
Analyzing Plans with Conditional Effects

Elly Winner and Manuela Veloso
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

{elly,veloso}@cs.cmu.edu
fax: (412) 268-4801

Abstract

In this paper, we introduce SPRAWL, an algorithm to find a
minimal annotated partially ordered structure in an observed
totally ordered plan with conditional effects. The algorithm
proceeds in a two-phased approach, first preprocessing the
given plan using a novelneeds analysistechnique, which
builds aneeds treeto identify the causal dependencies in the
totally ordered plan; and then constructing the partial order-
ing using the needs tree. We introduce the concept and de-
tails of needs analysis, present the complete algorithm, and
provide illustrative examples. We carefully discuss the chal-
lenges that we faced.

Introduction
Much of the work on plan reuse, plan recognition and
agent modelling has been founded on the analysis of ex-
ample plans and executions. One of the most common ap-
proaches to plan analysis has been to create anannotated
orderingof the example plan (Fikes, Hart, & Nilsson 1972;
Regnier & Fade 1991; Kambhampati & Hendler 1992;
Kambhampati & Kedar 1994; Veloso 1994). Annotated or-
derings allow systems not only to more flexibly reuse por-
tions of the plans they have observed, but also to reuse the
reasoning that created those plans in order to solve new
problems.

Despite a shift in the planning and agent modelling com-
munity from STRIPS (Fikes & Nilsson 1971) towards richer
domain-specification languages which allow conditional ef-
fects (Pednault 1986;?), and despite the success in learning
systems of the annotated ordering approach, it has not been
applied to domains with conditional effects. In this paper,
we introduce the SPRAWL algorithm for findingminimal an-
notated consistent partial orderingsof observed totally or-
dered plans.

We chose to find partial orderings for several reasons. Par-
tial orderings help to isolate independent subplans so they
can be reused or recognized separately from the whole. DO
WE NEED TO SAY MORE ABOUT WHY THEY DO
THIS OR IS THIS OBVIOUS TO EVERYONE? They also
provide parallelism for those applications that can take ad-
vantage of it. For generality’s sake, we assume that observed

Copyright c© 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

example plans are totally ordered. The annotations on the or-
dering constraintsexplainthe rationale behind the plans and
allow portions of them to be easily matched, removed, and
used independently.

INITIAL op1 op2 GOAL

threat to: cb

a

d

Figure 2: The annotated partially ordered plan which uses
the conditional effect ofop1 to achieve a goal.

op2

INITIAL

op1

GOAL

d

a

Figure 3: The annotated partially ordered plan which ignores
the conditional effect ofop1.

Conditional effects make our task much more difficult be-
cause they cause the effects of a given step to change de-
pending on what steps come before it, thus making step be-
havior difficult to predict. In fact, any ordering must treat
each conditional effect in the plan in one of three ways:

• Use: make sure the effect occurs;

• Prevent: make sure the effect does not occur;

• Ignore: don’t care whether the effect occurs or not.

Figure 1 shows totally ordered plans which demonstrate
these three cases, and Figures 2 and 3 show the partial or-
ders representing theuseandignorecases, respectively. Al-
though the totally ordered plans for these two cases are com-
posed of the same steps in the same order, the partial order-
ings are very different. Treating any conditional effect in a
different way will result in a different partial ordering. One



pre:
{}

effects:
{} −> b

START
pre:
a
c
d

effects:
{}

FINISH

pre:
{}

effects:
{} −> b

START

pre:
{}

effects:
{} −> b

START

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

pre:
{}

effects:
{} −> a
b −> c

pre:
{}

effects:
{} −> d
{} −> NOT b

effects:
{}

effects:
{}

pre:
a

d
NOT c

pre:
a
d

use:

prevent:

ignore:

op1 op2

op1op2

op1 op2 FINISH

FINISH

Figure 1: Three totally ordered plans which represent the three possible ways of treating a conditional effect in an ordering:
using it to achieve a goal, preventing it in order to achieve a goal, or ignoring its effect.

way to deal with this is to insist that exactly the same con-
ditional effects must be active in the partial ordering as are
active in the totally ordered plan, but this will result in an
overly restrictive partial ordering in which some ordering
constraints may not contribute to goal achievement. Instead,
we performneeds analysison the totally ordered plan to dis-
cover which conditional effects arerelevant. Needs analysis
allows us to ignoreincidentalconditional effects in the to-
tally ordered plan.

