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Abstract

In this paper, we introduceSPRAWL, an algorithmto find a
minimal annotatedpartially orderedstructurein anobserved
totally orderedplan with conditionaleffects. The algorithm
proceedsin a two-phasedapproach,first preprocessingthe
given plan using a novel needsanalysis technique,which
builds a needstreeto identify thecausaldependenciesin the
totally orderedplan; andthenconstructingthepartialorder-
ing usingthe needstree. We introducethe conceptandde-
tails of needsanalysis,presentthe completealgorithm,and
provide illustrative examples.We carefullydiscussthechal-
lengesthatwe faced.

Intr oduction
Much of the work on plan reuse, plan recognition and
agentmodelling hasbeenfoundedon the analysisof ex-
ampleplansandexecutions.Oneof the mostcommonap-
proachesto plan analysishasbeento createan annotated
orderingof theexampleplan(Fikes,Hart,& Nilsson1972;
Regnier & Fade 1991; Kambhampati& Hendler 1992;
Kambhampati& Kedar1994;Veloso1994). Annotatedor-
deringsallow systemsnot only to moreflexibly reusepor-
tions of the plansthey have observed,but alsoto reusethe
reasoningthat createdthoseplans in order to solve new
problems.

Despitea shift in theplanningandagentmodellingcom-
munity from STRIPS(Fikes& Nilsson1971)towardsricher
domain-specificationlanguageslike ADL (Pednault1986),
which allow conditionaleffects,anddespitethe successin
learningsystemsof theannotatedorderingapproach,it has
notbeenappliedto domainswith conditionaleffects.In this
paper, we introducetheSPRAWL algorithmfor findingmin-
imal annotatedconsistentpartial orderingsof observedto-
tally orderedplans.

Wechoseto findpartialorderingsfor severalreasons.Par-
tial orderingshelp to isolateindependentsubplansso they
canbereusedor recognizedseparatelyfrom thewhole. DO
WE NEED TO SAY MORE ABOUT WHY THEY DO
THIS OR IS THIS OBVIOUS TO EVERYONE?They also
provide parallelismfor thoseapplicationsthat cantake ad-
vantageof it. For generality’ssake,weassumethatobserved
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exampleplansaretotally ordered.Theannotationsontheor-
deringconstraintsexplain therationalebehindtheplansand
allow portionsof themto beeasilymatched,removed,and
usedindependently.
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Figure2: The annotatedpartially orderedplan which uses
theconditionaleffectof op1 to achieveagoal.
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Figure3: Theannotatedpartiallyorderedplanwhichignores
theconditionaleffectof op1.

Conditionaleffectsmakeour taskmuchmoredifficult be-
causethey causethe effects of a given stepto changede-
pendingon whatstepscomebeforeit, thusmakingstepbe-
havior difficult to predict. In fact, any orderingmust treat
eachconditionaleffect in theplanin oneof threeways:
� Use:makesuretheeffectoccurs;
� Prevent: makesuretheeffectdoesnotoccur;
� Ignore: don’t carewhethertheeffectoccursor not.

Figure 1 shows totally orderedplans which demonstrate
thesethreecases,andFigures2 and3 show the partial or-
dersrepresentingtheuseandignorecases,respectively. Al-
thoughthetotally orderedplansfor thesetwo casesarecom-
posedof thesamestepsin thesameorder, thepartialorder-
ingsarevery different. Treatingany conditionaleffect in a
differentway will resultin a differentpartialordering.One
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Figure1: Threetotally orderedplanswhich representthe threepossiblewaysof treatinga conditionaleffect in an ordering:
usingit to achievea goal,preventingit in orderto achievea goal,or ignoringits effect.

way to dealwith this is to insist thatexactly thesamecon-
ditional effectsmustbe active in the partialorderingasare
active in the totally orderedplan, but this will result in an
overly restrictive partial ordering in which someordering
constraintsmaynotcontributeto goalachievement.Instead,
weperformneedsanalysisonthetotally orderedplanto dis-
coverwhichconditionaleffectsarerelevant. Needsanalysis
allows us to ignore incidentalconditionaleffectsin the to-
tally orderedplan.

