => s2) /\

("okt3 => s3) /\

(“okt4 => s4)

The activity requirements state that the energy production equals the demand and that
all valves to working turbines are open:

212

OBDD-BASED UNIVERSAL PLANNING

% power production equals demand

p=1=/\

% turbine valve is open if turbine is ok
(oktl => vi1) /\

(okt2 => v2) /\

(okt3 => v3) /\

(okt4 => v4)

In a bad state, the plant does not satisfy the safety and activity requirements but is not
unrecoverably failed. In a failed state all heat exchangers or turbines are failed.

The universal planning task is to generate a universal plan to get from any bad state
to some good state without ending in a failed state. Assuming that no units fail during
execution, it is obvious that only one joint action is needed. Unfortunately, the environment
can fail any number of units during execution, thus, as described in Section 6.2, for any bad
state the resulting joint action may loop back to a bad state or cause the plant to end in a
failed state (see Figure 9). For this reason no strong or strong cyclic solution exist.

okhl bl okh2 b2

\

V4 okt4 A
s &

vl oktl sl

v ok2 2|
p E v3 oki3 3
okp |

okh3 b3 okh4 b4

Figure 15: A power plant domain example. The reactor R is surrounded by four heat
exchangers H1, H2, H3 and H4. The heat exchangers produce high pressure
steam to four electricity generating turbines T1, T2, T3 and T4. A failed heat
exchanger Hi must be closed by a block action bi. For a failed turbine Ti the
stop action st must be carried out. The energy production of the reactor is p
and can be controlled to fit the demand f. Each turbine Ti can be closed by a
valve vt. The ok variables capture the working status of the units.

An optimistic solution simply ignores that joint actions can loop back to a bad state or
lead to a failed state and finds a solution to the problem after one preimage calculation.
Intuitively, the optimistic plan assumes that no units will fail during execution and always
chooses joint actions that lead directly from a bad state to a good state. The optimistic
plan is an optimal control strategy, because it always chooses the shortest plan to a good

213

JENSEN & VELOSO

state and no other strategy exists that can avoid looping back to a bad state or end in a
failed state.

The size of the state space of the above power plant domain is 2%%. An optimistic
solution was generated by UMOP in 0.92 seconds and contained 37619 0OBDD nodes. As an
example, a joint action was extracted from the plan for a bad state where H3 and H4 were
failed and energy demand f was 2 energy units, while the energy production p was only
1 unit. The extraction time was 0.013 seconds and, as expected, the set of joint actions
included a single joint action changing 63 and b4 to true and setting p to 2.

7.1.3 THE SOCCER DOMAIN

The purpose of the soccer domain is to demonstrate a multi-agent domain with a more
elaborate environment model than the power plant domain. It consists of two teams of
players that can move in a grid world and pass a ball to each other. At each time step a
player either moves in one of the four major directions or passes the ball to another team
player. The task is to generate a universal plan for one of the teams that can be applied to
score a goal whenever the team possesses the ball.

A simple NADL description of the soccer domain models the team possessing the ball
as system agents that can move and pass the ball independent of each other. Thus, a
player possessing the ball can always pass to any other team player. The opponent team
is modelled as a set of environment agents that can move in the four major directions but
have no actions for handling the ball. The goal of the universal plan is to have a player
with the ball in front of the opponent goal without having any opponents in the goal area.

It is impossible to generate a strong plan that covers all possible initial states. For
instance an initial state with an opponent located in the goal area has no strong solution.
But a strong plan covering as many initial states as possible is still useful, because it defines
all the “scoring” states of the game and further provides a plan for scoring the goal no
matter the actions, the opponent players choose.

