Exploration Strategies for Reusing Past Policies

Abstract

The balance between exploring new actions
and states, or exploiting the knowledge ac-
quired while learning has been widely stud-
ied in Reinforcement Learning. There is also
a clear interest in how past policies that solve
different tasks may help to solve a new one,
and it also requires a balance between ex-
plore, exploite past policies or to exploit the
current one. In this paper, we show that
reusing a past policy can help in the explo-
ration process of the learning of a new pol-
icy. We define different exploration strategies
which improve the learning efficiency, mea-
sured in number of trials required to correctly
solve a new task. The experiments demon-
strate the usefulness of strategies with an in-
telligent bias to reuse past similar policies.

1. Introduction

Exploration and exploitation strategies play an impor-
tant role in Reinforcement Learning (RL). Balancing
exploration and exploitation is typically exemplified
with the multi-armed bandit problem (Robbins, 1952),
and tries to define whether to explore new or exploit
the knowledge already acquired (Auer et al., 1995).
The optimal strategy is one that minimizes the explo-
ration of the domain while maximizes the quality of
the policy learned. However, both optimization prob-
lems are opposite.

Reusing sub-policies which were learned for a different
but related task can also be used to minimize the ex-
perience required to solve a new task. For instance a
subproblem of an MDP can be defined as a new MDP
where the state space is a subset of the original one.
Then, the original MDP can be solved reusing policies
learned for different subproblems (Bowling & Veloso,
1999). Intra-Option Learning (Sutton et al., 1998) and
TTrees (Uther, 2002) also reuse macro-actions to learn
new action policies, in both cases, in Semi-Markov De-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

cision Processes.

Reusing a past policy is appealing because it may bias
a new learning process. However, it is still a challenge,
given that biasing the learning inherently complicate
the exploration and exploitation balance. That is be-
cause in addition to the classical balance between ex-
ploring new states or exploiting the current policy, it
adds a third factor of exploiting the past policy. How-
ever, this balance has been successfully found in other
problems like path planning, where reusing waypoints
used in past plans has demonstrated to be useful to
solve new planning problems (Bruce & Veloso, 2002).

In this work, we define and analyze different strate-
gies to reuse a past policy. The reuse is performed
though biasing the exploratory process of the new pol-
icy. These strategies define when to explore, when to
follow the past policy, and when to exploit the knowl-
edge acquired in the current learning process. The
scope of this research is direct reinforcement learning,
and the Q-Learning (Watkins, 1989) algorithm will be
used in all the experiments, although the strategies
are general, and they only require off-policy algorithms
(i.e. algorithms able to learn an optimal policy while
following a different one).

The paper is organized as follow. Next section summa-
rizes the related work, focusing on exploration strate-
gies and in policy reuse methods. Section 3 formal-
izes the concepts of tasks and domains, and illustrate
them with an example. Section 4 describes the new ex-
ploration strategies for biasing new learning processes
with a past policy. Section 5 describes the experiments
performed, while Section 6 describes the main conclu-
sions and further research.

2. Related Work

In the literature, different kinds of exploration strate-
gies can be found. A random strategy always selects
randomly the action to execute, without to use the
knowledge is being acquired. The e-greedy strategy se-
lects with a probability of € the best action suggested
by the Q function learned up to that moment, and
it selects a random action with probability of (1 — ¢).
Boltzmann strategy tries to rank the actions, provid-

ing the actions with a higher value of Q with a higher
probability, as defined in equation 1, for a set of n
actions. This equation also includes a 7 parameter
that moves the strategy from random, when 7 = 0, to
greedy while 7 grows (Sutton & Barto, 1998).

eTQ(S,(lj)

En 7Q(s,ap) (1)

P(a;) =
p=1¢
These strategies may also include small modifications,
as the optimistic initialization of the Q values, which
increases exploration in earlier steps of the learning.

Directed exploration strategies memorize exploration-
specific knowledge that is used for guiding the explo-
ration search(Thrun, 1992). These strategies are based
in heuristics that bias the learning so unexplored states
tend to have a higher probability of being explored
that recently visited ones. However, they require a
model of the domain (the state transition function) to
execute the heuristics.

Task clustering can also be used to organize and reuse
different tasks (Thrun & O’Sullivan, 1995). Other
methods try to learn environment independent knowl-
edge so the learned knowledge can be used for similar
tasks in different scenarios (Thrun & Mitchell, 1995).
Reusing the Q function that represents a policy learned
for a task can also be useful if it is similar to the new
one (Carroll & Peterson, 2002). However, it requires
the Q function is available, and not only the policy.