Insteadof lookingfor theoptimal(accordingtosomemet-
ric) partially orderedplan to solve a problem,we choseto
focuson finding partialorderingsconsistentwith thegiven
totally orderedplan.Therearetwo reasonsfor this. Thefirst
is thatthetotal ordercontainsawealthof valuableinforma-
tion abouthow to solve theproblem,includingwhich oper-
atorsto useandwhich conditionaleffectsarerelevant. The
secondis that for many applications,includingplanmodifi-
cationandreuseandagentmodelling, it is importantto be
able to analyzean observed or previously generatedplan,
for example,to find characteristicpatternsof behavior or to
identify unnecessarysteps.

Therearecasesin which a differenttotal orderingof the
sameplanstepswould producea differentpartialordering,
but thesearecasesin which therelevanteffectsdiffer. Con-
siderthetwo totally orderedplansshown in Figures4 and5.
Althoughthey consistof exactly thesamesteps,in thefirst
totally orderedplan, the sequenceof relevant effects that
producesthe goal term z is differentthanthesequencethat
producesz in thesecondtotally orderedplan. We consider
thesetwo plansto benon-equivalent,thoughthey solve the
sameproblem.SPRAWL wouldneverproducethesamepar-
tial orderingfor both of them; the partial orderingswould
eachpreserve the samerelevant effectsasareactive in the

respective totally orderedplans.
However, sinceour purposeis to revealunderlyingstruc-

ture,we do have somerequirementson the form of the re-
sultingpartialordering;we allow only orderingconstraints
which affect thefulfillment of thegoal terms—thosewhich
providefor or preventrelevanteffects.

The remainderof this paperis organizedasfollows. We
first discussrelatedwork in plan analysis. Thenwe intro-
ducetheneedsanalysistechnique,illustrateits behavior and
discussits complexity. Next, we explain how the SPRAWL
algorithmusesneedsanalysisto find a partialorderingand
discussthecomplexity of theentirealgorithm.We thendis-
cussthelimitationsandcapabilitiesof thealgorithm,present
formaldefinitionsfor theconceptsweuseandintroduce,and
finally presentourconclusions.

RelatedWork
Triangletables: (Fikes,Hart, & Nilsson1972;Regnier &
Fade1991) store generalizedplans in a table that shows
which add-effectsof eachop remainafter eachsubsequent
op–helpsto know how to usesubplans–usesomeotherbit
of savedknowledge(what?)to identify which opsareirrel-
evantin partialreuse.

Validationstructures: (Kambhampati& Hendler1992;
Kambhampati& Kedar1994)givena p.o.,constructslist of
validations:4-tuple(providedeffect, providing op, relying
condition,relyingop). noces.novalidationsfor threats,but
somecomputationovervalidationsfindsthreatsfor you.

Annotated“decision-making”rationale: (Veloso1994)
analogical reasoning—storescases supplementedwith
“decision-makingrationale”in orderto beableto reusera-
tionale,not just old plan.

Operatorgraphs& their various-&-sundryuses: (Smith



pre:
{}

pre:
{}

effects:
a −> b
p −> q

pre:
{}

effects:
b −> c
a −> p

pre:
{}

effects:
c −> z
q −> z

effects:
{}

effects:
a

pre:
z

START op1 op2 op3 FINISH

Figure4: Onepossibletotally orderedplan. Thepreconditionsareshown on the left of eachplanstepandtheeffectson the
right, asa list of conditionandadd-effectpairs.If thereweredeleteeffects,they would beshown asaddsof negatedterms.
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Figure5: Anotherpossibletotally orderedplanachieving thesamegoals.