Instead of looking for the optimal (according to some met-
ric) partially ordered plan to solve a problem, we chose to
focus on finding partial orderingsconsistentwith the given
totally ordered plan. There are two reasons for this. The first
is that the total order contains a wealth of valuable informa-
tion about how to solve the problem, including which oper-
ators to use and which conditional effects are relevant. The
second is that for many applications, including plan modifi-
cation and reuse and agent modelling, it is important to be
able to analyze an observed or previously generated plan,
for example, to find characteristic patterns of behavior or to
identify unnecessary steps.

There are cases in which a different total ordering of the
same plan steps would produce a different partial ordering,
but these are cases in which the relevant effects differ. Con-
sider the two totally ordered plans shown in Figures 4 and 5.
Although they consist of exactly the same steps, in the first
totally ordered plan, the sequence of relevant effects that
produces the goal termz is different than thesequence that
producesz in the second totally ordered plan. We consider
these two plans to be non-equivalent, though they solve the
same problem. SPRAWL would never produce the same par-
tial ordering for both of them; the partial orderings would
each preserve the same relevant effects as are active in the

respective totally ordered plans.
However, since our purpose is to reveal underlying struc-

ture, we do have some requirements on the form of the re-
sulting partial ordering; we allow only ordering constraints
which affect the fulfillment of the goal terms—those which
provide for or prevent relevant effects.

The remainder of this paper is organized as follows. We
first discuss related work in plan analysis. Then we intro-
duce the needs analysis technique, illustrate its behavior and
discuss its complexity. Next, we explain how the SPRAWL
algorithm uses needs analysis to find a partial ordering and
discuss the complexity of the entire algorithm. We then dis-
cuss the limitations and capabilities of the algorithm, present
formal definitions for the concepts we use and introduce, and
finally present our conclusions.

Related Work
Triangle tables: (Fikes, Hart, & Nilsson 1972; Regnier &
Fade 1991) store generalized plans in a table that shows
which add-effects of each op remain after each subsequent
op–helps to know how to use subplans–use some other bit
of saved knowledge (what?) to identify which ops are irrel-
evant in partial reuse. they mention the need to be able to
“identify the role of each operator in the overall plan: what
its important effedcts are (as opposed to side effects) and
why these effects are needed in the plan.”

reg & fade use triangle table to build po with no “artifi-
cial” ordering constraints.

Validation structures: (Kambhampati & Hendler 1992;
Kambhampati & Kedar 1994) given a p.o., constructs list of
validations: 4-tuple (provided effect, providing op, relying
condition, relying op). no ces. no validations for threats, but
some computation over validations finds threats for you.



pre:
{}

pre:
{}

effects:
a −> b
p −> q

pre:
{}

effects:
b −> c
a −> p

pre:
{}

effects:
c −> z
q −> z

effects:
{}

effects:
a

pre:
z

START op1 op2 op3 FINISH

Figure 4: One possible totally ordered plan. The preconditions are shown on the left of each plan step and the effects on the
right, as a list of condition and add-effect pairs. If there were delete effects, they would be shown as adds of negated terms.

pre:
{}

pre:
{}

effects:
b −> c
a −> p

pre:
{}

effects:
a −> b
p −> q

pre:
{}

effects:
c −> z
q −> z

effects:
{}

effects:
a

pre:
z

START op2 op1 op3 FINISH

Figure 5: Another possible totally ordered plan achieving the same goals.

Annotated “decision-making” rationale: (Veloso 1994)
analogical reasoning—stores cases supplemented with
“decision-making rationale” in order to be able to reuse ra-
tionale, not just old plan.