However, most of the previous examples are focused
only on exploration or in policy reuse, but they do
not handle the case of biasing exploration with a past
policy.

3. Domains and Tasks

We describe the concept of domain and task, and we
stablish the scope of this research.

3.1. Definitions

A Markov Decission Proccess (Puterman, 1994) is rep-
resented with a tuple < S, A, §, R >, where S is the set
of all the possible states, A is the set of all the possi-
ble actions, § is an unknown stochastic state transition
function, § : S x A x § — R, and R is an unknown
stochastic reward function, R : S x A — . However,
in this work, we focus in RL domains where different
tasks can be solved. Different tasks are given different
reward functions, but the other concepts, S, A and 9§
and stay constant for all the tasks. Thus, we break the
MDP concept in two: domain and task.

We characterize a domain, D, as a tuple < S, A,§ >,
We define a task, §2, as a tuple < D, Rq >, where D is
a domain as defined before, and Rq is the stochastic
and unknown reward function. Thus, different tasks
may have different reward functions.

We define an action policy, 11, as a function IT: § — A.
If the action policy was created to solve a defined task,
Q, the action policy is called I1g. We can assume that
we are solving a task with absorbing goal states. Thus,
if s; is a goal state, §(s;, a,s;) = 1, 6(s4,a,s;) = 0 for
si # sj, and R(s;,a) = 0, for all a € A. Each trial
finishes when a goal state is reached or when a maxi-
mum number of steps, say H, is achieved. The value
to minimize is the average number of steps executed
to achieve the goal in each trial, say T', as defined in
equation 2:

T:%Ztk (2)

where tj; defines the number of steps performed to
arrive to the goal in the trial k. So, we are follow-
ing a cost-to-go approximation (Bertsekas & Tsitsik-
lis, 1996), which, instead of meausuring the average re-
ward, measures the cost to arrive the goal.!. (Manuela,
I think that the last sentence, as well as the footnote
are not necessary, and could be deleted. I guess that
instead of clarify, they may confuss. What do you
think??)

Lastly, an optimal action policy for solving the task 2
is called TIf,. To be optimal means that T3l" < T,
for all policy II in the space of all possible policies.

3.2. Scope

The scope of this work is the following:

e We need to solve the task (2, i.e. learn II,.

e We have previously solved the set of tasks
{Q1,...,Qn}, so we have {1, ,...,1I§, }

e Let’s assume that there is a supervisor who, given
Q, tells us which is the most similar task, €2; to Q2

In this work we assume two issues. Firstly, that it
exists a supervisor who provides a policy that solves

IThis is done to allow the trials which start far from
the goal to make also a strong apportation to the quality
measure of the policy. Average reward received in each
trial avoids that when delayed reward is used, given that
the 7' becomes very close to 0 when ¢ is high and typical
values of v (as 0.9) are used

a task similar to the one that we are trying to solve.
Differences between both tasks are derived from dif-
ferences in their respective reward functions, which
are unknown. Then, similar tasks share the policy for
most of the state space, and only a region of the state
space have a different policy. These concepts will be
formalized in Section 3, although we will not discuss
in this paper how task similarity can be measured, nor
how that supervisor can be implemented. That dis-
cussion can be found in (under submission, 2005).

Second, we trust the supervisor’s suggestion, i.e. we
do not study the effects of trying to reuse a policy
that solve a task completely different to the one we
are trying to solve now. Deciding whether to trust or
not the supervisor also relies on deciding if the past
task is, indeed, similar or not to the one we are trying
to solve now. As introduced above, that discussion is
out of the goals of this paper.

Given previous elements, can we speed up the learn-
ing of II,? To do that, exploration strategies able to
bias the new learning process with the one received by
the supervior are required. The next section describes
several different strategies to incorporate this bias.

4. Exploratory Strategies for Policy
Reuse

In this section, several exploration strategies are de-
fined. We denote the old policy with I1°¢, and the
one we are currently learning with II. We assume that
we are using a direct RL method to learn the action
policy, so we are learning its related ¢ function. Any
algorithm can be used to learn the @ function, with
the only requirements that it can learn off-policy, i.e.
it can learn a policy while executing a different one, as
Q-Learning does (Watkins, 1989).

The exploration strategies are divided in two different
groups, depending on if they use only the past policy
(I1°'1), or if they also use the new one (IT).