& Peot 1993; 1996) captureinteraction betweenops by
chaining back from goal in very needs-analysis-ysort of
way. onenodefor eachoperator. usedfor threatanalysis,
threatpostponing,analyze/identify/avoid “recursions”(a,a-
1, a,a-1...).

Goal agendas: (Koehler & Hoffmann 2000) use var-
ious methods(including planning graphs) to find “goal
agendas”—anorderingfor in which order to attackgoals.
still exponentialtime, sinceit doesn’t rememberthe plans,
but lessexponential,sincefewer threatdifficulties.

previous partial orderingwork: (Veloso,Pérez,& Car-
bonell 1990) found a po from a non-ceto; no annotations
(Bäckstr̈om 1993)foundthat it’s np-completeto find a best
po,givena to. (Kambhampati1996)delaythreatresolution
by usingdisjunctiveorderings—weusedisjunctions,too! is
this too tenuousa link??

various po-ish planning methods: (Weld 1994) given
problem,findsPO.canhandleCEs,but doesnot annotate.

Oneof the mostpopularandefficient partial-orderplan-
ners,Graphplan(Blum & Furst 1997), producesovercon-
straintedpartialorderings,which doesnot suit our purpose.
Considertheplanin which thesteps��� � �
	�	�	
��� � � may
run in parallelwith thesteps��� � �
	�	�	
��� � � . Graphplan
would find the partial orderingshown in Figure 6, which
forces����� to beoneof thefirst two stepsof theplan.Theor-
deringconstraintbetween����� and ����� doesnothelpachieve
thegoal,so it would not have beenincludedin a partialor-
dering createdby SPRAWL. SPRAWL would find the par-
tial orderingshown in Figure7, which allows ����� to run in
parallelwith any of the othersteps.POINT OUT IRREL-
EVANT LINKS IN GRAPHPLANVERSION.NO POSSI-
BLE REASONFORTHEM.

START

op 1

op p

op 2 op n FINISH

Figure6: Thepartialorderingfoundby Graphplan.

op 1 op 2 op n

START FINISH

op p

Figure7: Thepartialorderingfoundby SPRAWL.

NeedsAnalysis
Ourfirst stepin findingapartialorderingis to doneedsanal-
ysis on the totally orderedplan. Needsanalysisbegins by
creatinga goal stepcalled FINISH , as in (Smith & Peot
1993), with the terms of the goal stateas preconditions.
Then it calculateswhich termsneedto be true beforethe
last stepin the plan in orderfor the preconditionsof FIN-
ISH to be true afterwards,andthenwhich needto be true
beforethe second-to-lastplan stepin orderfor thoseterms
to be true. We continuethis calculationall the way back-
wardsto theinitial state,building up a treeof “needs.” This
needstreeallowsusto identify easilytherelevanteffectsof
agivenstepandmostof thedependenciesin theplan.How-
ever, threatsnot active in the totally orderedplan are not
identifiedby needsanalysis,andmustbefoundafterwards.

NeedsTreeStructur e
In this section,we will discussthe needsthat composethe
needstreeaswell asthestructureof thetree.

Therearethreekindsof needsin theneedstree:

1. PreconditionNeedsthepreconditionsof asteparecalled
preconditionneedsof thestep—they mustbetruefor the
stepto beexecutable;

2. Creation Needstermswhich mustbe true beforestep �
in orderfor step� to createaparticularterm(or maintain
a previously existing term) are called creation needsof
theterm;

3. ProtectionNeedstermswhichmustbetruebeforestep�
in orderfor step� notto deleteaparticulartermarecalled
protectionneedsof theterm.
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Figure9: Expandingtheneedwet shoein thestepsprinkle
fr ont-yard. Thetermwet shoemaybesatisfiedin eitherof
two ways;this is representedby anOR operator.

