LoopDISTILL: Learning Looping Domain-Specific Planners from Example Plans

Elly Winner and Manuela Veloso
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891, USA
(412) 268-4801
{elly,mmv} @cs.cmu.edu

Abstract

Because general-purpose planning methods have difficulty
with large-scale planning problems, researchers have resorted
to hand writing domain-specific planners to solve them. An
interesting alternative is to use example plans to demonstrate
how to solve problems in a particular domain and to use
that information to automatically learn domain-specific plan-
ners. In this paper, we present the LoopDISTILL algorithm
for identifing repeated structures in observed plans and show
how to convert looping plans into domain-specific planners,
or dsPlanners. Looping dsPlanners are able to apply experi-
ence acquired from the solutions to small problems to solve
arbitrarily large ones. We show that automatically learned
dsPlanners are able to solve large-scale problems much more
effectively than are state-of-the-art general-purpose planners
and are able to solve problems many orders of magnitude
larger than general-purpose planners can solve.

Introduction

General-purpose planners have traditionally had difficulty
with large-scale planning problems, although many large-
scale problems have a repetative structure, because they do
not capture or reason about such repetition. Instead, to solve
large-scale problems, programmers have had to rely on the
tedious and difficult process of hand writing special-purpose
planners that may precisely encode the repeated structure.
However, example plans are often available, and can demon-
strate this structure.

In previous work, we introduced the concept of
automatically-generated domain-specific planning programs
(or dsPlanners) and showed how to use example plans to
learn non-looping dsPlanners, which can solve problems of
limited size (Winner & Veloso 2003). Here, we present
the novel LoopDISTILL algorithm for automatically identi-
fing the repeated structure of example plans to learn looping
dsPlanners. DsPlanners execute independently of a general-
purpose planning program and are very efficient; they re-
turn a solution plan in time that is linear in the size of the
dsPlanner and of the problem, modulo state-matching ef-
fort. We show that looping dsPlanners can solve large-scale
planning problems more quickly than can general-purpose
planners and that they can solve much larger problems than

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

can general-purpose planners. And because dsPlanners are
learned directly from example plans, there is no need for te-
dious hand coding.

We first discuss related work. We then define dsPlanners
and explain how we use them to generate the solution plans
for new problems. Then we discuss classes of loops, de-
scribe our algorithm for identifying loops in observed plans,
and illustrate its behavior with examples. Next we present
the results of using plans with identified loops as planners
and compare this to using state-of-the-art general-purpose
planners. Finally, we present our conclusions.

Related Work

Many research efforts have sought to automatically improve
general-purpose planning efficiency, most commonly by us-
ing learned or hand-written domain knowledge to reduce
generative planning search e.g. (Minton 1988; Kambham-
pati & Hendler 1992). We focus here on methods that learn
and exploit repeated structure within plans.

Case-based and analogical reasoning, e.g., (Hammond
1996; Veloso 1994), apply planning experience from solv-
ing previous problems to solving a new one. Similarly, the
internal analogy technique (Hickman & Lovett 1991) reuses
the planning experience gleaned from solving one part of a
particular problem to solving other parts of the same prob-
lem.

Iterative and recursive macro operators and control rules,
e.g., (Shell & Carbonell 1989; Schmid 2003), capture repet-
itive behavior and can drastically reduce planning search by
encapsulating an arbitrarily long string of operators. How-
ever, unlike our approach, this technique does not attempt
to replace the generative planner, and so does not eliminate
planning search.

Context free grammars have also been used to extract in-
stantiated patterns in examples that exhibit structural depen-
dencies (Oates, Desai, & Bhat 2002), but don’t capture how
to use these patterns to solve new problems.

Some work, like our own, has focussed on analyzing ex-
ample plans to reveal a strategy for planning in a particu-
lar domain. One example of this approach is BAGGER?2,
which learns recurrences that capture some kinds of repe-
tition (Shavlik 1990). BAGGER2 was able to learn recur-
rences from very few example plans, but relied on back-

ground knowledge and wasn’t able to capture parallel rep-
etition.