We implemented an NADL generator for soccer domains with different field sizes and
numbers of agents. The multi-agent graph in Figure 16 shows UMOP’s planning time using
the strong planning algorithm in soccer domains with 64 locations and one to six players
on each team. The planning time seems to grow exponentially with the number of players.
This is not surprising as not only the state space but also the number of joint actions
grow exponentially with the number of agents. To investigate the complexity introduced by
joint actions we constructed a version of the soccer domain with only a single system and
environment agent and ran UMOP again. The single-agent graph in Figure 16 shows the
dramatic decrease in computation time. It is not obvious though, that using more agents
increases the computational load, as this normally also reduces the number of preimage
calculations, because a larger number of states is reached in each iteration. Indeed, in a
version of the power plant domain with deterministic actions, we found the planning time to
decrease (see the power plant graph in Figure 16), when more agents were added (Jensen,
1999). Again we measured the time for extracting actions from the generated universal
plans. For the multi-agent version of the five player soccer domain the two joint actions
achieving the goal shown in Figure 17 were extracted from the universal plan in less than
0.001 seconds.

214

Figure 16:

Figure 17:

OBDD-BASED UNIVERSAL PLANNING

10000 [T T T T T
F Multi-Agent <—
Single-Agent —+--
r Power Plant -5--
1000 |
100 | o
(8]
[L
%]
3 10 |
£ s
'_
1F
0.1 |
e
001 1 1 1 1 1
0 2 10 12

6
Number of Players

Planning time of uUMoP for generating strong universal plans in soccer domains
with one to six players on each team. For the multi-agent experiment each player
was associated with an agent, while only a single system and environment agent
was used in the single-agent experiment. The power plant graph shows planning
time for a deterministic version of the power plant domain using 1 to 12 system

agents.
1@ @ | @ @ e
(5] (3] (5) (3) e _©e
® @ @ @ | | @) @
(4] 0o | ® 6]
® | ®
(3 (2 @@
® ®
@ (b) (©)

Plan execution sequence. The three states show a hypothetical attack based on
a universal plan. The state (a) is a “scoring” state, because the attackers (black)
can extract a nonempty set of joint actions from the universal plan. Choosing
some joint actions from the plan, the attackers can enter the goal area (shaded)
with the ball within two time steps (state (b) and (c)) no matter what actions,
the opponent players choose.

7.2 Deterministic Domains

A number of experiments have been carried out in deterministic domains in order to verify
UMOP’s performance and illustrate the generality of universal plans versus classical, se-

215

JENSEN & VELOSO

quential plans. We compare run time results obtained with UMOP in some of the AIPS’98
competition domains to the results of the competition planners (McDermott, 1999). We
then show that a universal plan in a deterministic domain is more general than a classical
sequential plan, because a large number of classical sequential plans are contained in the
universal plan.

7.2.1 AIPS’98 COMPETITION DOMAINS

Four planning systems BLACKBOX (Kautz & Selman, 1999), 1pp (Koehler et al., 1997), sTAN
(Long & Fox, 1998) and Hsp (Haslum & Geffner, 2000)® competed in the three domains we
have studied. BLACKBOX is based on SATPLAN, while 1PP and STAN are graphplan-based
planners. HSP uses a heuristic search approach based on a preprocessing of the domain.
The AIPS’98 planners were run on 233 MHz (or 400MHz)” Pentium PCs with 128 MBytes
RAM equipped with Linux.