We will usethe planstepshown in Figure8 to illustrate
thethreekindsof needs.Thetermon sprinkler is aprecon-
dition needof the stepsprinkle fr ont-yard. To illustrate
creationneeds, let us assumethat, after executingthe step
sprinkle fr ont-yard, wet shoemust be true. This could
be accomplishedby ensuringthat at shoefr ont-yard was
truebeforesprinkle fr ont-yard executedorbyensuringthat
wet shoewasalreadytruebeforesprinkle fr ont-yard exe-
cuted,as shown in Figure 9. Thesetwo termsare called
creationneedsof wet shoeat thestepsprinkle fr ont-yard,
sincethey provide ways for the term wet shoe to be true
after the stepsprinkle fr ont-yard. To illustrateprotection
needs, assumethat,afterexecutingthestepsprinkle fr ont-
yard, the term NOT wet shoemust be true. In order to
protectthe termNOT wet shoe, we mustensurethatNOT
at shoefr ont-yard is truebeforesprinkle fr ont-yard exe-
cutes.This is calledaprotectionneedbecauseit protectsthe
termfrom beingdeleted.

We mustalsomake a distinctionbetweenmaintaincre-
ationneedsandaddcreationneeds1. As mentionedabove,
therearetwo waysto ensurethatwet shoeis trueafter the
executionof the stepsprinkle fr ont-yard, both illustrated
in Figure9. Oneway is for wet shoeto have beentruepre-
viously. We call this a maintaincreationneedsincethestep
doesnot generatetheterm,but simply maintainsa termthat
waspreviously true.However, thestepsprinkle fr ont-yard
couldgeneratethetermwet shoeif at shoefr ont-yard were
true beforethe stepexecuted.We call this an add creation

1Preconditionneedsandprotectionneedsarealwaysaddneeds.

need,sincewehaveintroducedanew needin orderto satisfy
another.

It is notalwaysnecessaryto generatenew needsto satisfy
a needterm; it may also be satisfiedif a non-conditional
effect of thestepsatisfiesit, asillustratedin Figure10. We
call suchneedsaccomplished.
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Figure10: A term may be true after a particularstepif a
non-conditionaleffect of thepreviousstepaccomplishesit.
We indicatethis with adoublecirclearoundtheterm.

The descriptionof needsmust includelogical operators.
In theexampleshown in Figure9,theneedsof wet shoeare
wet shoeOR at shoefr ont-yard. Only oneof thetwo needs
to be true to satisfy wet shoe. ANDs andNOTs arealso
necessary.

NeedsAnalysis Algorithm
Theneedsanalysisalgorithmis shown in Table1, andFig-
ure 11 illustratesin detail how it generatesthe needsof
an individual term. The complexity of needsanalysisis��� ��� �������
 !� , where � is the numberof stepswithout
conditionaleffects,� is thenumberof stepswith conditional
effects,� is theboundon thenumberof preconditions,

�
is

theboundon thenumberof conditionaleffectsin eachstep,
and

�
is theboundon thenumberof conditionspercondi-

tional effect. Note that thecomplexity of needsanalysison
aplanwith no conditionaleffectsis linear:

��� ��� � .
We will usethe totally orderedplan from the sprinkler

domainshown in Figure12 to illustratethebehavior of the
needsanalysisalgorithm.First, thealgorithmwill createthe
FINISH stepthat has,as its preconditionneeds,the goal
terms. Then it will move to the last plan step (sprinkle
fr ont-yard), whichhasonepreconditionneed,to determine
how to satisfy the needsof the subsequentstep(FINISH ).
As previously discussed,there are two ways for the step
sprinkle fr ont-yard to satisfy wet shoe: either wet shoe
could be true beforethis stepexecutes,or at shoefr ont-
yard mustbetruebeforethis stepexecutes.Sotheneedsof
the term wet shoearemaintain wet shoeOR add at shoe
fr ont-yard. As for add wet fr ont-yard, the otherprecon-
dition needof the FINISH step,it is accomplishedby the
stepsprinkle fr ont-yard sinceit is a non-conditionaleffect
of thestep.

