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Abstract. This paper describes the integration of analogical reasoning
into general problem solving as a method of learning at the strategy level
to solve problems more effectively. The method based on derivational
analogy has been fully implemented in PRODIGY/ANALOGY and proven
empirically to be amenable to scaling up both in terms of domain and
problem complexity. PRODIGY/ANALOGY addresses a set of challenging
problems; namely: how to accumulate episodic problem solving experi-
ence, cases, how to define and decide when two problem solving situations
are similar, how to organize a large library of planning cases so that
it may be efficiently retrieved, and finally how to successfully transfer
chains of problem solving decisions from past experience to new problem
solving situations when only a partial match exists among corresponding
problems. The paper discusses the generation and replay of the problem
solving cases and we illustrate the algorithms with examples. We present
briefly the library organization and the retrieval strategy. We relate this
work with other alternative strategy learning methods, and also with
plan reuse. PRODIGY /ANALOGY casts the strategy-level learning process
for the first time as the automation of the complete cycle of construct-
ing, storing, retrieving, and flexibly reusing problem solving experience.
We demonstrate the effectiveness of the analogical replay strategy by
providing empirical results on the performance of PRODIGY/ANALOGY,
accumulating and reusing a large case library in a complex problem solv-
ing domain. The integrated learning system reduces the problem solving
search effort incrementally as more episodic experience 1s compiled into
the library of accumulated learned knowledge.
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representing the official policies or endorsements, either expressed or implied, of
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1 Introduction

The problem solving methods developed so far in Artificial Intelligence can be or-
ganized in a problem solving reasoning continuum ranging from search-intensive
to knowledge-intensive methods. Pure search-intensive methods search exhaus-
tively for a solution from first principles, i.e., individual steps that model atomic
actions in the task domain and may be chained to form a solution to a problem.
Pure knowledge-intensive methods for problem solving presuppose the existence
of a collection of prototypical solutions from where the problem solver retrieves
and instantiates an appropriate solution to a new problem. Variations from these
two extreme approaches extend the search-intensive paradigm to search guided
by local control knowledge while the knowledge-intensive extreme extends to
case-based reasoning (CBR) approaches in which the retrieved solution may be
adapted after being retrieved and instantiated.

Solving complex problems with multiple interacting goals and multiple al-
ternative plan choices is a well-known difficult problem in either of the two
extreme paradigms. The search-intensive methods face an exponential growth of
the search space with the problem complexity. Similarly, to guarantee the suc-
cess of the adaptation phase, CBR systems require accurate, hard to generate,
similarity metrics and incur high retrieval costs.

Derivational analogy was proposed by Carbonell ([Carbonell, 1986]) as a
method that would draw nearer the search- and the knowledge-intensive paradigms.
Derivational analogy is a problem solving technique that replays and modifies
past problem solving traces in new similar situations. Therefore the problem
solver in addition to its domain principles 1s able to use past experience in the
form of complete problem solving episodes.

This paper presents PRODIGY/ANALOGY, which draws upon the original
derivational analogy strategy [Veloso and Carbonell, 1990]. Analogical reasoning
in PRODIGY /ANALOGY integrates automatic case generation, case retrieval and
storage, case replay, and general planning, exploiting and modifying past expe-
rience when available and resorting to general problem-solving methods when
required. Learning occurs by accumulation and flexible reuse of cases. The plan-
ning search effort i1s reduced incrementally as more episodic experience is com-
piled into the case library.

The contributions of this work go well beyond the initial derivational idea
proposed by Carbonell. They include: the refinement and full implementation of
the derivational analogy replay method in the context of a nonlinear problem
solver; development of efficient storage and retrieval techniques for the learned
cases; demonstration of learning by analogy as a method to successfully trans-
ferring problem solving experience in partially matched new situations; and a
flexible replay mechanism to merge (if needed) multiple similar episodes that
jointly provide guidance for new problems. The method enables the problem
solver and learner to solve complex problems after being trained in solving sim-
ple problems.