Another example of the strategy-learning approach is the
decision list (Khardon 1999): a list of condition-action pairs
derived from example state-action pairs. This technique also
relies on background knowledge, is able to solve fewer than
50% of 20-block Blocksworld problems, and requires over a
thousand state-action pairs to achieve that coverage.

Finally, many researchers have explored hand writing
domain-specific planners, e.g., (Bacchus & Ady 2001; Nau
et al. 2003). These planners are able to solve more prob-
lems than general-purpose planners, and are able to solve
them more quickly (Long & Fox 2003), but often require
months or years to create.

Defining and Using DsPlanners

In this section, we explain in detail the form of the dsPlan-
ners our algorithm learns and how they are used for plan-
ning.

Defining DsPlanners

A dsPlanner is a domain-specific planning program that,
given a planning problem (initial and goal states) as input,
either returns a plan that solves the problem or returns fail-
ure, if it cannot do so. DsPlanners are composed of the fol-
lowing programming constructs and planning-specific oper-
ators:

o while loops and endwhile statements;

if , then , else , and endif statements;

logical structures (and , or , not);

inGoalState and inCurState operators;

numbered and typed variables;

the “v” variant indicator for while loops;

plan predicates; and

plan operators.

Variables are introduced in if-statement and while-loop
conditions. Any objects in the problem which match the
conditions may be assigned to the variables. Those assign-
ments hold thoughout the conditions and body of the if state-
ment or while loop. While-loop variable assignments hold
throughout the iterations of the loop unless the variable is
labelled “v” for variant, in which case it may be reassigned
at each iteration.

DsPlanner 1 shows a dsPlanner that solves all gripper-
domain problems involving moving balls between rooms.
The dsPlanner is composed of one while loop: while there
is an ball that is not at its goal location, move to the ball
(if necessary), pick up the ball, move to goal location of the
ball, and drop the ball.

Planning with DsPlanners

To use the dsPlanner to solve a planning problem, first ini-
tialize the current state to the initial state and the solution
plan to the empty plan. Then apply each of the statements to
the current state. Each statement in the dsPlanner is either
a plan step, an if statement, or a while loop. If the current

DsPlanner 1 A simple dsPlanner that solves all gripper-
domain problems involving moving balls from one room to
another.
while inCurState (at(v?1:ball v?2:room)) and inGoal-
State (at(v?1:ball v?3:room)) do
if inCurState (at-robby(?5:room)) then
move(?5 72)
end if
if inCurState (at-robby(?3:room)) then
move(?3 72)
end if
pick(?1 ?2)
move(?2 ?3)
drop(?1 ?3)
end while

statement is a plan step, make sure it is applicable, then ap-
pend it to the solution plan and apply it to the current state. If
the current statement is an if statement, check to see whether
it applies to the current state. If it does, apply each of the
statements in its body; if not, go on to the next statement. If
the current statement is a while loop, check to see whether it
applies to the current state. If it does, apply each of the state-
ments in its body until the conditions of the loop no longer
apply. Then go on to the next statement.

A failure is detected when we attempt to execute steps that
are not applicable in the current state or when the dsPlanner
finishes executing and its final state does not match the goal
state. We currently handle failures is by handing the problem
off to a generative planner, and then adding that new solution
to the dsPlanner.

Identifying Loops in Example Plans

The current version of the LoopDISTILL algorithm iden-
tifies all non-nested parallel loops over one variable in an
observed plan. In the remainder of this section, we discuss
some relevant definitions, describe in detail the two main
portions of the LoopDISTILL —identifying loop candidates
and creating a loop from a candidate)—and illustrate the op-
eration of LoopDISTILL with two examples.

Definitions

Subplans are connected components within in a partially-
ordered plan when the initial and goal states are excluded
(otherwise every set of steps would be a connected com-
ponent). Two subplans of a painting and transport domain
problem are illustrated in Figure 1. There are many other
possible subplans, but the steps paint(obj1) and paint(obj3)
are not a subplan, since they are not a connected component
within the partial ordering.