Next, thealgorithmmovesbackto thepreviousplanstep,
move shoeback-yard fr ont-yard, which hasoneprecon-
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Input : A totally orderedplan "$#&%('*)
%!+�)*,�,-,�)
%/. ,
theSTART operator%/0 with addeffectssetto the
initial state,andtheFINISH operator%/.2143 with
preconditionssetto thegoalstate.

Output : A needstree 5 .

procedureNeedsAnalysis(" , %!0 , % . 143 ):
1. for 687 n+1 down-to 3 do
2. for eachprecondof %/9 do
3. ExpandTerm(c,precond)

procedureExpandTerm(c,term):
4. Find Creation(c,term)
5. Find Prevention(c,term)

procedureFind Creation(c,term):
6. for eachconditionaleffect of %:9 do
7. if effect addsterm then
8. term.accomplished7 true
9. otherwise
10. Add ConditionsTo CreationNeeds(effect, term)
11. for eachconditionof effect do
12. ExpandTerm(c-1,condition)

procedureFind Prevention(c,term):
13. for eachconditionaleffect of %:9 do
14. if effect deletestermthen
15. term.impossible7 true
16. return
17. otherwise
18. Add ConditionsTo PreventionNeeds(effect, term)
19. for eachconditionof effect do
20. ExpandTerm(c-1,condition)

Table1: NeedsAnalysisalgorithm.

dition need.Theneedscarriedover from previousstepsare
maintain wet shoeOR add at shoefr ont-yard, thecreation
needof wet shoefrom theFINISH step,andon sprinkler ,
thepreconditionneedof thestepsprinkle fr ont-yard. The
term at shoefr ont-yard is a non-conditionaleffect of this
step,so it is accomplished.The term wet shoecannotbe
preventedor createdby thisstep,soit is satisfiedby amain-
tain creationneed:maintain wet shoe. Thetermon sprin-
kler alsocannotbe preventedor createdby this step,so it,
too, is satisfiedby a maintaincreationneed: maintain on
sprinkler .

Finally, thealgorithmreachestheinitial state,or START
step,andit is ableto determinewhichbranchesof theneeds
treecanbeaccomplishedandwhichcannot. Theremaining
branchesof the treeareadd at shoeback-yard, maintain
on sprinkler , and maintain wet shoe. Two of the needs,
add at shoeback-yard andmaintain on sprinkler aretrue
in theinitial state(accomplishedby theSTART step).How-
ever, maintain wet shoeis cannotbe accomplishedby the
START step,sowecall its branchof thetreeunsatisfiable.

The SPRAWL Algorithm
Table 2 shows the SPRAWL partial ordering algorithm.
SPRAWL performsneedsanalysis,then walks backwards

alongtheneedstreeandaddscausallinks in thepartialor-
deringbetweenstepsthatneedtermsandthestepsthatgen-
eratethem. The complexity of the SPRAWL algorithm is��� ��� �������
 <;>=@?A� � ; � ; � �
B*� , where� is thenumber
of stepswithoutconditionaleffects,� is thenumberof steps
with conditionaleffects, � is the boundon the numberof
preconditions,

�
is theboundon thenumberof conditional

effects in eachstep,and
�

is the boundon the numberof
conditionsperconditionaleffect.

Input : A totally orderedplan "C#4% ' )
% + )�,�,�,*)
% . ,
theSTART operator% 0 with addeffectssetto the
initial state,andtheFINISH operator%/.D1C3 with
preconditionssetto thegoalstate.