4.1. Exploration strategy i-reuse

The goal of this policy is to balance random explo-
ration and exploiting the old policy. There are two
approaches for this strategy. The first one uses the
past policy, I1°?, with a probability of 1. It selects
an action randomly with a probability of 1 — . Thus,
this policy is similar to e-greedy, but instead of ex-
ploiting the current policy, II, it exploits the old one,
I1°, Then, balance between exploring and exploiting
the past policy is constant in each trial.

The second approach uses the past policy with a prob-

-reuse Strategy (K, H, ¢, v).

fork=1to K

Set the initial state, s, randomly.

Set ¢

forh=1to H
With a probability of ¥y, a = I1°/4(s)
With a probability of 1 — v¢p,, a = rand(A)
Receive current state s’, and reward, r
Update Q" (s, a)
Set Ypy1 — Ypv
Set s « s

Table 1. -reuse Strategy.

ability of 1, and acts randomly with a probability of
1—1), as well as the previous approach does. However,
in each step of the trial, ¥ decays a factor of v, so in
each step, ¥p41 is set to vy. The idea of this strategy
is that it exploits the past policy in the initial steps of
each trial, but gradually explores randomly. Both ap-
proaches are merged in Table 4.1, where the -policy
exploration strategy is described. The first approach
is included also in this algorithm, setting v = 1.

The problem of this strategy is that it never exploits
the knowledge that it is acquiring. Next strategy
solves this problem introducing also the new policy
in the action selection process.

4.2. Exploration Strategy i-combined-reuse

The goal of this policy is to balance random explo-
ration, exploiting the old policy, and exploiting the
policy is being learned. The new strategy is similar to
to 1) — reuse, given that it also follows the past policy
with a probability of v. However, with a probability
of 1 —1), it exploits the new policy. Obviously, random
exploration is always required, so when exploiting the
new policy, it follows an € — greedy strategy, as it is
defined in Table 4.2.

Thus, there are three probabilities involved: the prob-
ability of exploiting the past policy, the probability of
using current policy, or the probability of acting ran-
domly. These probabilities are shown in Figure 1, for
input values of H = 100, ¥» = 1 and v = 0.95. In this
case the € parameter is set in each step to 1 — ¢,.

The figure shows that in the initial steps of each trial,
past policy will be exploited. As the number of steps
increases, exploration also increases, while in the end-
ing steps of the trial, the new policy will be exploited.
The transition from exploiting past policy and exploit-
ing the new one depends on the v parameter. If this

1-combined-reuse Strategy (K, H, v, v).

fork=1to K

Set the initial state, s, randomly.

Set ¢y — ¢

forh=1to H
With a probability of ¥y, a = I1°/4(s)
With a probability of 1 — vy,

a = € — greedy(I1(s))

Receive current state s’, and reward, r
Update QY (s, a)
Set Ypy1 — Ypv
Set s « s’

Table 2. 1-combined-reuse Strategy.

Probabilities

0 10 20 30 40 50 60 70 80 90 100
Steps

Exploit past policy ——

| Act randomly -----
Exploit new policy -~

Figure 1. Evolution of the probabilities of exploring and
exploiting in a trial for the -combined-reuse exploration
strategy.

parameter is low, the transition occurs in the initial
steps, while if it is high, the transition is delayed.

5. Experiments

In this section we describe the experiments per-
formed to demonstrate the usefulness of the explo-
ration strategies defined above. But firstly, we describe
the domain used.

5.1. Tasks in a Robot Navigation Domain

This domain consists of a robot moving inside of an of-
fice area, as shown in Figure 2, similar to the one used
in other RL works (Fernandez & Borrajo, 2002; Thrun
& Schwartz, 1995). This area is represented by walls,
free positions and goal areas, all of them of size 1 x 1.
The whole domain is N x M (24 x 21 in this case).
The possible actions that the robot can execute are
“go North”, “go East”, “go South” and “go West”, all

of size one. The robot knows its location in the space
through continuous coordinates (x + ng,y + ny) pro-
vided by some localization system, where x and y are
the real coordinates, and n, and n, correspond with
a noise in the perception, and are defined as random
variables following a uniform distribution in the range
(—0.20,0.20). In this work, we assume that we have
the optimal uniform discretization of the state space
(which consists on 24 x 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks the
execution of actions that would crush it into a wall.
The goal in this domain is to reach the area marked
with ’G’. When the robot achieves it, it is considered
a successful trial, and it receives a reward of 1. Oth-
erwise, it receives a reward of 0.

r=il=:=

(a) Task O (b) Task 9
(a) Task Q3 (b) Task Q

Figure 2. Four different tasks in the robot navigation do-
main.