The Gripper Domain. The gripper domain consists of two rooms A and B, a robot
with a left and right gripper and a number of balls that can be moved by the robot. The
task is to move all the balls from room A to room B with the robot initially in room A. The
state variables of the NADL encoding of the domain are the position of the robot and the
position of the balls. The position of the robot is either 0 (room A) or 1 (room B), while the
position of a ball can be 0 (room A), 1 (room B), 2 (in left gripper) or 3 (in right gripper).
For the AIPS’98 gripper problems the number of plan steps in an optimal plan grows lin-
early with the problem number. Problem 1 contains 4 balls, and the number of balls grows
by two for each problem. The result of the experiment is shown in Table 2 together with
the results of the planners in the AIPS’98 competition. A graphical representation of the
planning time in the table is shown in Figure 18. UMOP generates minimum-length plans
due to its parallel breadth-first search algorithm. As depicted in Figure 18, it avoids the
exponential growth of the planning time that characterizes all of the competition planners
except HSP. When using a partitioned transition relation UMOP is the only planner capable
of generating optimal plans for all the problems. For this domain the transition relation
of an NADL description can be divided into n + 1 basic partitions, where n is the number
of balls. As discussed in Section 5, the optimal number of partitions is not necessarily the
largest number of partitions. For the results in Table 2 each partition consisted of a conjunc-
tion of 10 basic partitions. Compared to the monolithic transition relation representation
the results obtained with the partitioned transition relation were significantly better on the
larger problems. The memory usage of problem 20 with a partitioned transition relation
was 87 MBytes, while it exceeded the limit of 128 MBytes at problem 17 for the monolithic
transition relation.

The Movie Domain. In the movie domain the task is to get chips, dip, pop, cheese
and crackers, rewind a movie and set the counter to zero. The only interference between

6. PRODIGY4.0 also successfully ran in some of the domains, but was not an official entry in the competition.

7. Unfortunately, no exact record has been kept on the machines and there is some disagreement about
their clock frequency. According to Drew McDermott, who chaired the competition, they were 233 MHz
Pentiums, but Derek Long (STAN) believes that they were at least 400 MHz Pentiums, as STAN performed
worse on a 300 MHz Pentium than in the competition.

216

OBDD-BASED UNIVERSAL PLANNING

Problem uMoP Part. UMOP Mono. STAN HSP IPP BLACKBOX
1 20 11 1 20 11 46 11 2007 13 50 15 113 11
2 150 17 1 130 17 1075 17 2150 21 380 23 | 7820 17
3 710 23 1 740 23 54693 23 2485 31 3270 31 - -
4 1490 29 2 2230 29 | 3038381 29 3060 37 26680 39 - -
5 3600 35 2 6040 35 - - 3320 47 | 226460 47 - -
6 7260 41 2 11840 41 - - 3779 53 - - - -
7 13750 47 2 24380 47 - - 4797 63 - - - -
8 23840 53 2 38400 53 - - 5565 71 - - - -
9 36220 59 3 68750 59 - - 6675 79 - - - -
10 56200 65 3 95140 65 - - 7583 85 - - - -
11 84930 71 3 | 145770 71 - - 9060 93 - - - -
12 127870 77 3 | 216110 77 - - | 10617 101 - - - -
13 197170 83 3 | 315150 83 - - | 12499 109 - - - -
14 290620 89 4 | 474560 89 - - | 15050 119 - - - -
15 411720 95 4 | 668920 95 - - | 16886 125 - - - -
16 549610 101 4 | 976690 101 - - | 20084 135 - - - -
17 746920 107 4 - - - - | 23613 143 - - - -
18 971420 113 4 - - - - | 26973 151 - - - -
19 1361580 119 5 - - - - | 29851 157 - - - -
20 1838110 125 5 - - - - | 33210 165 - - - -

Table 2: Gripper domain results. Column one and two for each planner show the planning
time in milliseconds and the plan length. Umop Part. and uMoP Mono. show the
planning time for UMOP using a partitioned and a monolithic transition relation,
respectively. For uMoP with partitioned transition relation the third column shows
the number of partitions. (-) means that the planner used more than 128 MBytes of
memory or was terminated before returning a solution. Only results for executions
using less than 128 MBytes are shown for UMOP.

the subgoals is that the movie must be rewound, before the counter can be set to zero. The
problems in the movie domain only differ by the number of objects of each type of food.
The number of objects increases linearly from 5 for Problem 1 to 34 for Problem 30.

