
Loop Notes

Input: Minimal annotated consistent partial order P
Output: Template T representing P

procedure Convert To Template(P):
T .conditions ← Find Relevant Current(P) + Find Relevant Goal()
T .body ← P
Identify Loops(T )

procedure Identify Loops(T ):
change ← true
while (change) do

change ← false
∀ fan outs
∀ fans with same sequences:

identify varying parameter(s),
introduce new variable for them
if fans then have same init conds & results then

newloop ← empty while loop
newloop.conditions ← fans.init conds & results
newloop.body ← fan.sequence
replace similar fans with newloop
reconnect condition and result arcs
change ← true

∀ sequences
use string-matching algs to find repeated seqs
∀ repeated sequences

if last repetition has different outcome then
identify varying parameter(s) (if any)
introduce new variable for them
newloop ← empty while loop
newloop.conditions ← not last outcome and any common conditions
newloop.body ← sequence
change ← true

Table 1: Converting a plan into a template with loops

Worrisome issues:

1



while ((in current state (at(v?1:obj v?2:loc)) or
in current state (inside(v?1:obj v?4:rocket))) and

(in goal state (at(v?1:obj v?3:loc)) or
in goal state (inside(v?1:obj v?4:rocket)))) do

if (in current state (at(?1:obj ?2:loc)) and
in current state (at(?4:rocket ?5:loc))) then

move(?4:rocket ?5:loc ?2:loc)
while (in current state (at(v?6:obj ?2:loc)) and

in current state (at(?4:rocket ?2:loc)) and
(in goal state (at(v?6:obj v?7:loc)) or

in goal state (inside(v?6:obj ?4:rocket)))) do
load(?6:obj ?4:rocket ?2:loc)

while (in current state (inside(v?6:obj ?4:rocket)) and
in current state (at(?4:rocket ?2:loc)) and
in goal state (at(v?6:obj ?2:loc))) do

unload(?6:obj ?4:rocket ?2:loc)
while (in current state (inside(v?1:obj v?2:rocket)) and

in current state (at(v?2:rocket v?3:loc)) and
in goal state (at(v?1:obj v?4:loc))) do

move(?2:rocket ?3:loc ?4:loc)
while (in current state (inside(v?5:obj ?2:rocket)) and

in goal state (at(v?5:obj ?4:loc))) do
unload(?5:obj ?2:rocket ?4:loc)

while (in current state (at(v?1:rocket v?2:loc)) and
in goal state (at(v?1:rocket v?3:loc))) do

move(?1:rocket ?2:loc ?3:loc)

Table 2: Rocket domain template

• How to handle whiles with not-quite-matching bodies (whiles with nested
ifs)? —there’s a line somewhere about how aggressively we should merge
things, but not sure where it is.

• If this is going to work as an watch-and-learn system WITHOUT guaran-
teed super-nice-and-wise teachers, we have to relax requirements on form
of observed examples. How can we learn templates from inconsistent ex-
amples, examples with messy/difficult orderings, optimal examples, etc?

• Class of problems/domains attacking?

• Will we be able to say ANYTHING about efficiency?

Professed goals:

• Learn dom-spec planner from super-nice-and-wise teacher

• Learn to solve “some” problems faster than g-p planning

2



• Learn to solve more of “some” problems than g-p planning (horizon!)

• Use for agent modelling (develop example domain(s))

• Any impact/help in multi-agent situation(s)? (not sure how)

• Can we learn dom-spec planner from non-super-nice-and-wise teacher?

Issues to remind folks of:

• Folks have done work on revealing domain operators (mei wang)

• Folks have done work on speeding up subop plans (knoblock)

Schedule (a.k.a. To Do list):

• Rewrite Sprawl paper to include poly solution (almost done!)

• Hand-write templates for all ’00 & 02 domains

• Decide what to do about difficult issue #1 (handling loops of non-identical
steps (whiles with nested ifs)) &/or if it needs to be addressed right now

• Lure unsuspecting committee members (Manuela (hah! already trapped!),
Reid, Avrim or Steve Smith, Craig) with appealing extended abstract

• Write up proposal

• Read a bunch more papers! (including the ones suggested by Dan Weld
& by Avrim)

• Give proposal talk

• Clean up & mass-market Sprawl

– Detach from FF

– Implement poly solution

– Add saving needs tree

• Implement proposed while loop stuff (hah!)

