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Abstract

There have been several efforts to create and use real maps in computer applications that automati-
cally find good map routes. In general, online map representations do not include information that may
be relevant for the purpose of generating good realistic routes, including for example traffic patterns,
construction, or number of lanes. Furthermore, the notion of a good route is dependent on a variety of
factors, such as the time of the day, and may also be user dependent. This motivation leads to our work
on the accumulation and reuse of previously traversed routes as cases. In this paper, we demonstrate
our route planning method which retrieves and reuses multiple past routing cases that collectively form
a good basis for generating a new routing plan. We briefly present our similarity metric for retrieving
a set of similar routes. The metric effectively takes into account the geometric and continuous-valued
characteristics of a city map. We then present the replay mechanism and how the planner produces the
route plan by analogizing from the retrieved similar past routes. We discuss in particular the strategy
used to merge a set of cases and generate the new route. We use illustrative examples and show some
empirical results from a detailed online map of the city of Pittsburgh containing over 18,000 intersections
and 25,000 street segments.

1 Introduction

Case-based reasoning is a powerful problem solving technique which enables flexible reuse of experience.
It is an on-going research challenge to apply case-based reasoning techniques to real-world domains. We
have been investigating the use of case-based reasoning methods to enable a planner to reuse solutions to
previous similar problems in order to solve new problems. In this paper, we demonstrate how our retrieval
and adaptation techniques are applied and extended to the problem of route planning.

We are interested in having a computer generate good routes from an online representation of a map.
Online representations of maps however do not usually include information that may be relevant for route
planning, including traffic patterns, construction, one versus multi-lane roads, residential areas, time of the
day, or a particular user’s driving preferences. The path finding task is therefore dynamic and complex, and
learning from route planning and execution experience is necessary.

Case-based reasoning methods allow us to take advantage of prior routing and execution experience. Our
general approach for incorporating case-based reasoning with planning, execution, and learning within this
real-world task consists of:

e Accumulating route planning episodes in a case library so that we can reuse previously visited routes
and avoid unguided search.

o Retrieving a set of similar routes that collectively form a good basis for generating a new routing plan
by using the geometric features of the domain.
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e Using execution experience to identify characteristics of particular routes that are not represented in
the map and update the map and the goodness of the stored cases to reflect them.

e Using experience gained from altering plans during execution failures to acquire an understanding of
when particular replanning techniques are applicable.

In previous papers, we presented several aspects of this project, including the similarity metric which
effectively takes into account the natural geometric and continuous-valued characteristics of the map do-
main [4], and a discussion of the learning opportunities potentially offered by the real execution of the
proposed planned routes [5].

The main focus of this paper is on presenting how the planning algorithm reuses the multiple similar
retrieved cases. The paper is organized as follows. In Section 2 we show the representation of the real map,
briefly introduce the planning domain itself, and discuss what information is represented and available to
the planner. Section 3 reviews the storage and retrieval methods showing also how the goodness of a case
is captured and used. Section 4 presents the analogical reuse of the multiple cases. Section 5 discusses
empirical results and Section 6 describes related work. Finally, Section 7 draws conclusions on this work.

2 Representation of the Map Domain

Our current implementation uses the PRODIGY planner [1] and its analogical reasoning capabilities [11]. The
route planning knowledge available to the planner consists of the map knowledge base, a set of operators
(rules used to model changes in state), and the case library (described in the following section).

2.1 The Map

The map used in our work is a complete map of Pittsburgh containing over 18,000 intersections and 5,000
streets comprised of 25,000 segments. (An entire street is comprised of several segments corresponding to
city blocks.)

The map is represented as a planar graph with the edges indicating street segments and the nodes
indicating intersections. Associated with the intersections are the (z,y) coordinates of the intersection and
a list of segments which meet at that intersection. Associated with each street segment is the name of the
street containing it, and a range of numbers corresponding to building numbers on that block. In addition,
there are several addresses of restaurants and shops in the city. Figure 1 shows a short excerpt from our

files.

(intersection-coordinates i0 631912 499709)
(intersection-coordinates il 632883 485117)
(segment-length s0 921 )
(segment-street-numbers s0 4600 4999)
(segment-intersection-match s0 i0 )
(segment-intersection-match s1 i0 )
(segment-street-mapping 0 S_Craig St)
(address Great_Scot 413 S_Craig.St)

Figure 1: Excerpt from map database.