Operator graphs & their various-&-sundry uses: (Smith
& Peot 1993; 1996) capture interaction between ops by
chaining back from goal in very needs-analysis-y sort of
way. one node for each operator. used for threat analysis,
threat postponing, analyze/identify/avoid “recursions” (a, a-
1, a, a-1...).

Goal agendas: (Koehler & Hoffmann 2000) use var-
ious methods (including planning graphs) to find “goal
agendas”—an ordering for in which order to attack goals.
still exponential time, since it doesn’t remember the plans,
but less exponential, since fewer threat difficulties.

previous partial ordering work: (Veloso, Pérez, & Car-
bonell 1990) found a po from a non-ce to; no annotations
(Bäckstr̈om 1993) found that it’s np-complete to find a best
po, given a to. (Kambhampati 1996) delay threat resolution
by using disjunctive orderings—we use disjunctions, too! is
this too tenuous a link??

various po-ish planning methods: (Weld 1994) given
problem, finds PO. can handle CEs, but does not annotate.

One of the most popular and efficient partial-order plan-
ners, Graphplan (Blum & Furst 1997), produces overcon-
strainted partial orderings, which does not suit our purpose.
Consider the plan in which the stepsop a 1 . . . op a n may
run in parallel with the stepsop b 1 . . . op b m. Graphplan
would find the partial ordering shown in Figure 6, which
forcesopp to be one of the first two steps of the plan. The or-
dering constraint betweenopp andop2 does not help achieve
the goal, so it would not have been included in a partial or-
dering created by SPRAWL. SPRAWL would find the par-
tial ordering shown in Figure 7, which allowsopp to run in
parallel with any of the other steps. POINT OUT IRREL-
EVANT LINKS IN GRAPHPLAN VERSION. NO POSSI-
BLE REASON FOR THEM.

Needs Analysis
Our first step in finding a partial ordering is to do needs anal-
ysis on the totally ordered plan. Needs analysis begins by

START

op 1

op p

op 2 op n FINISH

Figure 6: The partial ordering found by Graphplan.

op 1 op 2 op n

START FINISH

op p

Figure 7: The partial ordering found by SPRAWL.

creating a goal step calledFINISH , as in (Smith & Peot
1993), with the terms of the goal state as preconditions.
Then it calculates which terms need to be true before the
last step in the plan in order for the preconditions ofFIN-
ISH to be true afterwards, and then which need to be true
before the second-to-last plan step in order forthoseterms
to be true. We continue this calculation all the way back-
wards to the initial state, building up a tree of “needs.” This
needs tree allows us to identify easily the relevant effects of
a given step and most of the dependencies in the plan. How-
ever, threats not active in the totally ordered plan are not
identified by needs analysis, and must be found afterwards.

Needs Tree Structure
In this section, we will discuss the needs that compose the
needs tree as well as the structure of the tree.

There are three kinds of needs in the needs tree:

1. Precondition Needsthe preconditions of a step are called
precondition needsof the step—they must be true for the
step to be executable;

2. Creation Needsterms which must be true before stepn
in order for stepn to create a particular term (or maintain



a previously existing term) are calledcreation needsof
the term;

3. Protection Needsterms which must be true before stepn
in order for stepn not to delete a particular term are called
protection needsof the term.

pre:
on sprinkler

effects:
{} −> wet front−yard
at ?obj front−yard −> wet ?obj

sprinkle front−yard

Figure 8: The stepsprinkle front-yard .

We will use the plan step shown in Figure 8 to illustrate
the three kinds of needs. The termon sprinkler is aprecon-
dition needof the stepsprinkle front-yard . To illustrate
creation needs, let us assume that, after executing the step
sprinkle front-yard , wet shoemust be true. This could
be accomplished by ensuring thatat shoe front-yard was
true beforesprinkle front-yard executed or by ensuring that
wet shoewas already true beforesprinkle front-yard exe-
cuted, as shown in Figure 9. These two terms are called
creation needsof wet shoeat the stepsprinkle front-yard ,
since they provide ways for the termwet shoeto be true
after the stepsprinkle front-yard . To illustrateprotection
needs, assume that, after executing the stepsprinkle front-
yard, the termNOT wet shoemust be true. In order to
protect the termNOT wet shoe, we must ensure thatNOT
at shoe front-yard is true beforesprinkle front-yard exe-
cutes. This is called aprotection needbecause it protects the
term from being deleted.