Figure 2 shows the same domain, but four different
task, given that the goal states, and hence, the reward
functions, are different in each of them. Biasing the
learning of IT using II; (policy that solves Q1) seems to
be useful given that, as shown in figure 3, both policies
could be equal for a big number of states. However,
what states may share the same policy and what areas
may not is completely unknown a priory, given that
the reward function, as well as the state transition
function, are unknown.

5.2. Description of the Learning Curves

In the following subsections, we will describe the ex-
perimental results of applying different exploration
strategies. For each of these strategies (and param-
eter settings), we will present two results showing two
different curves, the learning curve, and the test curve.

Areawith different policies

. —

"

Areas with common policy

Figure 3. Common policy for the two tasks described in
Figure 2

The learning curve of each strategy describes the per-
formance of such strategy in the learning process.
Learning has been performed using the Q-Learning al-
gorithm, for fixed parameters of v = 0.9 and o = 0.2. 2
Learning with each strategy is performed once. This
learning consists on executing K = 2000 trials. Each
trial consists on following the defined strategy until
the goal is achieved or until the maximum number of
steps, H = 100, is executed. In the x axis of the fig-
ure, the trial number is shown. The y axis represents
the average number of steps per trial executed since
the learning started. Thus, a value of 50 for the trial
200 means that the average number of steps executed
in the 200 first trials has been 50. If in one of those
trials, the goal was not achieved, it is penalized with
a value of 100.

The test curve represents the evolution of the perfor-
mance of the policy while it is being learned. Each 100
trials of the learning process, the Q function learned
up to that moment is stored. Thus, after the learn-
ing process, we can test all those policies. Each test
consists on 1000 trials where the robot follows a com-
pletely greedy strategy. Thus, the x axis shows the
learning trial in which that policy was generated, and
the y axis show the result of the test, measured as the
average number of steps executed to achieve the goal
in the 1000 test trials.

2A value of ¥ = 0.9 has demonstrated to solve this
task efficiently. « is typically set to a higher value at the
beginning of the learning, and is decreased progressively
to ensure convergence. We have fixed the value of a to
avoid that different reduction factors may favor to differ-
ent strategies. A fixed value of o does not ensure the con-
vergence of the learning process (Watkins & Dayan, 1992),
but avoids interferences in the analysis

5.3. Learning from Scratch

Firstly, the learning and test processes have been ex-
ecuted following different exploratory strategies that
does not use the past policy. Specifically, we have
used three different strategies. The first one is a ran-
dom strategy. The second one is Boltzmann for a fixed
7 = 1000, that stays constant during the whole learn-
ing. This is, hence, a very greedy strategy. Lastly,
Boltzmann strategy has been also followed, but ini-
tializing 7 = 0, and increasing it in 5 in each learning
trial. Figure 4 shows the learning and test curves for
all them.

We focus first in the learning curve shown in Fig-
ure 4(a). We see that when acting randomly, the
average number of steps in learning is close to 100.
To reduce this value, Boltzmann strategy is required.
In this case, the most greedy strategy (fixed value of
7 = 1000) seems to behave better in learning obtain-
ing values below to 70 after the 2000 trials. With this
parameters, the behavior is also better in test. For
the random strategy, cost decreases in test very fast,
showing that it behaves very good in test.

Lastly, notice that the quality of the policy learned is
very sensible to small changes in some crucial regions,
as the regions close to door of the office where the goal
is. A change in such region makes that the robot does
not arrive to the goal in most of the trials, increasing
extremely the average number of steps to goal (given
that the trials which not ends in goal introduce a cost
of 100 steps). That generates out-layers in the learning
curves, as the one shown in the test curve of random
strategy for the iteration 500. These out-layers will
appear also in further experimental results. Incorrect
estimations of the right policy are due to the stochas-
ticity of the domain, together with the constant value
of a.

5.4. Reusing the Past Policy Following ¥-reuse

Figure 5 shows the learning and test curves when per-
forming the exploration using the i-reuse strategy.
The experiment has been performed for different com-
binations of the 1) and v parameters.