The representation, although it describes the map completely in terms of which streets exist, lacks in
several areas important to an executing system. In particular, it does not indicate:

existence of or direction of one-way streets,

illegal turning directions,

overpasses and other nonexistent intersections,

traffic conditions,

construction, and

road quality, determined by factors such as number of lanes, surface (cobblestone, tarmac), and neigh-
bourhood designation (residential, business).

This lack of information will lead to many situations in which the system needs to learn.



3 Storing and Retrieving Cases

A CBR planning system has to first identify cases that may be appropriate for reuse, and then modify them
to solve the new problem. In order for the case identification phase to be efficient, the planning system must
have a clear and easy method to store and subsequently retrieve past information. The following subsections
describe our method for storing and retrieving routes. More detailed information regarding case retrieval
(including run-time and efficiency results) can be found in a previous paper [4].

3.1 Case Representation and Indexing

When PRODIGY generates a plan, the detailed derivational trace of the successful planning episode is stored
as a single case that can be multiply-indexed. Failed search decisions are annotated to be avoided at reuse
time. For our route planning domain, the representation of each case will also include a detailed description
of the situations encountered at execution time, including explanations of any errors that occurred and all
replanning that was done to correct the problems.

Each case is also approximated by a set of straight line segments in a two-dimensional graph, and line
segments are allowed to intersect only at their endpoints. The endpoints of these segments are generated
at points where the new case intersects with existing cases as well as at points where the route changes
direction and the segment would no longer approximate the route.
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Figure 2: Marked streets and intersections in the map (1% of the complete Pittsburgh map) are locations visited during
previous planning.

This graph acts as an index into the case library so that cases can be easily retrieved. The resulting
graph, which we call the case graph, is illustrated in Figure 2b. Figure 2a is a map in which solid line
segments represent previously visited streets, and dotted segments represent unvisited streets. Figure 2b
shows the abstract manner in which these paths are stored in the CBR indexing file. Note that Case 20
oversimplifies the path, but the bend in the road would not change the final routing (since there are no
intersections along the route), so this abstraction is acceptable.

Note that several segments may together describe one complete case route, and one segment may index
several cases.

3.2 Similarity Metric and Retrieval

Identifying cases relevant to the new problem is done by the use of a similarity metric, which estimates the
similarity of cases to the problem at hand. An ideal metric might:

e take into account the relative desirability of different cases;
e suggest how multiple cases may be ordered in a single new solution; and
o identify which part(s) of a case are likely to be relevant.



Finding a similarity metric that is both effective and fast is a difficult task for the researcher. It is sufficiently
difficult that many existing CBR systems identify neither multiple cases nor partial cases at all. The metric
developed by Haigh and Shewchuk [4] effectively takes into account the geometric and continuous-valued
characteristics of a city map, and can generate multiple and partial cases.

Suppose we undertake to plan a route on our map from some initial location ¢ to some goal location
g. Although we want to reuse cases, we want to avoid long meandering routes and are therefore willing to
traverse unexplored territory. It is important to find a reasonable compromise between staying on old routes
and finding new ones. Hence, we assign each case an efficiency value 3, which is a rough measure of how
much a known case should be preferred to unexplored areasf is an indicator of the “quality” of a case, and
is independent of its length. After the case has been executed a few times, the § value associated with it
will start reflecting the quality of the case as experienced in the real world. In particular, it will take into
account traffic conditions, road quality and time of day. Each case-segment is annotated with information
indicating what § should be as a function of the quality factors. For example, we might want to have a
higher § value at rush hour:

if (15:00 < current_time < 18:00)
then g8 = 1.5
else B =10.6

Other possible comparisons might involve specific dates (e.g. construction), season or weather (e.g. impass-
ability due to potholes, snow or mud), or direction (e.g. one-way streets). When invoked, the similarity
metric uses the particular 5 associated with current conditions.

Since the only cases stored are those that the user executes, the metric will become biased towards routes
that the user prefers.
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Figure 3: (a) The path found by the similarity metric in the case graph; dashed lines represent case edges, thick lines
represent the path. (b) Path of cases superimposed on the real map; dashed lines represent where the planner needs to plan
from scratch, solid lines represent cases. (c) Path modified by PRODIGY/ANALOGY to conform to real world constraints.