PRODIGY /ANALOGY is novel in the automation of the complete analogical cy-
cle, namely the generation (annotation), storage, retrieval, and replay of episodic



knowledge. It follows a domain-independent approach and it is demonstrated in
particular in a case library of several orders of magnitude greater than most of
the other case-based reasoning (or knowledge-intensive) systems, in terms of the
size of the case library and the granularity of the individual cases.

The paper is organized in eight sections. Section 2 describes how a problem
solving case is generated from a search episode. Section 3 discusses the index-
ing mechanism and Section 4 introduces the similarity metric and the retrieval
procedure. Section b presents the replay algorithm which constructs a new so-
lution to a problem by following and merging multiple guiding cases. Section 6
shows empirical results on the performance of PRODIGY /ANALOGY in a complex
logistics transportation domain building a case library of more than 1000 cases.
Finally, Section 7 discusses related work and Section 8 draws conclusions.

2 Generation of Problem Solving Cases

The purpose of solving problems by analogy is to reuse past experience to guide
generation of solutions for new problems avoiding a completely new search effort.
Transformational analogy and most CBR systems reuse past solutions by modi-
fying (tweaking) the retrieved final solution as a function of the differences found
between the source and the target problems. Instead, derivational analogy is a
reconstructive method by which lines of reasoning are transferred and adapted
to a new problem [Carbonell, 1986] as opposed to only the final solutions.

Automatic generation of the derivational episodes to be learned occurs by
extending the base-level problem solver with the ability to examine its internal
decision cycle, recording the justifications for each decision during its search pro-
cess. We used NoLIMIT [Veloso, 1989], the first nonlinear and complete problem
solver of the PRODIGY planning and learning system, as the base-level problem
solver.? Throughout the paper, NOLIMIT refers to the base-level planner and
PRODIGY /ANALOGY refers to the complete analogical reasoner with the capabil-
ities to generate, store, retrieve, and replay problem solving episodes.

NoLIMIT is a domain-independent nonlinear planner with a rich action rep-
resentation language. Each operator has a precondition expression that must be
satisfied before the operator can be applied, and a list of effects that describe how
the application of the operator changes the world. Preconditions are expressed
in a typed first order predicate logic, encompassing negation, conjunction, dis-
junction, and existential and universal quantification. Variables in the operators
may be constrained by arbitrary functions. The effects are atomic formulas that
describe the conditions that are added or deleted from the current state when
the operator is applied. Operators may also contain conditional effects, which
represent changes to the world that are dependent on the state in which the
operator is applied. A class (type) hierarchy organizes the objects of the world.
These language constructs are important for representing complex and interest-
ing domains.

2 NoLmMIT was succeeded by the current planner, PRODIGY4.0 [Carbonell et al., 1992,
Fink and Veloso, 1994].



The nonlinear planner follows a means-ends analysis backward chaining search
procedure reasoning about multiple goals and multiple alternative operators rel-
evant to the goals. This choice of operators amounts to multiple ways of trying
to achieve the same goal. Therefore, in addition to searching in the space of mul-
tiple goal orderings, as most of the standard nonlinear planners do, our planner
searches equally in the space of multiple different approaches to solving a prob-
lem. The search in both of these spaces benefits from the analogical guidance
provided by the similar planning episodes.

NoLiMIT’s planning reasoning cycle involves several decision points, namely:
the goalto select from the set of pending goals; the operator to choose to achieve a
particular goal; the bindings to choose in order to instantiate the chosen operator;
apply an operator whose preconditions are satisfied or continue subgoaling on a
still unachieved goal. PRODIGY /ANALOGY extends NOLIMIT with the capability
of recording the context in which the decisions are made. Figure 1 shows the
skeleton of the decision nodes. We created a language for the slot values to
capture the reasons that support the choices [Veloso and Carbonell, 1993a).

Goal Node Chosen Op Node Applied Op Node
:step :step :step
:sibling-goals :sibling-ops :sibling-goals
:sibling-appl-ops :why-this-op :sibling-appl-ops
:why-subgoal :relevant-to :why-apply
:why-this-goal :why-this-op
:precond-of :chosen-at

Fig. 1. Justification record structure: Nodes correspond to search choice points. Each
learned problem solving case is a sequence of justified nodes.