In the learning curve it is shown that there is not im-
provement in learning, given that this policy never ex-
ploit the current policy. That makes that the average
number of steps in the learning process stays constant
for all them. However, there are strong differences
depending on the parameters used. For instance, the
exploration process that is only biased by the past pol-
icy correspond with the set of parameters ¢ = 1 and
the decrement rate of 7 = 1. The learning curve for

100
(9]
&
EE -
>
<

40 -

30 I I I I I I I I I

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Trials
Random t=1000, inc=0 ------ t=0,inc=5 -----

(b) Test Curve

Figure 4. Learning and test evolution when learning from scratch

100 T T T T T T T T T
/MWWW
95 7 7
ORI o

90 - ° \]
g F T A
2 . N

80 - B

75 R

0 T

65 | | | | | | | | |

200 400 600 800 1000 1200 1400 1600 1800 2000
Trids
Random t=1000, inc=0 ------ t=0,inc=5 -----
(a) Learning Curve

100 SR R P U P S I

98 - b
[%]
&
(7]

200 400 600 800 1000 1200 1400 1600 1800 2000

Trias

e=1, dec=0.9 —— e=1,dec=0.99 -----
e=1 o

e=1,dec=0.95 ------

e=08 — — -

(a) Learning Curve

100 R

Average Steps

200 400 600 800 1000 1200 1400 1600 1800 2000

Trids
e=1,dec=0.9 —— e=1----- =08 — — -
e=1,dec=0.95 ------ (==

(b) Test Curve

Figure 5. Learning and test evolution when following -reuse exploration strategy.

this strategy shows that the average number of states is
close to 100, which means that the goal is not achieved
in most of the learning trials, given that it is trying
to achieve the goal of the past policy in a completely
greedy way. That produces that a correct policy is not
learned, as is demonstrated in the test curve. This re-
sult can be improved by allowing some exploration. A
way to do it is setting 7 to 0.8, which means that the
20% of the steps, a random action is selected. This
decreases the average number of steps per trial to 92
after the 2000 trials. That improvement in learning is
also reflected in the test.

Lastly, the best results are obtaining when initializing
1) to 1, with decreasing rates of 7 = 0.95 or 0.99. With
both set of parameters, the average number of steps is
around 85 in learning. Test curves for these sets of
parameters show that learning is very fast and in only
100 iterations, the cost of arriving the goal is under
60. In both cases, after 400 trials the value is below
40 in test.

However, if the discount factor is strong (7 = 0.9) the

results in learning are not so good, given that the ¢4
parameter becomes close to 0 very fast, and hence,
the past policy is almost not used in the exploration.
However, it also shows good results in test.

5.5. Reusing the Past Policy Following
1)-combined-reuse

Figure 6 shows the results of using the 1-combined-
reuse exploration strategy. We have executed the
strategy for two different sets of parameters. In both
cases, ¥ has been set to 1, but in the first case, the
discount factor v has been set to 0.95 and 0.9 respec-
tively.

Opposite to the results of exploring with i-reuse, the
learning curve decreases while learning is performed,
given that in this exploration strategy, the policy is be-
ing learned is also exploited. In this case, the learning
curve for v = 0.95 shows that in training, a low num-
ber of steps is achieved much faster, and in only 200
trials, it is under 50. Test curve shows that the policy
learned is also better when learning is performed with

30 1 1 1 1 1 1 1 1 1

200 400 600 800 1000 1200 1400 1600 1800 2000

Trids

mix e=1, dec=0.9 —— mix e=1, dec=0.95 ------

(a) Learning Curve

I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000
Trids

mix e=1, dec=0.9 ——

(b) Test Curve

mix e=1, dec=0.95 ------

Figure 6. Learning and test evolution when following i-combined-reuse exploration strategy.

v = 0.95, and the policy learned after only 300 steps
produces a cost under 40.

However, the test curve obtained with this exploration
strategy shows that the learned policies are unstable,
and that a lot of out-layers in the cost are generated.

5.6. Experiments Summary

Figure 7 summarizes the results obtained. It shows the
best result obtained with each exploration strategy: (i)
Boltzmann with an initial 7 = 0, which is increased in
each step a value of 5; (ii) ¢-reuse with ¢y = 1 and
v = 0.95; and (iii) ¥-combined-reuse with ¥ = 1 and
v = 0.95.

The figure shows that the best results in training are
obtained by 1-combined-reuse strategy. The improve-
ment of this strategy is very great when compared to
the others. That makes this exploration strategy very
useful for new learning problems, where the cost of
gathering experience is very high. However, this strat-
egy generates very sensitive policies, as the out-layers
produced in test demonstrate. However, this could be
solved with a more accurate selection and evolution of
the o parameter. In any case, it does not influence in
a real execution process, where the curve followed is
the learning curve.