Figure 3 shows a path chosen by the similarity metric between the labelled initial (7) and goal (g) points
and some 3 value assigned to each case in the case graph. Each segment in the path of Figure 3a corresponds
to a case (or more than one) that the similarity metric believes will be helpful in solving the new problem.
This path can also provide the planner with useful hints about how to link the cases together: where to
change from case to case, as well as when to leave the cases entirely and start planning from scratch.

Note that a routing case is not used in reverse, since in general good routing situations are directional
(e.g. one-way streets or traffic conditions). Note also that the path given to PRODIGY/ANALOGY would
not be executable in the real world because it traverses several regions where there are no streets. It is the
planner’s job to knit this information together into a plan, taking into account details such as one-way streets
and illegal turns that cannot be resolved by the geometric algorithm. This process is described further in
the following section.



e Input: The map description; the initial location; the goal location; and
an ordered list of (chopped) cases C1,Ch,...,Cy (each C; consists of a
sequence of relevant steps to the new situation).

e Output: P, a route from the initial to the goal locations.

procedure sequential-analogical-replay

1. i+ 1; 5« 1 (i is the guiding case; j is the guiding step in the case)

2. All case steps are marked usable.

3. Terminate if the goal location was reached.

4.  Get the jt* plan step from the case Cj, i.e. CZJ

5. Validate the case choice C’ZJ

6. If the case choice C’g is invalidated,

7. then: Mark unusable the case steps strictly dependent of C’Z]

8. J < next usable step in Cj

9. Plan by searching on the map (heuristic or iterative deepening).
10. If the new plan step matches some usable case step CL,

11. then: Mark unusable the steps in cases C,,, 1 < m < k, if k > 1.
12. Mark unusable the case steps C7*, 1 <m <, if I > 1.
13. 1 k; 5« L

14. Go to 4.

15. else: Add the new step to plan P.

16. Go to 3.

17. else: Add the new step C’Zj to plan P.

18. Link the new plan step to the case step.

19. Advance case C; to its next step: j < 5+ 1.

20. If the end of case C; was reached,

21. then: ¢ 14+ 1;5 « 1.

22. Go to step 2.

23. Return the plan P.

Table 1: Sketch of Serial Analogical Replay of a Sequence of Cases.

4 Route Planning by Analogy

We follow the analogical replay strategy developed by Veloso [11] in PRODIGY/ ANALOGY. The replay
technique involves a closely coupled interaction between planning using the domain theory (operators and
other static knowledge of the world) and modification of a set of similar cases.

The cases are derivational traces of both successful and failed decisions in past planning episodes, as
well as the justifications for each decision. The case replay mechanism of PRODIGY/ANALOGY involves
a reinterpretation of the justifications for case decisions within the context of the new problem, reusing
past decisions when the justifications hold true, avoiding failed decisions, and replanning using the domain
theory when the transfer fails. The general PRODIGY /ANALOGY replay algorithm is domain-independent and
is designed to replay multiple cases, and is capable of merging cases in several different manners. (Merge
modes include sequential, interleaved, guided and random. [10].) The replay procedure provides guidance to
the general choice points of the planner.

In this domain, the retrieval procedure returns a list of cases, Cy,...,C,, ordered according to the
sequence in which the metric believes they should be reused. The geometric processing of the similarity
metric also identifies which parts of each case should be used in the generation of the new solution, and
therefore only the relevant steps are handed to the replay procedure.

The set of cases returned by the retrieval procedure should be merged by the replay mechanism to
form the solution route to a single one-goal problem!. In this sense, the use of multiple cases in this domain

LA single problem can consist of multiple goals, but the similarity metric is only called for a single source/goal pair.



differs from the use of multiple cases in other planning domains where different cases cover different top-level
goals [11].

In the route planning domain, PRODIGY /ANALOGY is set to use a sequential merging strategy to combine
the cases. Because of the partial match between the cases and the new situation, the replay algorithm is
prepared to do any needed extra planning. In particular, any extra planning to connect a pair of cases is
done by an iterative deepening search based on a estimated depth bound. Informally, at the end of each
case, the replay algorithm proceeds by searching carefully for the next case. The illustrative example in the
empirical section shows the effectiveness of this merging strategy.