Matching Subplans are subplans that satisfy the follow-
ing criteria:

e they are non-overlapping,
e they consist of the same operators,

at(obj1, loc1)
at(truck, locl)

at(paint, loc1)
at(objl, locl)

at(paint, locl)
at(obj3, loc1)

b-(l0ad(obj2, truck, loc1) }~;

Initial:

at(paint, loc1) o

at(obj1, loc1) threat ~

at(obj2, locl)

at(obj3, locl) at(obj2, loc1)

at(truck, locl) at(truck, locl) e

|

paint(obj3)

painted(obj1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

....inside(obj1, truck)

1nside(obj2, truck)

painted(obj3)

Figure 1: Two matching subplans of length 1 are surrounded by dotted lines and represent an unrolled loop.

e the operators in each subplan are causally linked to each
other in the same way,

o they have the same conditions and effects in the plan,
o they unify with respect to one variable.

We also use the term “matching steps” as a special case
of matching subplans (in which the subplans are of length
one). The two load operators in Figure 1 are matching steps,
as are the two paint operators.

Parallel Subplans are causally- and threat-independent of
each other. Figure 1 shows two parallel subplans within an
example plan.

An Unrolled Loop is a set of matching subplans. One of
two unrolled loops in the painting and transport example is
shown in Figure 1.

A Loop replaces an unrolled loop in the plan. The body
of the loop consists of the common subplan in the unrolled
loop, but with the differing variable converted into a loop
variable. The conditions on its execution are: that the goal
state contains all goal terms that are supported by steps
within the unrolled loop, and that the current state when
the loop is executed contains all the conditions for the steps
within the unrolled loop to execute correctly and support the
goals of the plan.

A Parallel Loop is a loop in which each iteration of the
loop is causally independent from the others—the iterations
may be executed in any order. The loop shown in Figures 1
and ?? is a parallel loop. A loop may also have a multi-
step body with complex causal structure; it may even include
other loops.! The current version of LoopDISTILL is able
to identify all non-nested parallel loops in observed plans.

A Serial Loop is a loop in which each iteration of the loop
is causally linked to the others—there is a specific order in
which the iterations must be executed. For example, in a

'Note that an observed total-order execution of a multi-step par-
allel loop need not present the steps of the loop in a specific order—
it could be any topological sort of the loop.

package-transport domain, one loop may describe a particu-
lar delivery vehicle visiting different locations, loading and
unloading packages at each one. Each iteration of the loop
consists of loading and unloading packages and then mov-
ing from the current location to a new one. These iterations
must be executed in a specific order since the move opera-
tions are causally linked.

The LoopDISTILL Algorithm

The LoopDISTILL algorithm can handle domains with con-
ditional effects, but we assume that it has access to a min-
imal annotated consistent partial ordering of the observed
total order plan. Previous work has shown how to find mini-
mal annotated consistent partial orderings of totally-ordered
plans given a model of the operators (Winner & Veloso
2002) and has shown that STRIPS-style operator models are
learnable through examples and experimentation (Carbonell
& Gil 1990), so this assumption is not restrictive.

The LoopDISTILL algorithm, formalized in Algorithm 1,
first identifies an unrolled loop (described in the Section
“Identifying Unrolled Loops™) and then converts it into a
loop (described in the Section “Converting Unrolled Loops
into Loops™). The unrolled loop is then removed from the
plan and replaced by the loop.

Algorithm 1 LoopDISTILL : Identify non-nested one-
variable parallel loops in an observed plan.

Input: Minimal annotated partially ordered plan P.
Output: P with all non-nested one-variable parallel loops
identified.
for all steps ¢ in P do
M; « all parallel matching steps with i in P
if M, # () then
C « LargestCommonSubplan(}M; + i, P)
L «— MakeLoop(C)

P—P-C
P—P+L
end if
end for

Identifying Unrolled Loops

The first step in the LoopDISTILL algorithm is to identify
a parallel unrolled loop: a set of parallel matching subplans