We must also make a distinction betweenmaintaincre-
ation needs andaddcreation needs1. As mentioned above,
there are two ways to ensure thatwet shoeis true after the
execution of the stepsprinkle front-yard , both illustrated
in Figure 9. One way is forwet shoeto have been true pre-
viously. We call this amaintaincreation need since the step
does not generate the term, but simply maintains a term that
was previously true. However, the stepsprinkle front-yard
could generate the termwet shoeif at shoe front-yard were
true before the step executed. We call this anadd creation
need, since we have introduced a new need in order to satisfy
another.

It is not always necessary to generate new needs to satisfy
a need term; it may also be satisfied if a non-conditional
effect of the step satisfies it, as illustrated in Figure 10. We
call such needsaccomplished.

The description of needs must include logical operators.
In the example shown in Figure 9,the needs ofwet shoeare
wet shoe OR at shoe front-yard. Only one of the two needs
to be true to satisfywet shoe. ANDs andNOTs are also
necessary.

1Precondition needs and protection needs are alwaysaddneeds.

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

pre:
on sp

needs

OR
create

wet sh

wet sh

at sh fy

sprinkle fy next step

maintain

add

Figure 9: Expanding the needwet shoein the stepsprinkle
front-yard . The termwet shoemay be satisfied in either of
two ways; this is represented by anOR operator.

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

pre:
on sp

precondition

wet fy

sprinkle fy next step

Figure 10: A term may be true after a particular step if a
non-conditional effect of the previous step accomplishes it.
We indicate this with a double circle around the term.



Needs Analysis Algorithm
The needs analysis algorithm is shown in Table 1, and Fig-
ure 11 illustrates in detail how it generates the needs of
an individual term. The complexity of needs analysis is
O(mP (EC)n), wherem is the number of steps without
conditional effects,n is the number of steps with conditional
effects,P is the bound on the number of preconditions,E is
the bound on the number of conditional effects in each step,
andC is the bound on the number of conditions per condi-
tional effect. Note that the complexity of needs analysis on
a plan with no conditional effects is linear:O(mP ).

Input : A totally ordered planT = S1, S2, . . . , Sn,
the START operatorS0 with add effects set to the
initial state, and the FINISH operatorSn + 1 with
preconditions set to the goal state.

Output : A needs treeN .

procedureNeedsAnalysis(T , S0, Sn + 1):
1. for c← n+1 down-to1 do
2. for each precond ofSc do
3. ExpandTerm(c, precond)

procedureExpandTerm(c, term):
4. Find Creation(c, term)
5. Find Prevention(c, term)

procedureFind Creation(c, term):
6. for each conditional effect ofSc do
7. if effect adds termthen
8. term.accomplished← true
9. otherwise
10. Add ConditionsTo CreationNeeds(effect, term)
11. for each condition of effectdo
12. ExpandTerm(c-1, condition)

procedureFind Prevention(c, term):
13. for each conditional effect ofSc do
14. if effect deletes termthen
15. term.impossible← true
16. return
17. otherwise
18. Add ConditionsTo PreventionNeeds(effect, term)
19. for each condition of effectdo
20. ExpandTerm(c-1, condition)

Table 1: Needs Analysis algorithm.

We will use the totally ordered plan from the sprinkler
domain shown in Figure 12 to illustrate the behavior of the
needs analysis algorithm. First, the algorithm will create the
FINISH step that has, as its precondition needs, the goal
terms. Then it will move to the last plan step (sprinkle
front-yard ), which has one precondition need, to determine
how to satisfy the needs of the subsequent step (FINISH ).
As previously discussed, there are two ways for the step
sprinkle front-yard to satisfywet shoe: either wet shoe
could be true before this step executes, orat shoe front-
yard must be true before this step executes. So the needs of
the termwet shoearemaintain wet shoe ORadd at shoe
front-yard . As for add wet front-yard , the other precon-

dition need of theFINISH step, it is accomplished by the
stepsprinkle front-yard since it is a non-conditional effect
of the step.