There are mainly three different kinds of justifications: links among choices
capturing the subgoaling structure (slots precond-of and relevant-to), records
of explored failed alternatives (the sibling- slots), and pointers to any applied
guidance (the why- slots). A stored problem solving episode consists of the suc-
cessful solution trace augmented with these annotations, i.e.; the derivational
trace.

In a nutshell, to automatically generate cases as planning episodes, we:

e Identify the decision points in the search procedure where guidance may
prove useful to provide memory of the justifications for the choices made.

e Use a clear language to capture these justifications at planning time and
associate a meaning so that they can be used at replay time.

Example

We use examples from a logistics transportation domain introduced in [Veloso,
1992]. In this domain packages are to be moved among different cities. Packages
are carried within the same city in trucks and between cities in airplanes. At



each city there are several locations, e.g., post offices and airports. The prob-
lems used in the examples are simple for the sake of a clear illustration of the
learning process. Later in the paper we comment briefly on the complexity of
this domain and show empirical results where PRODIGY /ANALOGY was tested
with complex problems.

Consider the problem illustrated in Figure 2. In this problem there are two
objects, ob4 and ob7, one truck tr9, and one airplane pl1i. There is one city c3
with a post office p3 and an airport a3. In the initial state, ob4 is at p3 and the
goal 1s to have ob4 inside of tr9.

(state (and city ¢3
(at-obj ob4 p3) p3 a3

(at-obj ob7 a3) pll
(at-truck tr9 a3) tr9 #

(at-airplane pll a3)

(same-city a3 p3)) ob7

(goal
(inside-truck ob4 tr9))

Fig.2. Example: The goal is to load one object into the truck. Initially the truck is
not at the object’s location.

The solution to this problem is to drive the truck from the airport to the
post office and then load the object.

There are two operators that are relevant for solving this problem.(The com-
plete set of operators can be found in [Veloso, 1992].) The operator LOAD-TRUCK
specifies that an object can be loaded into a truck if the object and the truck
are at the same location, and the operator DRIVE-TRUCK states that a truck can
move freely between locations within the same city.

Figure 3 (a) shows the decision tree during the search for the solution. Nodes
are numbered in the order in which the search space 1s expanded. The search 1s
a sequence of goal choices followed by operator choices followed occasionally by
applying operators to the planner’s internal state when their preconditions are
true in that state and the decision for immediate application is made.

This trace illustrates PRODIGY handling multiple choices of how to instantiate
operators. There are two instantiations of the operator load-truck that are
relevant to the given goal,i.e., the instantiations (Load-truck ob4 tr9 p3) and
(load-truck ob4 tr9 a3) add the goal (inside-truck ob4 tr9). An object
can be loaded into a truck at both post office and airport locations. Node n2
shows that the alternative of loading the truck at the airport a3 is explored first.
This leads to two failed paths. The solution is found after backtracking to the
alternative child of node n1. Nodes n8 through n12 show the final sequence of
successful decisions. n8 shows the correct choice of loading the truck at the post
office, where ob4 is located. The solution corresponds to the two steps applied
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Fig. 3. (a) The search tree to solve the problem in Figure 2 — the numbering of the
nodes shows the search order; (b) The corresponding learned problem solving episode
to be stored (only a subset of the justifications is shown).

at nodes n11 and n12: the truck tr9 is driven from a3 to p3, as chosen at node
n8 and then it is loaded with ob4.3

Figure 3 (b) shows the case generated from the problem solving episode
shown in Figure 3 (a). The entire search tree is not stored in the case, but only
the decision nodes of the final successful path. The subgoaling structure and the
record of the failures are annotated at these nodes. Each goal is a precondition
of some operator and each operator is chosen and applied because it is relevant
to some goal that needs to be achieved. The failed alternatives are stored with
an attached reason of failure.

As an example, node cn2 corresponds to the search tree node n8. This search
node has a sibling alternative n2 which was explored and failed. The failed
subtree rooted at n2 has two failure leaves, namely at n6 and n7. These failure
reasons are annotated at the case node c¢n2. At replay time these justifications
are tested and may lead to an early pruning of alternatives and constrain possible
instantiations.

% Note that domain-independent methods to try to reduce the search effort [Stone et
al., 1994] in general do not capture domain specific control knowledge, which must
be then acquired by learning.