Our NADL description of the movie domain represents each type of food as a numerical
state variable with a range equal to the number of objects of that type of food. Table 3
shows the planning time for umoP and the competition planners for the movie domain prob-
lems. In this experiment and the remaining experiments UMOP used its default partitioning
of the transition relation. For every problem all the planners find the optimal solution.
Like most of the competition planners UMOP has a low computation time, but it is the only
planner not showing any increase in computation time even though, the size of the state
space of its encoding increases from 224 to 239.

The Logistics Domain. The logistics domain (Veloso, 1994) consists of cities, trucks,
airplanes and packages. Trucks can only move between locations in the same city. Airplanes
can only move between airport locations in different cities. The task is to move packages to
specific locations. Problems differ by the number of packages, cities, airplanes and trucks.
The logistics domain is hard, and only Problem 1,2,5;7 and 11 of the 30 problems were
solved by any planner in the AIPS’98 competition (see Table 4). The NADL description

217

JENSEN & VELOSO

10000 o T T T T T T T T T
&
1000 |]
100 |
o
A I Lo
o 10F ¥/
£ - ri
= s
s UMOP Part. ~—
. L UMOP Mono. —+- |
- STAN -8--
HSP -
| IPP -&--
BLACKBOX -x--
01} i
001 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Problem Number

Figure 18: Planning time for umop and the AIPS’98 competition planners for the gripper
domain problems. Umop Part. and uMopP Mono. show the planning time for
UMOP using a partitioned and a monolithic transition relation, respectively.

of the logistics domain uses numerical state variables to represent locations of packages,
where trucks and airplanes are treated as special locations. Even though the state space of
the small problems is moderate, uMoP fails to solve any of the problems in the domain. It
succeeds to generate the transition relation but fails to finish the preimage calculations.

We have studied the logistics domain extensively, recently focusing on 0BDD-based de-
terministic planning. The logistics domain seems to be hard using a plain OBDD-based
approach, as the sizes of the preimages grow too fast. To address this complexity, we have
developed an abstraction technique for 0BDD-based deterministic planning. In a nutshell,
a problem is first solved using an abstract transition system, where each transition corre-
sponds to a set of serializable actions. Then the steps in the abstract plan are serialized
using an ordinary transition system. With this new algorithm, we have been able to solve
several of the complex AIPS’98 competition logistics problems (Jensen et al., 2000).

7.2.2 THE OBSTACLE DOMAIN

The obstacle domain has been constructed to demonstrate the generality of universal plans.
It consists of a grid world with 2° cells, n obstacles and a robot agent. The positions of
the obstacles are not defined. The goal position of the robot is the upper right corner of
the grid, and the task for the robot is to move from any position in the grid to the goal
position. Because the initial locations of obstacles are unknown, the universal plan must
take any possible position of obstacles into account, which gives 25(n+1) _ 957 {nitial states.
For a specific initial state a sequential plan can be generated from the universal plan. Thus,
25(n+1) _ 957 gequential plans are comprised in one universal plan. Note that a universal

218

OBDD-BASED UNIVERSAL PLANNING

Problem | UMOP | STAN | HSP | IPP | BLACKBOX
1 14 19 | 2121 10 11
2 12 18 | 2104 10 12
3 14 19 | 2144 10 14
4 4 20 | 2188 10 16
5 14 21 | 2208 10 18
6 16 22 | 2617 10 20
7 14 22 | 2316 20 22
8 12 23 | 2315 20 24
9 14 25 | 2357 - 26
10 14 26 | 2511 10 29
11 14 27 | 2427 30 30
12 4 28 | 2456 30 32
13 16 29 | 3070 20 36
14 14 31 | 2573 30 35
15 16 32 | 2577 30 38
16 14 34 | 2699 10 39
17 16 35 | 2645 30 41
18 14 37 | 2686 10 43
19 16 39 | 2727 30 45
20 12 40 | 2787 20 47
21 16 42 | 2834 20 49
22 14 45 | 2834 20 51
23 16 48 | 2866 20 53
24 14 50 | 3341 20 55
25 16 52 | 2997 30 57
26 16 54 | 3013 40 58
27 16 57 | 3253 50 60
28 4 62 | 3049 40 63
29 18 64 | 3384 50 64
30 16 67 | 3127 40 66