within the observed plan. This process begins with the iden-
tification of a set of parallel matching steps, as described in
Algorithm 1. Next, LoopDISTILL finds the largest paral-
lel matching subplan common to at least two of those steps.
This process takes place in the procedure LargestCommon-
Subplan, formalized in Algorithm 2. LargestCommonSub-
plan recursively tries every possible expansion of the exist-
ing subplan and returns the one with the most steps per par-
allel track. First, it identifies the sets of steps that supply
conditions to the steps in each parallel track of the existing
subplan (StepBack) and the set of steps that rely on effects
of the steps in each parallel track of the existing subplan
(StepAhead). The initial and goal states are not considered
as steps ahead or back. Then, it explores each of these steps
as a possible way to expand the subplan. For each step in
StepBack and StepAhead for each track, it finds which other
tracks also have a matching step in StepBack or StepAhead.
If there is at least one other track, the current subplans with
the new steps added are recorded as a new unrolled loop. At
the end of this process, there is a set of new unrolled loops.
LargestCommonSubplan is then recursively applied to each
of these to further expand them. The largest resulting can-
didate is then returned by the algorithm as the final unrolled
loop.

Converting Unrolled Loops into Loops

Once an unrolled loop is identified, it must be converted into
a loop. As previously defined, an unrolled loop is a set of
matching subplans differing in only one variable. The body
of the loop is the subplan—with a new loop variable replac-
ing the differing variable. The conditions for the loop’s exe-
cution are requirements on the goal state and on the current
state while the loop is executing, as described in the Section
“Definitions”. The unrolled loop subplans are then removed
from the plan and replaced by the new loop.

A Multi-Step Loop Example

We will now illustrate the operation of the LoopDISTILL al-
gorithm on a simple example plan from an artificial domain,
illustrated in Figure 2. First, LoopDISTILL searches for a
set of parallel matching steps. It finds the steps op1(X) and
op1(y), which differ only in the values X and y. These two
one-step parallel matching subplans are then sent to Largest-
CommonSubplan, which searches for a larger subplan com-
mon to both of them.

LargestCommonSubplan begins by finding the StepAhead
set for each parallel track. There is one step in StepAhead
for each track: op3(x) and op3(y), respectively. There
are no elements in the StepBack set, since neither of these
steps depends on any other plan step. Because adding these
steps preserves the parallelism and matching of op1(x) and
op1(y), they can be added to the subplans. This is the only
way to expand the original subplans, and so is the only ele-
ment in the list of unrolled loops.

LargestCommonSubplan is then executed recursively on
this new set of subplans. There are now no elements in
StepAhead for any track, but there is one in StepBack for
each parallel track: op2(x) and op2(y), on which op3(x)
and op3(y) depend. Adding these steps also preserves the

Algorithm 2 LargestCommonSubplan: Identify largest par-
allel matching subplans of an observed plan common to at
least two of the given parallel matching subplans.

Input: set A of parallel matching subplans S;..S,,, mini-
mal annotated partially ordered plan P.
Output: Set of largest parallel matching subplans of plan P
common to at least two of S1..5,,.
for all S; in S;..5,, do
StepAheads, « steps causally linked from S;
StepBackg, < steps causally linked to S;
end for
UnrolledLoops +— A
fori =1tomdo
for NewSteps
StepBackg, do
for all s in NewStepsg, do
NewExpLoop «— {S; + s}
for all j = i do
if 3 parallel matching step s” in NewStepss;
then
NewExpLoop «— NewExpLoop + {S; +
s'}
NewStepss, < NewStepsg, — s
end if ' '
end for
if [INewExzpLoop| > 1 then
UnrolledLoops — +—
NewFExpLoop
NewStepss, +— NewStepsg, — s
end if
end for
end for
end for
for all sets N # A in Unrolled Loops do
N « LargestCommonSubplan(\/, P)
end for
return set A in Unrolled Loops with the largest subplan

«— first StepAheads,, then

UnrolledLoops +

Initial:
s(x)
s(y)

a2(y)

Figure 2: An example annotated partially ordered plan in an
artificial domain that includes a multi-step loop consisting of
the steps op1, op2, and op3. The original totally ordered plan
could have been any topological sort of this partial ordering.

parallelism and matching of the existing subplans, so they
are added as well. Again, this is the only way to expand
the given subplan. LargestCommonSubplan is executed one
last time on this new loop expansion and is unable to find

Algorithm 3 MakeLoop: Create the loop described by the
given unrolled loop.