Next, the algorithm moves back to the previous plan step,
move shoe back-yard front-yard, which has one precon-
dition need. The needs carried over from previous steps are
maintain wet shoe ORaddat shoe front-yard, the creation
need ofwet shoefrom theFINISH step, andon sprinkler ,
the precondition need of the stepsprinkle front-yard . The
term at shoe front-yard is a non-conditional effect of this
step, so it is accomplished. The termwet shoecannot be
prevented or created by this step, so it is satisfied by a main-
tain creation need:maintain wet shoe. The termon sprin-
kler also cannot be prevented or created by this step, so it,
too, is satisfied by a maintain creation need:maintain on
sprinkler .

Finally, the algorithm reaches the initial state, orSTART
step, and it is able to determine which branches of the needs
tree can be accomplished and which can not. The remaining
branches of the tree areadd at shoe back-yard, maintain
on sprinkler , andmaintain wet shoe. Two of the needs,
addat shoe back-yardandmaintain on sprinkler are true
in the initial state (accomplished by theSTART step). How-
ever,maintain wet shoeis cannot be accomplished by the
START step, so we call its branch of the treeunsatisfiable.

The SPRAWL Algorithm
Table 2 shows the SPRAWL partial ordering algorithm.
SPRAWL performs needs analysis, then walks backwards
along the needs tree and adds causal links in the partial or-
dering between steps that need terms and the steps that gen-
erate them. The complexity of the SPRAWL algorithm is
O(mP (EC)n +A ∗ (m+n+ 2)3), wherem is the number
of steps without conditional effects,n is the number of steps
with conditional effects,P is the bound on the number of
preconditions,E is the bound on the number of conditional
effects in each step, andC is the bound on the number of
conditions per conditional effect.

Resolving Threats
We rely heavily on the totally ordered plan to help us resolve
threats. There are three ways to resolve threats in a plan with
conditional effects, as described in (Weld 1994):

1. Promotion moves the threatened operators before the
threatening operator;

2. Demotion moves the threatened operator after the threat-
ening operator;

3. Confrontation may take place when the threatening ef-
fect is conditional. It adds preconditions to the threaten-
ing operator to prevent the effect causing the threat from
occurring.

To find all possible partial orderings, all these possibilities
should be explored. However, since we are provided the
totally ordered plan, we do not need to search at all to find a
feasible way to resolve the threat; we can simply resolve it
in the same way it was resolved in the totally ordered plan.
In fact, if threats are resolved in a different way, then the



term

AND

OR

AND

conditions of a CE
that adds term

conditions of a CE
that adds term

OR

that deletes term
conditions of a CE

NOT e NOT f

OR

that deletes term
conditions of a CE

NOT g NOT h

create protect

term

a b c d

maintain

add add add add add add add add

AND

Figure 11: The creation needs of a need at a particular step are calculated by finding all possible ways it can be generated in the
previous step and ensuring that at least one of these occurs. The protection needs are calculated by finding all possible ways it
can be deleted in the previous step and ensuring that none of these occurs.

preconditionpreconditionpreconditionprecondition

create

OR
create
maintain

create
maintain

create
maintain

pre:
on sp

pre:
wet sh
wet fy

ore:
at sh by

pre:
{}

effects:
{} −> at sh by
{} −> on sp

effects:
{} −> at sh fy
{} −> NOT at sh by

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

effects:
{}

at sh by

wet fy

at sh fy

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

wet fy

create
maintain

wet fy

at sh fy

on sp

wet sh

wet sh

wet fy

on spon sp

at sh by

add

maintain
wet sh

at sh fy

wet sh

sprinkle fymove sh by fySTART FINISH

Figure 12: A totally ordered plan in the sprinkler domain and its complete needs tree.