3 Indexing the Problem Solving Cases

PRODIGY /ANALOGY constructs a case from the derivational trace of a problem
solving episode. In PRODIGY, a problem is defined by the goal statement and the
initial state of the problem situation. A simple indexing scheme may consider
directly the goal statement and the complete initial state as indices to the case.
This approach may be suited for simple one-goal problems where the initial state
is specified with a reduced set of features, but for more complex problem solving
situations with multiple goals and a very large number of literals in the initial
state, we need to refine this indexing mechanism. This i1s done in two ways: the
initial state is pruned to the set of features relevant to the particular solution,
i.e., case, to be learned, and the goal statement is partitioned into conjunctive
sets of interacting goals.

From the exploration of the search space and by following the subgoaling
links in the derivational trace of the plan generated [Carbonell, 1986], the system
identifies, for each goal, the set of weakest preconditions necessary to achieve that
goal. We recursively create the foot-print of a user-given goal conjunct by doing
goal regression, i.e. projecting back its weakest preconditions into the literals in
the initial state [Mitchell et al., 1986, Waldinger, 1981]. The literals in the initial
state are therefore categorized according to the goal conjunct that employed
them in its solution. Goal regression acts as an explanation of the successful
path [Cain et al., 1991]. Foot-printing is similar to explanation-based indexing
techniques [Barletta and Mark, 1988, Hickman and Larkin, 1990, Pazzani, 1990,
Kambhampati and Kedar, 1991] and chunking [Laird et al., 1986] in that it uses
an explanation provided by the subgoaling chain supplied by the underlying
domain theory.

The system automatically identifies the sets of interacting goals of a plan by
partially ordering the totally ordered solution found [Veloso et al., 1990). The
connected components of the partially ordered plan determine the independent
fragments of the case each corresponding to a set of interacting goals. Each case
1s multiply indexed by these different sets of interacting goals.

When a new problem is presented to the system, the retrieval procedure must
match the new initial state and goal statement against the indices of the cases
in the case library.

Organizing the case library consists of designing appropriate data structures
to store the set of indices such that the set of candidate analogs at retrieval time
can be pruned as efficiently as possible. We use two levels of indexing — a hash
table and a discrimination network — to store the features in the goal statement
and in the initial state shared among the cases. There are many problem solving
situations for which the parameterized goal statements are identical and the
initial states are different. These different initial states are organized into a
discrimination network to index efficiently these cases that completely share
the goal statement, but differ in the relevant initial state. Figure 4 sketches the
overall organization of the case library illustrated with goals from a logistics
transportation domain.

The goals are used in a first level of indexing followed by the discrimination
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Fig.4. PRODIGY /ANALOGY’s case library organization. The goals at the left are indexed
by a hash table (not shown).

network of the initial state. The leaves of this indexing structure point to the
cases.

4 Similarity Metric and Retrieval Procedure

Mostly every research project in analogical or case-based reasoning studies the
problem of assigning adequate similarity metrics to rank the similarity between
a new situation and the past situations. The process is generally recognized to be
complex and similarity metrics vary quite considerably, ranging from being more
or less context dependent [Bareiss and King, 1989, Gentner, 1987, Kolodner,
1989, Porter et al., 1989, Russell, 1986].

In PRODIGY /ANALOGY the retrieval procedure could simply search for cases
to cover each goal conjunct individually. However the interactions among multi-
ple goal conjuncts both in terms of operator choices and operator orderings are
responsible for a major part of the problem solving search effort and the quality
of the solutions encountered. Furthermore each case stored in the case library
is indexed through the corresponding sets of interacting goals. The case library



is a source of acquired knowledge of experienced goal interactions. Therefore
when trying to retrieve cases to cover a set of goals, the retrieval procedure in
PRODIGY /ANALOGY tries to find cases with similar interacting goals instead of
choosing separate one-goal cases for each individual goal. We used a similar-
ity metric that accounts for the combined match degree of the interacting goal
conjuncts and the corresponding foot-printed initial state.