Table 3: Movie domain results. The table shows the run time in milliseconds for each
planner. (-) means that the planner used more than 128 MBytes of memory or
was terminated before returning a solution. All planners generated optimal plans
of length 7. UMOP used far less than 128 MBytes for any problem in this domain.

plan with n obstacles includes any universal plan with 1 to n obstacles, as obstacles can be
placed at the same location. Note moreover, that the universal plans never cover all initial
states, because obstacles can be placed at the goal position, and obstacles can block the
robot.

A universal plan for an obstacle domain with 5 obstacles was generated with umop
in 420 seconds and contained 488296 0BDD nodes (13.3 MBytes). Sequential plans were
extracted from the universal plan for a specific position of the obstacles. Figure 19 shows
the extraction time of sequential plans for an increasing number of steps in the plan. Even
though the OBDD representing the universal plan is large, the extraction is very fast and
only grows linearly with the plan length.

The set of actions associated with a state s in a universal plan p is extracted by com-
puting the conjunction of the OBDD representation of s and p. As described in Section 3,
this operation has an upper bound complexity of O(]s||p|). For the universal plan in the

219

JENSEN & VELOSO

Problem | umor STAN HSP IPP BLACKBOX
1 - - 767 27 79682 43 900 26 | 2062 27
2 - - 4319 32 97114 44 - - | 6436 32
5 - - | 364932 29 | 144413 26 | 2400 24 - -
7 - - - - | 788914 112 - - - -
11 - - 12806 34 86195 30 | 6940 33 | 6544 32

Table 4: Logistics domain results. For each planner column one and two show the run time
in milliseconds and the plan length. (-) means that the planner used more than
128 MBytes of memory or was terminated before returning a solution.

0.008 T T T T T T T

0.007 | E

0.006 1

0.005 | E

Time (Sec.)

0.004 E

0.003 1

0.002 - 1

0001 1 1 1 1 1 1 1
6 8 10 12 14 16
Number of Plan Steps

Figure 19: Time for extracting sequential plans from a universal plan for the obstacle do-
main with 5 obstacles.

obstacle domain with five obstacles, this computation was fast (less than one millisecond)
and would allow an executing robot to meet low reaction time constraints.

8. Conclusion and Future Work

In this article we have presented a new OBDD-based planning system, UmMoP, for planning
in non-deterministic, multi-agent domains. An expressive domain description language,
NADL , has been developed and an efficient OBDD representation of its NFA semantics has
been described. We have analyzed previous planning algorithms for oBDD-based planning
and deepened the understanding of when these planning algorithms are appropriate. Finally,
we have proposed an optimistic planning algorithm for finding sensible solutions in some
domains where no strong or strong cyclic solution exists. The results obtained with umop
are encouraging, as UMOP has a good performance compared to some of the fastest classical
planners known today.

220

OBDD-BASED UNIVERSAL PLANNING

Our research has drawn our attention to a number of open questions that we would
like to address in the future. In particular we wonder how well our encoding of planning
problems scales compared to the encoding used by MBP. Currently MBP’s encoding does not
support a partitioned representation of the transition relation, but the encoding may have
other properties that, despite the monolithic representation, may make it a better choice.
The two systems may also have an equal performance when both are using a monolithic
representation (as in the beam walk example), which should give umoP an advantage in
domains where a partitioning of the transition relation can be defined.

Another interesting question is to investigate which kind of planning domains is suitable
for oBDD-based planning. It was surprising for us that the logistics domain turned out to be
so hard for uMOP. Recently we have studied this domain thoroughly. Using an abstraction
technique we have now been able to solve several of the logistics problems in the AIPS’98
competition (Jensen et al., 2000).