Input : A totally ordered planT = S1, S2, . . . , Sn,
the START operatorS0 with add effects set to the
initial state, and the FINISH operatorSn + 1 with
preconditions set to the goal state.

Output : A partially ordered plan shown as a directed graphP.

procedureFind PartialOrder(T , S0, Sn + 1):
1. tree← NeedsAnalysis(T , S0, Sn + 1)
2. tree← Trim UnaccomplishedNeedTreeBranches(tree)
3. for c← n+1 down-to1 do
4. for each precondition ofSc do
5. RecurseNeed(c, precondition,P)
6. HandleThreats(tree,P)
7. RemoveTransitiveEdges(P)

procedureRecurseNeed(c, term,P):
8. Add CausalLink(choose one way to create term,Sc, P)
9. RecurseNeed(c-1, term.create,P)
10. RecurseNeed(c-1, term.protect,P)

procedureHandleThreats(tree,P):
11. for each causal linkSi → Sj do
12. for c← 1 up-toi− 1 do
13. if Threatens(Sc, Si → Sj) then
14. DEMOTE: Add CausalLink(Sc, Si, P)
15. for c← j + 1 up-ton
16. if Threatens(Sc, Si → Sj) then
17. PROMOTE: Add CausalLink(Sj , Sc, P)

Table 2: The SPRAWL algorithm.

resulting partial ordering would not be consistent with the
totally ordered plan.

If, in the totally ordered plan, the threatening operator oc-
curs before the threatened operators, then promotion should
be used to resolve the threat in the partial ordering. Sim-
ilarly, if it occurs after the threatened operators, demotion
should be used to resolve the threat in the partial ordering. If
the threatening operator occurs between the threatened op-
erators in the totally ordered plan, then we know that con-
frontation must have been used in the totally ordered plan
to prevent the threatening conditional effect from occurring.
Needs analysis takes care of confrontation withprotection
needs, shown in Figure 11 which ensure that steps that oc-
cur between a needed term’s creation and use in the totally
ordered plan do not delete the term.

Discussion
The SPRAWL algorithm does not create a partially ordered
plan from scratch; its purpose is to partially order the steps
of a given totally ordered plan to aid in our understanding
of the structure of the plan. Because of this, SPRAWL is
restricted to partial orderings consistent with the totally or-
dered plan.

However, frequently there are many partial orderings con-
sistent with the totally ordered plan. Here, we discuss the
space of possibilities explored by SPRAWL as we have de-
scribed it, and how that space can be extended to include all
possible partial orderings consistent with the totally ordered

plan.

Active Conditional Effects May Differ from Those
in Totally Ordered Plan
Though SPRAWL is restricted to partial orderings consistent
with the totally ordered plan it is given, this does not mean
that all conditional effects active in the totally ordered plan
must be active in the partial ordering, or vice versa. There
are sometimes irrelevant conditional effects in the totally or-
dered plan or in the partial ordering, and SPRAWL does not
seek to maintain or prevent these irrelevant effects. The ig-
nore case shown as a totally ordered plan in Figure 1 demon-
strates this. In this problem, one of the active effects in the
totally ordered plan iswet shoe. However, this effect does
not affect the fulfillment of the goal state, and so is not a rel-
evant effect. In fact, as is shown in Figure 3, SPRAWL would
enforce no ordering constraints between the two steps in its
partial ordering. Though the different orderings produce dif-
ferent final states, the goal terms are true in each of these
final states, so it doesn’t matter which occurs.