Input: Unrolled loop: set of matching subplans S;..S,,,
minimal annotated partially ordered plan P.
Output: The loop described by S;..5,.
let v; be the variable in S; that V7 is not in .S
let v}, be the loop variable
Loop.body < S1 with vy, replacing vq
Loop.conditions «— ()
for all steps s in Loop.body do
for all conditions ¢ of s not satisfied by steps in
Loop.body do

Loop.conditions — Loop.conditions —+
CurrentStateContains(c)

end for

for all goal terms g dependent on s do
Loop.conditions — Loop.conditions —+
GoalStateContains(c)

end for

end for

any possible “steps ahead” or “steps back,” so this loop ex-
pansion is returned.

A new loop is then created to represent the common
branching three-step subplan. The loop body is assigned to
the common subplan, with a new loop variable, Iv, replac-
ing the differing values, X and y. The conditions of the loop
are that the current state satisfies the conditions of the steps
within it (S(lv)) and that the goal state contains the goals
supported by the steps in the loop body (g(lv)). The result-
ing plan is shown in Figure 3.

conditions:
cur: s(lv)
goal: g(lv)

Initial:

s(x)

s(y)

Figure 3: The example plan shown in Figure 2 after the loop
has been identified. The loop is surrounded by dotted lines.
The loop variable is written as lv, and ranges over all values
that meet the conditions of the loop (in this case, X and Y).
The conditions of the loop are shown above it.

Using Looping Plans as Domain-Specific
Planners

Here, we briefly describe how to convert a looping plan into
a looping dsPlanner capable of solving similar problems of
arbitrary size. First, the plan is parameterized: values are
replaced by variables.”> The planner is a total ordering of
the partially ordered plan. Loops are described as while

2Two discrete objects in a plan are never allowed to map onto
the same variable as this can lead to invalid plans.

statements: while the conditions for the loop hold, execute
the body of the loop. Plan steps not contained within loops
are expressed as if statements: if the conditions of the steps
hold, execute the steps. The conditions of a set of steps are
the current-state terms required for the steps to execute cor-
rectly and support the goal-state terms that are dependent on
those steps.

Results

We compare general-purpose planning, using several well-
known general-purpose planners, to planning using learned
looping dsPlanners. To illustrate the effectiveness of iden-
tifying loops in plans, our tests focus on performance on
large-scale problems of the same form as the example plans.
We show that the learned dsPlanners capture the structure of
the example plans and are able to apply this knowledge very
efficiently to solving much larger problems. In these situa-
tions, planning using dsPlanners scales orders of magnitude
more effectively than does general-purpose planning.

Rocket-Domain Results

The dsPlanner learned from the rocket-domain example
shown in Figure ?? is shown in dsPlanner 2. The problems
on which we tested the planners vary in the number of ob-
jects to transport, but have a single rocket and two locations
and consist of the same initial and goal states: the initial state
consists of at(rocket, source), and for all objects obj in the
problem, the initial state contains at(obj, source) and the
goal state contains at(obj, destination). Figure shows the
results of executing several different general-purpose plan-
ners and the learned dsPlanner on large-scale problems of
this form. Runtimes for the dsPlanner do not include the
time required to learn the dsPlanner, though this is negligi-
ble 3. The learned dsPlanner is orders of magnitude more
efficient on large problems than the general-purpose plan-
ners, and is able to solve problems with more than 60,000
objects in under a minute.

Multi-Step Loop Domain Results

The dsPlanner learned from the multi-Step loop domain ex-
ample shown in Figures 2 and 3 is shown in DsPlanner 3. As
with the rocket domain, the problems on which we tested
the planners vary in the number of objects but consist of
the same initial and goal states: for all objects obj in the
problem, the initial state contains $(0bj) and the goal state
contains g(obj). Figure shows the results of executing
several different general-purpose planners and the learned
dsPlanner on large-scale problems of this form. The learned
dsPlanner scales much better to large problems than these
general-purpose planners, and is able to solve problems with
as many as 40,000 objects in under a minute.

Conclusion
In this paper, we contribute the LoopDISTILL algorithm
for automatically identifying repeated structures in observed

31t takes less than a second to learn the dsPlanner for the rocket-
domain example shown in Figure ??.