The current definition of NADL is powerful but should be extended to enable modelling of
constructive synergetic effects as described in Section 4. Also, we envision more experiments
comparing multi-agent and single-agent domains to investigate the complexity of NADL’s
representation of concurrent actions.

Several planners, in particular PRODIGY (Veloso et al., 1995), have shown that domain
knowledge should be used by a planning system in order to scale up to real-world problems.
Also (Bacchus & Kabanza, 1996) show how the search tree of a forward chaining planner
can be efficiently pruned by stating the goal as a formula in temporal logic on the sequence
of actions leading to the goal. In this way the goal can include knowledge about the domain
(e.g., that towers in the blocks world must be built from bottom to top). A similar approach
for reducing the complexity of oBDD-based planning seems promising, especially because
techniques for testing temporal formulas already have been developed in model checking.

Other future challenges include introducing abstraction in OBDD-based planning and
defining specialized planning algorithms for multi-agent domains (e.g., algorithms using the
least number of agents for solving a problem).

Acknowledgments

Special thanks to Paolo Traverso, Marco Roveri and the other members of the IRST group
for introducing us to MBP and for many rewarding discussions on OBDD-based planning
and model checking. We also wish to thank Randal E. Bryant, Edmund Clarke, Henrik
R. Andersen, Jorn Lind-Nielsen and Lars Birkedal for advice on 0BDD issues and formal
representation. Finally, we thank the anonymous reviewers for their comments that greatly
improved the presentation of this article.

This work was carried out while the first author was visiting Carnegie Mellon Uni-
versity from the Technical University of Denmark. The research is sponsored in part by
McKinsey & Company, Selmer & Trane’s Fond, the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement number
F30602-97-2-0250. The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or endorsements,

221

JENSEN & VELOSO

either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory (AFRL) or the U.S. Government.

Appendix A. NADL includes the AR Family

Theorem 1 If A is a domain description in some AR language, then there exists a domain
description D in NADL with the same semantics as A.

Proof: Let M, = (Q, %, §) denote the NFA (see Definition 1) corresponding to the semantics
of A as defined by Giunchiglia et al. (1997). An NADL domain description D with semantics
equal to M, can be constructed in the following way: Let D be a single-agent domain where
all fluents are encoded as numerical state variables and there is an action for each element
in the alphabet > of M,. Consider the action a associated to input ¢ € 3. Let the set of
constrained state variables of a equal the set of state variables in D. The precondition of
@ is an expression that defines the set of states having an outgoing transition for input .
The effect condition of a is a conjunction of conditional effects (P; = N;). There is one
conditional effect for each state that has an outgoing transition for input ¢. Fs in the
conditional effect associated with state s is the characteristic expression for s and Ny is a
characteristic expression for the set of next states é(s,). O

References

Bacchus, F., & Kabanza, F. (1996). Using temporal logic to control search in a forward
chaining planner. In Ghallab, M., & Milani, A. (Eds.), New directions in Al planning,
pp- 141-153. ISO Press.

Baral, C., & Gelfond, M. (1997). Reasoning about effects of concurrent actions. The Journal
of Logic Programming, 85-117.

Benda, M., Jagannathan, V., & Dodhiawala, R. (1986). On optimal cooperation of knowl-
edge sources - an empirical investigation. Tech. rep. BCS-G2010-28, Boeing Advanced
Technology Center, Boeing Computing Services.

Blum, A., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90, 281-300.

Blythe, J. (1998). Planning under uncertainty in dynamic domains. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University. CMU-CS-98-147.

Blythe, J., & Veloso, M. M. (1997). Analogical replay for efficient conditional planning. In
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI’97), pp.
668-673. AAAI Press.

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action selection mechanism
for planning. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI’97), pp. 714-719. AAAI Press.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IFEFFE
Transactions on Computers, 8, 677-691.