Partial Ordering May Not Include All Relevant
Effects in Total Ordering
Although, as we discussed, SPRAWL is restricted to partial
orderings with no relevant effects not active in the given to-
tally ordered plan, this does not mean that all relevant effects
in the totally ordered plan must be relevant effects in the
partial ordering. Sometimes, there are several relevant ef-
fects in the totally ordered plan which achieve the same aim.
Bäckstr̈om presented an example that neatly illustrates this.
The totally ordered plan is shown with its needs tree in Fig-
ure 13. In this plan, two different relevant effects provide the
termq to stepc—both stepa and stepb generateq. Choos-
ing a different relevant effect to generateq creates a different
partial order. The two partial orders representing each of the
two relevant effect choices are shown in Figures 14 and 15.

ba c
p q

Figure 14: The only partial ordering of Bäckstr̈om’s exam-
ple plan permitted by the presented version of the needs
analysis algorithm

Finding Multiple Partial Orderings
In the interest of speed, SPRAWL finds exactly one partial
ordering and does not search through different partial order-
ings to find a “better” one according to any measure. The
needs analysis algorithm shown in Table 1 produces a needs
tree that encompasses all possible partial orderinsg consis-
tent with the totally ordered plan, but the version of SPRAWL
shown in Table 2 arbitrarily chooses one possible partial or-
dering from those represented by the needs tree. SPRAWL
can be modified to search through more possible partial or-
derings, however, finding the best partial ordering according
to any measure is NP-complete (Bäckstr̈om 1993).



effects:
{} −> p
{} −> q

effects:
{}

effects:
{} −> q
{} −> r

effects:
{} −> s

q

r

s

r

pp

q

r

s

r

s

q

r

ss

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

create
maintain

p

pre:
{}

pre:
{}

pre:
p

pre:
q

pre:
r
s

effects:
{}

precondition
precondition

precondition precondition

q *

FINISHcbaSTART

Figure 13: B̈ackstr̈om’s example plan, and the needs tree created if the algorithm does not terminate branches when they are
accomplished. Note that the termq is accomplished by two different steps:a andb. This means that two partial orderings are
possible: one in which stepa providesq to stepc, and one in whichb does. If branches are terminated as they are accomplished,
the accomplished need markedq* , which represents stepa providingq to stepc, would not be found.

a

c

bp

q

Figure 15: Another partial ordering of Bäckstr̈om’s example
plan. If we make the discussed modifications to the needs
analysis algorithm, both this partial ordering and the one
shown in Figure 14 would be represented in the needs tree,
as shown in Figure 13.

When anOR logical operator is encountered in the needs
tree, SPRAWL arbitrarily chooses which of its branches to
follow and ignores the others (Table 2, step 8). Instead, we
could search through the possibilities to find the branch that
contributes to the best partial ordering.

If we modify the needs analysis algorithm as discussed
above, there is sometimes more than one way to accomplish
a need, as with the needq in Figure 13. SPRAWL arbitrar-
ily chooses one of these ways to be the need’s creator in the
partial ordering (Table 2, step 8). Again, we could search
through all possibilities instead, and choose the one that con-
tributes to the best partial ordering.

SPRAWL resolves threats in the same way they were re-
solved in the totally ordered plan. It is possible instead to
search over all three ways (promotion, demotion and con-
frontation) to resolve each. However, the partial ordering

will only be consistent with the totally ordered plan if threats
are resolved in the same way.

Definitions
Totally ordered plan T consists of an initial state,I,
which is a list of terms that are true before the plan begins;
a goal state,G, which is a list of terms that must be accom-
plished by the plan; and a list of steps,S1 . . . Sn. Each step
has a list of preconditions, or terms that must be true before
the step is executable; and a list of conditional effects, which
describe the effects of the step. Each conditional effect has a
list of conditions and a list of effects, which become true af-
ter the plan step executes if the conditions of the effect were
satisfied before the plan step executed. The preconditions of
the first step in the plan,S1, must be true in the initial state
I; the preconditions of each subsequent stepSi must be true
after stepsS1 . . . Si−1 execute in order; and the terms of the
goal stateG must be true after stepsS1 . . . Sn execute in
order.

Partial ordering P A partial orderingP of the totally or-
dered planT also includes a list ofordering constraints.
Each ordering constraint specifies that a given stepSi must
come before another stepSj . The preconditions of the first
step in the plan,S1, must still be true in the initial state
I. However, we now demand that the preconditions of each
subsequent stepSi must be true after any possible ordering
of the plan steps that ends atSi that is consistent with the
ordering constraints; and that the terms of the goal stateG
must be true after stepsS1 . . . Sn execute in any order con-
sistent with the ordering constraints.