When assigning a match value to two problems, the interacting foot-printing
similarity metric, as introduced in Definition 1, considers not only the number
of goals and initial state literals that match, but also uses the matched goals
themselves to determine the match degree of the initial state. The metric requires
that if a case covers multiple goals then these were found in the past to be
interacting goals.

Definition1. Interacting foot-printed similarity metric:
Let P be a new problem and P’ be a previously solved problem, respectively
with initial states ST and ST , and goals G and GT'. Let 65 be the match value

of G¥ and QPI, under substitution o, such that the matched goals G4, ..., Gy,
cover completely one or more sets of interacting goals. Let S}DI be the
foot-printed initial state of problem P’ for the set of matched goals G1,..., Gp,.
Let 6 be the match value of SP and S}D];, under substitution o.

The two problems P and P’ interactively foot-print match with match
value 67 = 65 + 63 for substitution o.

The purpose of retrieving a similar past case is to provide a problem solving
episode to be replayed for the construction of the solution to a new problem. The
similarity metric captures the role of the initial state in terms of the different
goal conjuncts for a particular solution found. Situation details are not similar
per se. They are similar as a function of their relevance in the solution encoun-
tered. When the foot-printed literals are taken into account for the measure of
the similarity among problems, the retrieved analogs provide expected adequate
guidance at replay time, as the foot-printed initial state is in the subgoaling
chain of the goal statement in the particular solution to be replayed. If the new
situation shares some of these features, the problem solver encounters the same
or parts of the past search space. The case may not be fully-sufficient due to the
partial match, but, because of the shared foot-printed literals of the initial state,
the case does not work against the goal, except for unexpected or uncovered goal
interactions. These will be new learning opportunities to compile new cases to
store and reuse.

Figure 5 shows the retrieval procedure where the underlying strategy is to get
guidance from cases that cover the largest possible set of interacting goals. The
algorithm focuses on retrieving past cases where the problem solver experienced
equivalent goal interactions, as these are expectedly responsible for a large part
of the problem solving search effort.

Initially step 1 sets the number of goals that the algorithm tries to cover
simultaneously, i.e., no_ini_goals, to the total number & of goal conjuncts. All
the conjunctive goals are also declared uncovered. A goal remains uncovered



Input : A new problem with goal statement G = G1, G2, ..., G and initial state S.
Output : A set of similar cases.

procedure Retrieve_Similar_Cases (G, S):
1. covering_cases «+— 0; no_int_goals — k; uncovered_goals — G;
2. past_case — nil; continue_retrieval_p «— true
3. while uncovered_goals or continue_retrieval_p
4.  past_case — Find_Another_Analog (no_int_goals, uncovered_goals, past_case)
5. if past_case then
6 (matched_goals, goal_substitution) — Match_Goals (past_case, G)
7 (similarity_value, total_substitution) —
— Match_Initial States (past_case,matched_goals, goal_substitution, S)

8. if Satisfied_with_Match (similarity_value) then

9. uncovered_goals «— uncovered_goals \ matched_goals

10. covering_cases — covering-cases U {pasi_case}

11. if (no_int_goals > 1) and (number of uncovered_goals <= no_int_goals) then

12. no_int_goals — Decrease Interacting_Scope (no_int_goals, uncovered_goals)
13. if Stop_Retrieval_p (past_case, uncovered_goals, no_int_goals)

14. then continue_retrieval p «— nil

15.Return covering_cases

Fig. 5. Retrieving similar past cases

throughout the procedure until a case is found that covers it. The procedure
Find_Another_Analog at step 4 incrementally searches in the case library for
a case that covers no_int_goals many of the still uncovered goals. This algorithm
uses efficient data structures to perform an incremental generation of candidate
analogs. Suppose that a case 1s returned. Then steps 6 and 7 evaluate the simi-
larity value between the new and past situations. The goals are considered cov-
ered at step 9, if the procedure 1s satisfied with the match value as determined
at step 8. Step 10 adds the pasi_case to the list of covering_cases. Step 11-14
establish the termination and continuation conditions. In particular, the proce-
dure at step 12 decreases the scope of interactions to be considered according
to the number of remaining uncovered_goals and no more interactions of size
no_int_goals are found. The retrieval effort may be interrupted by the procedure
Stop_Retrieval p when a threat is recognized in its potential benefits with
respect to problem solving search savings (see [Veloso and Carbonell, 1993b]).