222

OBDD-BASED UNIVERSAL PLANNING

Burch, J., Clarke, E., & Long, D. (1991). Symbolic model checking with partitioned transi-
tion relations. In International Conference on Very Large Scale Integralion, pp. 49-58.
North-Holland.

Cimatti, A., Giunchiglia, E., Giunchiglia, F., & Traverso, P. (1997). Planning via model
checking: A decision procedure for AR. In Proceedings of the 4th Furopean Conference
on Planning (ECP’97), Lecture Notes in Artificial Intelligence, pp. 130-142. Springer-
Verlag.

Cimatti, A., Roveri, M., & Traverso, P. (1998a). Automatic OBDD-based generation of
universal plans in non-deterministic domains. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI’98), pp. 875-881. AAAI Press.

Cimatti, A., Roveri, M., & Traverso, P. (1998b). Strong planning in non-deterministic
domains via model checking. In Proceedings of the jth International Conference on
Artificial Intelligence Planning System (AIPS’98), pp. 36-43. AAAI Press.

Clarke, E., Grumberg, O., & Peled, D. (1999). Model Checking. MIT Press.

Clarke, E. M., Emerson, E. A.; & Sistla, A. P. (1986). Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2), 244-263.

Currie, K., & Tate, A. (1991). O-plan: the open planning architecture. Artificial Intelli-
gence, 52, 49-86.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995). Planning under time
constraints in stochastic domains. Artificial Intelligence, 76, 35-74.

Di Manzo, M., Giunchiglia, E., & Ruffino, S. (1998). Planning via model checking in deter-
ministic domains: Preliminary report. In Proceedings of the 8th International Confer-
ence on Artificial Intelligence: Methodology, Systems and Applications (AIMSA’98),
pp- 221-229. Springer-Verlag.

Drummond, M. (1989). Situated control rules. In Proceedings of the 1’st International
Conference on Principles of Knowledge Representation and Reasoning (KR’89), pp.
103-113. Morgan Kaufmann.

Drummond, M., & Bresina, J. (1990). Anytime synthetic projection: Maximizing the
probability of goal satisfaction. In Proceedings of the 8th Conference on Artificial
Intelligence, pp. 138-144. AAAI Press.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N.; & Williamson, M. (1992). An
approach for planning with incomplete information. In Proceedings of the 3’rd Inter-
national Conference on Principles of Knowledge Representalion and Reasoning.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, 189-208.

223

JENSEN & VELOSO

Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous archi-

tecture for controlling real-world mobile robots. In Proceedings of the 10th National
Conference on Artificial Intelligence (AAAI’92), pp. 809-815. AAAI Press.

Gelfond, M., & Liftschitz, V. (1993). Representing action and change by logic programs.
The Journal of Logic Programming, 17, 301-322.

Georgeff, M. P.; & Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings
of the 6th National Conference on Artificial Intelligence (AAAI'87), pp. 677-682.
Morgan Kaufmann.

Ginsberg, M. L. (1989). Universal planning: An (almost) universal bad idea. Al Magazine,
10(4), 40-44.

Giunchiglia, E., Kartha, G. N., & Lifschitz, Y. (1997). Representing action: Indeterminacy
and ramifications. Artificial Intelligence, 95, 409-438.

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation:
Preliminary report. In Proceedings of the 15th National Conference on Artificial In-
telligence (AAAI’98), pp. 623-630. AAAI Press.

Haigh, K. Z., & Veloso, M. M. (1998). Planning, execution and learning in a robotic agent.
In Proceedings of the 4th International Conference on Artificial Intelligence Planning

Systems (AIPS’98), pp. 120-127. AAAI Press.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Proceed-
ings of the 5th Inlernational Conference on Artificial Intelligence Planning System

(AIPS’00), pp. 140-149. AAAI Press.

Jensen, R. M. (1999). OBDD-based universal planning in multi-agent, non-deterministic do-
mains. Master’s thesis, Technical University of Denmark, Department of Automation.

[AU99F02.