6. Conclusions and Further Research

In this work, the reuse of a past policy to speed up
the learning of a new task has been studied. Two ex-
ploration strategies that allow to bias the exploration
with the past policy have been presented, 1-reuse and
1p-combined-reuse. They have demonstrated its use-
fulness to improve the learning of a new action pol-
icy over exploration strategies that does not reuse any
knowledge.

Obviously, very different strategies can be derived from
the ones presented in this work. For instance, in -
combined-reuse, the balance among exploring, exploit-
ing the past policy and exploiting the new one is static
in all the learning process. Heuristics that exploit past
policies in the beginning of the learning, and that pro-
gressively exploits more the current one could be ap-
plied. To do this, the initial value of ¥ could be re-
duced in each trial, or the value of v could also be re-
duced in each trial, increasing the exploitation of the
current policy.

However, policy reuse, as it has been presented in this
work, requires of a supervisor who provides a useful
policy previously learned. This work assumes that this
supervisor exists and that it provides a policy corre-
sponding with a task that is “similar” to the one we
are trying to solve. We have not studied in this work
how this supervisor could be implemented, nor how
the similarity metric could be. However, we believe
that defining good exploration strategies able to in-
corporate past knowledge in a new learning process is
a required step to the problem of reusing past policies
when the policy to reuse is not known in advance.

Thus, future work will focus on how these exploration
strategies may help to speed up new learning processes
reusing past policies, even when it is unknown a priori
which of those policies are useful, or even whether it
exists or not.

References

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire,
R. E. (1995). Gambling in a rigged casino: The
adversarial multi-armed bandit problem. 36th An-

nual Symposium on Foundations of Computer Sci-
ence (pp. 322-331).

40 - ST 7

200 400 600 800 1000 1200 1400 1600 1800 2000
Trials
t=0,inc=5 —— e=1,dec=0.95 ------ mix e=1, dec=0.95 -----

(a) Learning Curve

100

Average Steps

30 1 1 1 1 1 1 1 1 . 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Trials
t=0,inc=5 —— e=1,dec=0.95 ------ mix e=1, dec=0.95 -----

(b) Test Curve

Figure 7. Learning and test evolution following different exploration strategies.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Bellmon, Massachusetts:
Athena Scientific.

Bowling, M., & Veloso, M. (1999). Bounding the sub-
optimality of reusing subproblems. Proceedings of
1JCAI-99.

Bruce, J., & Veloso, M. (2002). Real-time randomized
path planning for robot navigation. Proceedings of
IROS-2002. Switzerland. An earlier version of this
paper appears in the Proceedings of the RoboCup-
2002 Symposium.

Carroll, J., & Peterson, T. (2002). Fixed vs. dynamic
sub-transfer in reinforcement learning. Proceedings
of the International Conference on Machine Learn-
ing and Applications.

Ferndndez, F., & Borrajo, D. (2002). On determin-
ism handling while learning reduced state space rep-
resentations. Proceedings of the Furopean Confer-
ence on Artificial Intelligence (ECAI 2002). Lyon
(France).

Puterman, M. L. (1994). Markov decision processes
- discrete stochastic dynamic programming. New

York, NY.: John Wiley & Sons, Inc.

Robbins, H. (1952). Some aspects of the sequential
design of experiments. Bulletin American Mathe-
matical Society, 55, 527-535.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction. Cambridge, Mas-
sachusetts: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1998). Intra-
option learning about temporally abstract actions.
Proceedings of the Internacional Conference on Ma-
chine Learning (ICML’98).

Thrun, S. (1992). Efficient exploration in reinforce-
ment learning (Technical Report C,I-CS-92-102).
Carnegie Mellon University.

Thrun, S., & Mitchell, T. (1995). Lifelong robot learn-
ing. Robotics and Autonomous Systems, 25—46.

Thrun, S., & O’Sullivan, J. (1995). Clustering learning
tasks and the selective cross-task transfer of knowl-
edge (Technical Report CMU-CS-95-209). School of
Computer Science, Carnegie Mellon University.

Thrun, S., & Schwartz, A. (1995). Finding structure
in reinforcement learning. Advances in Neural In-
formation Processing Systems 7. MIT Press.

under submission, A. (2005). Learning by probabilistic
reuse of past policies. Proceedings of the Interna-
tional Joint Confereneces on Artificial Intelligence
(IJCAI’05).

Uther, W. T. B. (2002). Tree based hierarchical rein-
forcement learning. Doctoral dissertation, Carnegie
Mellon University.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge, UK.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning.
Machine Learning, 8, 279-292.