• Clean up template language

• Save template in form of c program

• Hang moon

• DEFEND!

• Parrr-tay

3



while (not (in current state (broken(v?1:package))) and
in current state (at(v?1:package v?2:loc)) and
in goal state (broken(v?1:package))) do

if (not (in goal state (blownup(?2:loc))) or
(in goal state (blownup(?2:loc)) and

in current state (blownup(?2:loc)))) then
if (in goal state (at(?1:package ?3:loc)) and

in goal state (blownup(?3:loc)) and
not (in current state (blownup(?3:loc)))) then

move(?1:package ?2:loc ?3:loc)
else if (in goal state (blownup(?3:loc)) and

not (in current state (blownup(?3:loc)))) then
move(?1:package ?2:loc ?3:loc)

else if (in goal state (not (blownup(?2:loc))) and(not (in goal state (not (blownup(?3:loc))))) then
move(?1:package ?2:loc ?3:loc)

while (in goal state (blownup(v?1:loc)) and
not (in current state (blownup(v?1:loc)))) do

while (in current state (at(v?2:package ?1:loc)) and
in goal state (not (broken(?2:package)))) do

if (in goal state (at(?2:package ?3:loc)) and
(not (in goal state (blownup(?3:loc))) or

in current state (blownup(?3:loc)))) then
move(?2:package ?1:loc ?3:loc)

else if (in current state (blownup(?3:loc))) then
move(?2:package ?1:loc ?3:loc)

else if (not (in goal state (blownup(?3:loc))))
move(?2:package ?1:loc ?3:loc)

move(?2:package ?1:loc ?3:loc)
blow(?1:loc) while (in current state (at(v?1:package v?2:loc)) and

in goal state (broken(v?1:package)) and
not (in current state (broken(v?1:package)))) then

while (in current state (at(v?3:package v?2:loc)) and
in goal state (not (broken(v?3:package)))) then

move(?3:package ?2:loc ?4:loc)
blow(?2:loc)

while (in current state (at(v?1:package v?2:loc)) and
in goal state (at(v?1:package v?3:loc))) do

move(?1:package ?2:loc ?3:loc)

Table 3: Bomb domain template

4



generate intermediate states btw steps by propagating init state forward
identify CEs that do occur
for each step do

for each precondition of it do
find last provider of precondition
add link between provider and this step
if precondition added by active CE then

add conditions of active CE to that step’s precs

Table 4: Poly-time algorithm for finding MAC POs

5



Input: Minimal annotated consistent partial order P,
current template Ti.

Output: New template Ti+1, updated with P

procedure Distill (P, Ti):
A ← Find Variable Assignment(P, Ti.variables, ∅)
until match or can’t match do

if A = ∅ then
can’t match

else
N ← Make New If Statement(Assign(P, A))
match ← Is A Match(N , Ti)

if not can’t match and not match then
A ← Find Variable Assignment(P, Ti.variables, A)

if can’t match then
A ← Find Variable Assignment(P, Ti.variables, ∅)
N ← Make New If Statement(Assign(P, A))

Ti+1 ← Add To Template(N , Ti)

procedure Make New If Statement(PA):
N ← empty if statement
for all terms tm in initial state of PA do

if exists a step sn in plan body of PA such that
sn needs tm or goal state of PA needs tm then

Add To Conditions(N , in current state (tm))
for all terms tm in goal state of PA do

if exists a step sn in plan body of PA such that
tm relies on sn then

Add To Conditions(N , in goal state (tm))
for all steps sn in plan body of PA do

Add To Body(N , sn)
return N

procedure Is A Match(N , Ti):
for all if-statements In in Ti do

if N matches of In then
return true

procedure Add To Template(N , Ti):
for all if-statements In in Ti do

if N matches In then
In ← Combine(In, N )
return

if N is unmatched then
Add To End(N , Ti)

Table 5: The current Distill algorithm: updating a template with a new
observed plan.

6