An equivalent search process is performed if a case step becomes invalidated, for example, in a situation
where the past case uses a segment (e.g. a bridge) that is not available in the current map. The map
is updated by executions to reflect the change (see [5]) while the past cases still refer to the unavailable
segment. We do not alter the cases since it could be computationally expensive in a large case library;
instead we modify the § values of the case to reflect its poor quality. In addition, the case might become
relevant at a later date.

Table 1 sketches the replay algorithm with this sequential merging procedure. We present the serial
processing of the sequentially-ordered multiple cases.

The adaptation in the replay procedure involves a validation of the steps proposed by the cases. When
there is a need to diverge from the proposed case steps (step 9), note that the algorithm tries to return to the
cases “as soon as possible” (see step 10, in which the algorithm tries to match a newly generated step with
a case step, even when not the immediately obvious next one). This bias in the sequential merge combined
with the (-biased similarity metric allows an interesting reuse of good quality previously visited routes.

5 Experiments

The experiments we describe in this section illustrate the use of our similarity metric combined with the
sequential analogical replay of multiple cases. The ultimate goal of our work is to use real planning and
execution cases to learn from and produce reliable routes. The experiments here are focused on the topic of
this paper and do not address the complete goal of our work.

It has been claimed that complex adaptation strategies can be dangerous because it is difficult to guar-
antee a good final solution [6]. Our goal in these experiments, therefore, was to show that our method of
selecting similar cases and subsequently merging them produces reasonable routes to new problems. The
experiments we describe have been performed on a portion of the real map of Pittsburgh with approximately
18,000 intersections.

We randomly generated a set of 30 problems, and solved them using (a) A* to find the physically shortest
path, (b) a heuristic based on a local desire to head in the direction of the goal (which corresponds to what
someone might do while driving in unfamiliar territory), and (c) PRODIGY/ANALOGY using as a case library
the combined set of A* and heuristic from the other 29 problems. In practice, we would prefer to accumulate
cases from everyday planning and execution experience; something hard to capture in a heuristic function.

Time (s) | Nodes | Route Length

A* 4881 1067 119567
Heuristic 686 167 153401
Analogy 604 155 129132

Table 2: Average time, number of nodes expanded and (Euclidean) length of solution for the three search algorithms.

Looking at the results from Table 2, it is clear that finding an optimal route is extremely expensive when
compared to either the local direction-based heuristic or to analogy. Given that the improvement in solution
length is only 22% and 8% respectively, it is hard to justify spending more than 600% of time and resources
to find the optimal solution. Note that Analogy has less search to do than either of the other algorithms
because the majority of the search was done in previous problem-solving episodes.

PRODIGY/ANALOGY is quite capable of handling multiple goals in this domain.



Figure 4 shows an example of one problem as it was solved by A* PRODIGY/ANALOGY and the heuristic.

The A* route is the shortest route between the initial and goal points, however, it goes through a tightly
congested residential area, rather than taking the larger street to the south?. In terms of convenience,
the optimal route is in fact worse than either the heuristic- or analogy-generated routes. This situation
occurs very often in real world cities because drivers select routes based on their convenience, familiarity
and reliability rather than optimal length.

The heuristically generated path does very little search as it does no backtracking. Although reasonable
in this situation, it can get sidetracked in non-grid-like cities, and even in this example meanders towards
the goal. Several of the routes were distinctly unreasonable, more than doubling the length of the optimal
route.

The similarity metric selected three relevant cases in the case library (Figure 4c). The metric examined
all available routes (those generated by both A* and the heuristic) and selected those which described the
new problem most effectively. Note that case 0 eliminates the meandering of the heuristic path, while case 5
selects the better route near the initial point. The metric then returned the relevant parts of each case to
the reuse algorithm, which faithfully followed the cases, adding the additional steps at the beginning and

?For those readers familiar with Pittsburgh, the residential area is Shadyside, and Fifth Avenue is the larger street.
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(c) Selected Cases (d) Analogy
Problem: initial location (762213,548347) to goal location (606469,425757)
Case 0 (A*): initial location (688451,553663) to goal location (625678,428191)
Case 4 (H): initial location (599257,493531) to goal location (769737,503789)
Case 5 (A*): initial location (678681,464750) to goal location (767392,546448)

Figure 4: (a) The path as generated by A*. (b) The path as generated by a search heuristic. (c) The cases selected as
being relevant to the current problem. (d) The path as generated by analogy.



end of the cases and successfully switching between the cases along the route.