Annotated Ordering an ordering of plan steps supple-
mented with a rationale for (some of) the ordering con-
straints.

Relevant Effect an effect which affects the fulfillment of a
goal term.

Incidental Effect an effect which does not affect the ful-
fillment of a goal term.

Consistent a partial orderingP is consistent with the to-
tally ordered planT if all relevant effects active inP are
also active inT .

Minimal Annotated Consistent Partial Ordering a par-
tial ordering consistent with the totally ordered plan in
which each ordering constraint either provides a term which
a relevant effect depends upon or prevents a threat to such
a term, and in which each ordering constraint is annotated
with which term it provides or protects.

Conclusions
THIS WAS GARBAGE AND NEEDS TO BE REWRIT-
TEN. BASIC MESSAGE, WE HAVE PRESENTED, YAP
YAP YAP, AND WE HOPE IT OPENS THE FIELD
FOR PLAN REUSE/ADAPTATION/RECOGNITION
AND AGENT MODELLING TO RICHER DOMAIN
LANGUAGES WITH CEs.

References
Bäckstr̈om, C. 1993. Finding least constrained plans and
optimal parallel executions is harder than we thought. In
Bäckstr̈om, C., and Sandewall, E., eds.,Current Trends
in AI Planning: EWSP’93—2nd European Workshop on
Planning, Frontiers in AI and Applications, 46–59. Vad-
stena, Sweden: IOS Press.
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis.Artificial Intelligence90:281–300.
Fikes, R., and Nilsson, N. J. 1971. Strips: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence2(3-4):189–208.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans.Artificial Intelli-
gence3(4):251–288.
Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse.Ar-
tificial Intelligence55(2-3):193–258.
Kambhampati, S., and Kedar, S. 1994. A unified frame-
work for explanation-based generalization of partially or-
dered and partially instantiated plans.Artificial Intelligence
67(1):29–70.
Kambhampati, S. 1996. Using disjunctive orderings in-
stead of conflict resolution in partial order planning. Tech-
nical Report ASU CSE TR 96-002, Arizona State Univer-
sity, Tempe, Arizona.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm.Journal of Artificial Intelligence Re-
search12:338–386.
Pednault, E. 1986. Formulating multiagent, dynamic-
world problems in the classical planning framework. In
Georgeoff, M., and Lansky, A., eds.,Reasoning about ac-
tions and plans: Proceedings of the 1986 workshop, 47–82.
Los Altos, California: Morgan Kaufmann.
Regnier, P., and Fade, B. 1991. Complete determination of
parallel actions and temporal optimization in linear plans
of action. In Hertzberg, J., ed.,European Workshop on
Planning, volume 522 ofLecture Notes in Artificial Intel-
ligence. Sankt Augustin, Germany: Springer-Verlag. 100–
111.
Smith, D. E., and Peot, M. A. 1993. Postponing threats
in partial-order planning. InProceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93),
500–507. Washington, D.C.: AAAI Press/MIT Press.
Smith, D. E., and Peot, M. A. 1996. Suspending recursion
in causal-link planning. In Drabble, B., ed.,Proceedings of
the third international conference on Artificial Intelligence
Planning Systems, 182–190.
Veloso, M.; Ṕerez, A.; and Carbonell, J. 1990. Nonlin-
ear planning with parallel resource allocation. InProceed-
ings of the DARPA Workshop on Innovative Approaches to
Planning, Scheduling, and Control, 207–212. San Diego,
CA: Morgan Kaufmann.
Veloso, M. M. 1994. Prodigy/analogy: Analogical reason-
ing in general problem solving. InTopics on Case-Based
Reasoning. Springer Verlag. 33–50.
Weld, D. 1994. An introduction to least committment plan-
ning. AI Magazine15(4):27–61.