Jensen, R. M., Veloso, M., & Bryant, R. E. (2000). Abstraction techniques for OBDD-based
planning. Forthcoming.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reactive agents.
Artificial Intelligence, 95, 67-113.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic
and stochastic search. In Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI'96), Vol. 2, pp. 1194-1201. AAAI Press.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence (1JCAI-99),
Vol. 1, pp. 318-325. Morgan Kaufmann.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning graphs
to an ADL subset. In Proceedings of the 4th FEuropean Conference on Planning
(ECP’97), pp. 273-285. Springer-Verlag.

224

OBDD-BASED UNIVERSAL PLANNING

Koenig, S., & Simmons, R. G. (1995). Real-time search in non-deterministic domains.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-95), pp. 1660-1667. Morgan Kaufmann.

Lever, J., & Richards, B. (1994). Parcplan: a planning architecture with parallel actions
and constraints. In Lecture Noles in Artificial Intelligence, pp. 213-222. ISMIS5°94,
Springer-Verlag.

Lind-Nielsen, J. (1999). BuDDy - A Binary Decision Diagram Package. Tech. rep. IT-
TR: 1999-028, Institute of Information Technology, Technical University of Denmark.
http://cs.it.dtu.dk/buddy.

Lingard, A. R., & Richards, E. B. (1998). Planning parallel actions. Artificial Intelligence,
99, 261-324.

Long, D., & Fox, M. (1998). Domain independent planner compilation. In AIPS’98 Work-
shop: Knowledge Engineering and Acquisition for Planning: Bridging Theory and
Practice. AAAT technical Report WS-98-03.

McDermott, D. (1999). The 1998 Al planning system competition. Artificial Intelligence
Magazine. (submitted).

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publ.

Penberthy, J. S., & Weld, D.S. (1992). UCPOP: A sound, complete, partial order planner for
ADL. In Proceedings of the 3’rd International Conference on Principles of Knowledge
Representation and Reasoning, pp. 103-114. Morgan Kaufmann.

Peot, M., & Smith, D. (1992). Conditional nonlinear planning. In Proceedings of the 1’st
International Conference on Artificial Intelligence Planning Systems (AIPS’92), pp.
189-197. Morgan Kaufmann.

Ranjan, R. K., Aziz, A., Brayton, R. K., Plessier, B., & Pixley, C. (1995). Efficient BDD
algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings of the
International Workshop on Logic Synthesis.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable environments.
In Proceedings of the 10th International Joint Conference on Artificial Intelligence
(1JCAI-87), pp. 1039-1046. Morgan Kaufmann.

Smirnov, Y., Koenig, S., Veloso, M., & Simmons, R. (1996). Efficient goal-directed explo-
ration. In Proceedings , the Thirteenth National Conference on Artificial Intelligence

(AAAI96), pp. 292-297. AAAT Press.

Stone, P., & Veloso, M. M. (1998). Towards collaborative and adversarial learning: A case
study in robotic soccer. International Journal of Human-Computer Studies (IJHCS).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press.

225

JENSEN & VELOSO

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating
planning and learning: The PRODIGY architecture. Journal of Fzperimental and
Theoretical Artificial Intelligence, 7(1), 81-120.

Veloso, M. M. (1994). Planning and learning by analogical reasoning. Springer-Verlag.

Veloso, M. M., Pollack, M. E., & Cox, M. T. (1998). Rationale-based monitoring for
planning in dynamic environments. In Proceedings of the 4th International Conference
on Artificial Intelligence Planning Systems (AIPS’98), pp. 171-179. AAAI Press.

Weld, D. (1999). Recent advances in Al planning. Artificial Intelligence Magazine, 93-123.

Wilkins, D. E., Myers, K. L., Lowrance, J. D., & Wesley, L. P. (1994). Planning and reacting
in uncertain and dynamic environments. Journal of Fxperimental and Theoretical
Artificial Intelligence, 6, 197-227.

226