5 Flexible Replay of Multiple Guiding Cases

When a new problem is proposed, PRODIGY /ANALOGY retrieves from the case
library one or more problem solving episodes that may partially cover the new
problem solving situation. The system uses a similarity metric that weighs goal-
relevant features [Veloso and Carbonell, 1993b]. In a nutshell, it selects a set
of past cases that solved subsets of the new goal statement. The initial state is



partially matched in the features that were relevant to solving these goals in the
past. Each retrieved case provides guidance to a set of interacting goals from
the new goal statement. At replay time, a guiding case 1s always considered as
a source of guidance, until all the goals 1t covers are achieved.

The general replay mechanism involves a complete interpretation of the justi-
fication structures annotated in the past cases in the context of the new problem
to be solved. Equivalent choices are made when the transformed justifications
hold. When that is not the situation, PRODIGY/ANALOGY plans for the new
goals using its domain operators adding new steps to the solution or skipping
unnecessary steps from the past cases. Table 1 shows the main flow of control of
the replay algorithm.

1. Terminate if the goal is satisfied in the state.

2. Choose a step from the set of guiding cases or decide if there is need for additional
problem solving work. If a failure is encountered, then backtrack and continue
following the guiding cases at the appropriate steps.

3. If a goal from a past case is chosen, then
3.1 Validate the goal justifications. If not validated, go to step 2.

3.2 Create a new goal node; link it to the case node. Advance the case to its next
decision step.

3.3 Select the operator chosen in the case.

3.4 Validate the operator and bindings choices. If not validated, base-level plan
for the goal. Use justifications and record of failures to make a more informed
new selection. Go to step 2.

3.5 Link the new operator node to the case node. Advance the case to its next
decision step.

3.6 Go to step 2.

4. If an applicable operator from a past case is chosen, then
4.1 Check if it can be applied also in the current state. If it cannot, go to step 2.
4.2 Link the new applied operator node to the case node. Advance the case to its

next decision step.
4.3 Apply the operator.
4.4 Go to step 1.

Table 1. The main flow of control of the replay procedure.

The replay functionality transforms the planner, from a module that costly
generates possible operators to achieve the goals and searches through the space
of alternatives generated, into a module that tests the validity of the choices
proposed by past experience and follows equivalent search directions. The replay
procedure provides the following benefits to the problem solving procedure as
shown 1n the procedure of Table 1.

e Proposal and validation of choices versus generation and search of alterna-
tives (steps 2, 3.1, 3.3, 3.4, and 4.1).



e Reduction of the branching factor — past failed alternatives are pruned by
validating the failures recorded in the past cases (step 3.4); if backtracking is
needed PRODIGY /ANALOGY backtracks also in the guiding cases — through
the links established at steps 3.2, 3.5 and 4.2 — and uses information on
failure to make more informed backtracking decisions.

e Subgoaling links identify the subparts of the case to replay — the steps that
are not part of the active goals are skipped. The procedure to advance the
cases, as called in steps 3.2, 3.5 and 4.2, ignores the goals that are not needed
and their corresponding planning steps.

PRODIGY /ANALOGY constructs a new solution from a set of guiding cases as
opposed to a single past case. Complex problems may be solved by resolving
minor interactions among simpler past cases. However, following several cases
poses an additional decision making step of choosing which case to pursue. We
explored several strategies to merge the guidance from the set of similar cases. In
the experiments from which we drew the empirical results presented below, we
used an exploratory merging strategy. Choices are made arbitrarily when there
is no other guidance available. This strategy allows an innovative exploration of
the space of possible solutions leading to opportunities to learn from new goal
interactions or operator choices.

5.1 Example

Figure 6 shows a new problem and two past cases selected for replay. The cases
are partially instantiated to match the new situation. Further instantiations
occur while replaying.