DsPlanner 2 dsPlanner based on the rocket domain problem
shown in Figure ??. The variable in each loop is indicated
by a “v” preceeding its name.

while inCurState (at(v?1:0bj, ?2:loc)) and inCurState
(at(?3:rocket, ?2:loc)) and inGoalState (at(v?1:0bj,
?4:loc)) do

load(?1 73 72)
end while
if inCurState (at(?1:rocket ?2:loc)) and inCurState
(in(?3:0bj ?1:rocket)) and inGoalState (at(?3:0bj
?4:loc)) then

fly(?1 ?2 ?4)
end if
while inCurState (in(v?1:0bj, ?2:rocket)) and in-
CurState (at(?2:rocket ?3:loc)) and inGoalState
(at(v?1:0bj, ?3:loc)) do

unload(?1 ?2 ?3)

end while
Rocket Domain

70

65
__ 60
3B 55 M
§ 50
g 4 [l DsPlanner
o X e
g 35 [] Mips
= 30
S 25
52
8 154

10 -

5 |

0,

1 200 400 600 800 1000 10000 30000 60000
Problem size (# of objects)

Figure 4: Timing results of several general-purpose planners
and of the learned dsPlanner shown in DsPlanner 2 on large-
scale rocket-domain delivery problems. All timing results
were obtained on an 800-MHz pentium II with 512 MB of
RAM.

DsPlanner 3 DsPlanner based on the multi-step loop do-
main problem shown in Figures 2 and 3.

while inCurState (s(?v1:typel) and inGoalState
(g(?v1:typel))) do

op1(?1)

op2(?1)

op3(?1)

end while

plans, determining the body and conditions of the loop
they represent, and converting looping plans into loop-
ing domain-specific planning programs (dsPlanners). The
LoopDISTILL algorithm identifies parallel loops by finding
sets of parallel matching subplans and then converting each
set into a loop. Our results show that the looping dsPlan-
ners learned by the LoopDISTILL algorithm are able to

Multi-Step Loop Domain

[l DsPlanner
60 WFFv23

[VHPOP v3.0
20
10
0 L

Solution time (seconds)

W LPGv121
1 100 200 300 400 500 1000 5000 20000 40000
Problem size (# of objects)

Figure 5: Timing results of several general-purpose planners
and of the learned dsPlanner shown in dsPlanner 3 on large-
scale multi-step loop domain problems.

take advantage of the repeated structures in planning prob-
lems and solve those problems more quickly than can cur-
rent state-of-the-art general-purpose planners. In these sit-
uations, planning using dsPlanners scales more effectively
than general-purpose planning and extends the solvability
horizon by solving problems orders of magnitude larger than
general-purpose planners can handle.

References

Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Pro-
ceedings of IICAI-2001, 417-424.

Carbonell, J. G., and Gil, Y. 1990. Learning by experi-
mentation: The operator refinement method. In Michalski,
R. S., and Kodratoff, Y., eds., Machine Learning: An Ar-
tificial Intelligence Approach, Volume III. Palo Alto, CA:
Morgan Kaufmann. 191-213.

Hammond, K. J. 1996. Chef: A model of case-based plan-
ning. In Proceedings of AAAI-96, 261-271.

Hickman, A., and Lovett, M. 1991. Partial match and
search control via internal analogy. In Proceedings of the
CogScil991, 744-749.

Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Ar-
tificial Intelligence 55(2-3):193-258.

Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113(1-2):125-148.

Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. JAIR 20:1-59.
Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston,
MA: Kluwer Academic Publishers.

Nau, D.; Au, T.-C.; lighami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379-404.

Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-
reversible context-free grammars from positive structural
examples. In Proceedings of ICML-2002.

Schmid, U. 2003. Inductive Synthesis of Functional Pro-
grams. Number 2654 in LNAI Springer-Verlag.

Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39-50.

Shell, P, and Carbonell, J. 1989. Towards a general
framework for composing disjunctive and iterative macro-
operators. In Proceedings of IJCAI-89.

Veloso, M. M. 1994. Planning and Learning by Analogical
Reasoning. Springer Verlag.

Winner, E., and Veloso, M. 2002. Analyzing plans with
conditional effects. In Proceedings of AIPS-02, 271 — 280.
Winner, E., and Veloso, M. 2003. DISTILL: Learning

domain-specific planners by example. In Proceedings of
ICML-03.