Based on these observations, we believe that an algorithm more reactive than A* is needed. Storing
routes actually executed by the driver is a good way to bias the system towards routes that he prefers. The
loss of physical optimality will be regained as the system increases its knowledge of the convenience and
reliability of the route through experience. Solutions generated by analogy will therefore be better than
generating solutions from scratch. We are currently implementing a model of the execution domain to test
this theory3. To date, the 3 values output by the model have been accurate enough for the similarity metric
to correctly identify two different routes for the problem described in Figure 4. Figure 5 shows the four
relevant cases. During rush hour, when larger streets are more congested, the similarity metric selects the
lower route through a park and residential areas. At other times, it selects the route along larger roads.
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Figure 5: The four relevant cases under different conditions for the problem described in figure 4.

Through our on-going experiments, which we briefly illustrated above, we have demonstrated that our
method of retrieving and reusing multiple cases produces solutions that are reasonable and desirable, i.e.
they correspond to familiar routes (the cases) and are not overly sinuous or long. With the learning methods
described previously (see [5]), the map information and the knowledge about the quality of each case improves
with experience.

6 Related Work

Most robotics path planners (e.g. Dyna [7], coLumBUS [9], Xavier [3], NavLab [8]) don’t remember paths
or their quality, and typically use shortest path, dynamic programming or decision theoretic algorithms
to determine routes. We do not believe these algorithms are sufficient in this domain for several reasons,
including:

e they typically examine the entire map, doing a blind search ignoring the general direction of the goal,
and in a large map will be very slow;

e they are unable to interleave planning with execution or deal with unexpected situations;

e they can not distinguish between multiple routes of equal length but different quality; and

e they are strictly shortest-path algorithms, not considering path reliability or convenience factors such
as time-to-goal, road quality, or user preferences.

ROUTER (developed by Goel et. al [2]) and R-Finder (developed by Liu et. al [6]) are the only other case-
based route-planning systems the authors are aware of. However they both have extremely simple retrieval
and modification algorithms, considerably reducing the transfer rate of prior experience. In addition, they
do not re-validate the plans in the up-to-date map, making it more likely that in a dynamic world they will
return invalid solutions; nor do they remember the quality of cases in an attempt to improve retrieval and
the quality of the plans they generate. Finally, the goal of their work is to speed up planning; we feel that

3 Originally, we had planned to execute this on a real robot, but collecting sufficient data would have been too expensive.



Given a new problem, find a set of similar cases, using stored 3 values.
Modify case(s) into new plan.
Execute plan on real robot. (Not implemented yet.)
If execution of plan is successful:
Then: Add new case to library.
Assign appropriate 3 values.

Otherwise: Identify reason for failure. (Not implemented yet.)

Modify world knowledge as applicable.

(8 values, map)
Add any successful parts of plan to case library

W=

Figure 6: Our integrated planning and learning route-planning algorithm. Current status of the various stages are marked
in italics.

fast planning can be achieved by a combination of Dijkstra’s algorithm and goal-oriented heuristics, and
therefore our focus is instead on the more difficult questions of plan quality and reliability.

7 Conclusion and Discussion

In this paper, we have described our approach to applying case-based reasoning methods to route planning.
We motivated the need for an integrated system that incrementally acquires experience. We briefly presented
a similarity metric that takes advantage of the geometric characteristics of the map and returns a set of
similar previously traversed routes that are jointly relevant to the new situation. Our metric supports the
need for more naturalized mechanisms for detecting similar cases. We discussed how the system creates a
new route plan by merging guidance from the multiple retrieved cases and planning from the map description
and the routing operators. We presented the analogical replay algorithm using a sequential technique to
merge the multiple similar retrieved cases.

We believe that it is important to create good quality, reliable plans, and that using familiar well-indexed
routes, shown to be successful in the past, is an effective way to do this. As our empirical results have shown,
optimal algorithms seem far too costly for the benefits gained, while heuristically-based algorithms may get
led astray.

The entire integrated planning and learning algorithm is summarized in Figure 6. Except where marked
otherwise, it is fully implemented and running. The code is available on request. We are currently extensively
evaluating our work and its impact in realistic route planning situations using the complete online map of
the city of Pittsburgh.

We believe that any system that interacts with the real-world will have to deal with a changing environ-
ment. We hope that our system, with its robust integration of planning, case-based reasoning, and learning
from real execution, will form a good basis for future exploration in this area.
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