,,,,,,,,,,,,,, Past cases New problem

: (goal (inside-airplane ob3 pl5)) (goal (inside-airplane ob3 pl5)
. (relevant-state (at-obj ob3 <ap3>) (inside-truck ob8 tr2))
SRR (at-airplane pl5 al2)) (initial-state
P ; (inside-truck ob3 tr2)

! (goal (inside-truck ob8 tr2)) 3 (at-truck tr2 p4)

. (relevant-state (at-obj ob8 p4) (at—airplane pl5 al2)

: (at-truck tr2 <ap7>)) (at-obj ob8 p4))

Fig. 6. Instantiated past cases cover the new goal and partially match the new initial
state. Some of the case variables are not bound by the match of the goals and state.

Figure 7 shows the replay episode to generate a solution to the new problem.
The new situation is shown at the right side of the figure and the two past
guiding cases at the left.

The transfer occurs by interleaving the two guiding cases, performing any
additional work needed to accomplish remaining subgoals, and skipping past
work that does not need to be done. In particular, the case nodes cn3’ through
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Fig.7. Derivational replay of multiple cases.

cnb’ are not reused, as there 1s a truck already at the post office in the new
problem. The nodes n9-14 correspond to unguided additional planning done in
the new episode.* At node n7, PRODIGY/ANALOGY prunes out an alternative
operator, namely to load the truck at any airport, because of the recorded past
failure at the guiding node cn2’. The recorded reason for that failure, namely a
goal-loop with the (inside-truck ob8 tr2), is validated in the new situation,
as that goal is in the current set of open goals, at node n6. Note that the two
cases are merged using a bias to postpone additional planning needed. Different
merges are possible.

* Note that extra steps may be inserted at any point, interrupting and interleaving
the past cases, and not just at the end of the cases.



6 Empirical Results

We ran and accumulated in the case library a set of 1000 problems in the logistics
transportation domain. In the experiments the problems are randomly generated
with up to 20 goals and more than 100 literals in the initial state. The case
library 1s accumulated incrementally while the system solves problems with an
increasing number of goals. (Details on the exact set up of the experiments can

be found in [Veloso, 1992].)

The logistics transportation is a complex domain. In particular, there are
multiple operator and bindings choices for each particular problem, and those
choices increase considerably with the size or complexity of the problem. For
example, for the goal of moving an object to an airport, the problem solver does
not have direct information from the domain operators on whether i1t should
move the object inside of a truck or an airplane. Objects can be unloaded at
an airport from both of these carriers, but trucks move within the same city
and airplanes across cities. The specification of these constraints is embedded in
the domain knowledge and not directly available. PRODIGY /ANALOGY provides
guidance at these choices of operators and bindings through the successful and
failed choices annotated in past similar problem solving episodes.

PRODIGY /ANALOGY increases the solvability horizon of the problem solving
task: Many problems that NOLIMIT cannot solve within a reasonable time limit
are solved by PRODIGY/ANALOGY within that limit. Figure 8 (a) plots the num-
ber of problems solved by NoLIMIT and PRODIGY /ANALOGY for different CPU
time bounds. NOLIMIT solves 458 problems out of the 1000 problems even when
the search time limit is increased up to 350s, while PRODIGY /ANALOGY solves
the 1000 problems within the same CPU time limit.

This graph shows a significant improvement achieved by solving problems
by analogy with previously solved problems. Although not shown in this figure,
the percentage of problems solved without analogy decreases rapidly with the
complexity of the problems. The gradient of the increase in the performance
of PRODIGY /ANALOGY over the base-level NoLIMIT shows its large advantage
when increasing the complexity of the problems to be solved. Figure 8 (b) shows
the cumulative running time for the total set of problems. (For each unsolved
problem, the running time bound is added.)

We also compiled results on the length of the solutions generated by PRODI-
GY/ANALOGY and on the impact of the size of the case library in the retrieval
time [Veloso, 1992]. We concluded that PRODIGY /ANALOGY produces solutions
of equal or shorter length in 92% of the problems. PRODIGY /ANALOGY includes
an indexing mechanism for the case library of learned problem solving episodes
[Veloso and Carbonell, 1993b]. We verified that with this memory organization,
we reduced (or avoided) the potential utility problem [Doorenbos and Veloso,
1993]: The retrieval time suffers no significant increase with the size of the case
library.
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Fig.8. (a) Number of problems solved from a set of 1000 problems versus different
running time bounds. With a time limit of 350s NOLIMIT solves only 458 problems,
while PRODIGY /ANALOGY solves the complete set of 1000 problems; (b) Cumulative
running times for all the 1000 problems. The problems unsolved by NOLIMIT count as
the maximum time limit given (350s).

7 Discussion and related work

PRODIGY’s problem solving method is a combination of means-ends analysis,
backward chaining, and state-space search. PRODIGY commits to particular choices
of operators, bindings, and step orderings as its search process makes use of
a uniquely specified state while planning [Fink and Veloso, 1994]. PRODIGYs
learning opportunities are therefore directly related to the choices found by the
problem solver in its state-space search. It is beyond the scope of this paper to
discuss what are the potential advantages or disadvantages of our problem solv-
ing search method in particular compared with other planners that search a plan
space. Any system that treats planning and problem solving as a search process
will make a series of commitments during search. The pattern of commitments
made will produce greater efficiency in some kinds of domains and less in oth-
ers [Stone et al., 1994]. The goal of strategy learning is precisely to automate
the process of acquiring operational knowledge to improve the performance of a
particular base-level problem solving reasoning strategy. Each particular prob-
lem solver may find different learning opportunities depending on its reasoning
and searching strategies. However, the following aspects of this work may apply
to other problem solvers: learning a chain of justified problem solving decisions
as opposed to individual ones or final solutions; and flexibly replaying multiple
complementary learned knowledge in similar situations as opposed to identical
ones.
This work is related to other plan reuse work in the plan-space search paradigm,

in particular [Kambhampati and Hendler, 1992]. In that framework, it proved
beneficial to reuse the final plans annotated with a validation structure that



links the goals to the operators that achieve each goal. In PRODIGY /ANALOGY we
learn and replay the planner’s decision making process directly. The justifica-
tion structures in the derivational traces also encompass the record of past fail-
ures in addition to the subgoaling links as in [Mostow, 1989, Blumenthal, 1990,
Kambhampati and Hendler, 1992, Bhansali and Harandi, 1993, Paulokat and
Wess, 1994]. The derivational traces provide guidance for the choices that our
problem solver faces while constructing solutions to similar problems. Adapted
decisions can be interleaved and backtracked upon within the replay procedure.

Learning by analogy can also be related to other strategies to learn control
knowledge. In particular analogical reasoning in PRODIGY can be seen as relax-
ing the restrictions to explanation-based approaches as developed in PRODIGY
[Minton, 1988, Etzioni, 1993]. Instead of requiring complete axiomatic domain
knowledge to derive general rules of behavior for individual decisions, PRODI-
GY/ANALOGY compiles annotated traces of solved problems with little post pro-
cessing. The learning effort is done incrementally on an “if-needed” basis at
storage, retrieval and adaptation time. The complete problem solving episode is
interpreted as a global decision-making experience and independent subparts can
be reused as a whole. PRODIGY /ANALOGY can replay partially matched learned
experience increasing therefore the transfer of potentially over-specific learned
knowledge. Chunking in soAR [Laird et al., 1986] also accumulates episodic
global knowledge. However, the selection of applicable chunks is based on choos-
ing the ones whose conditions match totally the active context. The chunking
algorithm in SOAR can learn interactions among different problem spaces.

Analogical reasoning in PRODIGY /ANALOGY learns complete sequences of de-
cisions as opposed to individual rules. Under this perspective analogical reason-
ing shares characteristics with learning macro-operators [Yang and Fisher, 1992].
Intermediate decisions corresponding to choices internal to each case can be by-
passed or adapted when their justifications do not longer hold. Furthermore cases
cover complete problem solving episodes and are not proposed at local decisions
as search alternatives to one-step operators.

8 Conclusion

Reasoning by analogy in PRODIGY/ANALOGY consists of the flexible reuse of
derivational traces of previously solved problems to guide the search for solu-
tions to similar new problems. The issues addressed in the paper include: the
generation of problem solving cases for reuse, and the flexible replay of possibly
multiple learned episodes in situations that partially match new ones. The paper
shows results that empirically validate the method and demonstrate that PRODI-
GY/ANALOGY is amenable to scaling up both in terms of domain and problem
complexity.
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