Output : A partiallyorderedplanshown asa directedgraphE .

procedureFind Partial Order(" , %/0 , % . 143 ):
1. tree 7 NeedsAnalysis(" , % 0 , %/.D1@3 )
2. tree 7 Trim UnaccomplishedNeedTreeBranches(tree)
3. for 6
7 n+1 down-to 3 do
4. for eachpreconditionof %/9 do
5. RecurseNeed(c,precondition,E )
6. HandleThreats(tree,E )
7. Remove Transitive Edges(E )

procedureRecurseNeed(c,term, E ):
8. Add CausalLink(chooseoneway to createterm, % 9 , E )
9. RecurseNeed(c-1,term.create,E )
10.RecurseNeed(c-1,term.protect,E )

procedureHandleThreats(tree,E ):
11. for eachcausallink %/FHGI%�J do
12. for 6
7K3 up-to LHM>3 do
13. if Threatens(%/9 , % F GI% J ) then
14. DEMOTE: Add CausalLink( % 9 , %!F , E )
15. for 6
7ONP143 up-to Q
16. if Threatens(% 9 , %/F�GI%�J ) then
17. PROMOTE: Add CausalLink( % J , %:9 , E )

Table2: TheSPRAWL algorithm.

ResolvingThr eats
Werely heavily onthetotally orderedplanto helpusresolve
threats.Therearethreewaysto resolvethreatsin aplanwith
conditionaleffects,asdescribedin (Weld1994):

1. Promotion moves the threatenedoperatorsbefore the
threateningoperator;

2. Demotion movesthethreatenedoperatorafterthethreat-
eningoperator;

3. Confrontation may take placewhenthe threateningef-
fect is conditional. It addspreconditionsto the threaten-
ing operatorto prevent theeffect causingthethreatfrom
occurring.

To find all possiblepartial orderings,all thesepossibilities
shouldbe explored. However, sincewe are provided the
totally orderedplan,wedo notneedto searchatall to find a
feasibleway to resolve the threat;we cansimply resolve it
in thesameway it wasresolvedin the totally orderedplan.



In fact, if threatsare resolved in a differentway, then the
resultingR partial orderingwould not be consistentwith the
totally orderedplan.

If, in thetotally orderedplan,thethreateningoperatoroc-
cursbeforethethreatenedoperators,thenpromotionshould
be usedto resolve the threatin the partial ordering. Sim-
ilarly, if it occursafter the threatenedoperators,demotion
shouldbeusedto resolvethethreatin thepartialordering.If
the threateningoperatoroccursbetweenthe threatenedop-
eratorsin the totally orderedplan, thenwe know that con-
frontationmusthave beenusedin the totally orderedplan
to preventthethreateningconditionaleffect from occurring.
Needsanalysistakescareof confrontationwith protection
needs, shown in Figure11 which ensurethat stepsthatoc-
cur betweena neededterm’s creationandusein the totally
orderedplando not deletetheterm.

Discussion
The SPRAWL algorithmdoesnot createa partially ordered
plan from scratch;its purposeis to partially orderthesteps
of a given totally orderedplan to aid in our understanding
of the structureof the plan. Becauseof this, SPRAWL is
restrictedto partial orderingsconsistentwith the totally or-
deredplan.

However, frequentlytherearemany partialorderingscon-
sistentwith the totally orderedplan. Here,we discussthe
spaceof possibilitiesexploredby SPRAWL aswe have de-
scribedit, andhow thatspacecanbeextendedto includeall
possiblepartialorderingsconsistentwith thetotally ordered
plan.

Active Conditional EffectsMay Differ fr om Those
in Totally Ordered Plan
ThoughSPRAWL is restrictedto partialorderingsconsistent
with the totally orderedplan it is given, this doesnot mean
thatall conditionaleffectsactive in thetotally orderedplan
mustbe active in the partial ordering,or vice versa.There
aresometimesirrelevantconditionaleffectsin thetotally or-
deredplanor in thepartialordering,andSPRAWL doesnot
seekto maintainor preventtheseirrelevanteffects. The ig-
norecaseshown asatotally orderedplanin Figure1 demon-
stratesthis. In this problem,oneof theactive effectsin the
totally orderedplan is wet shoe. However, this effect does
notaffect thefulfillment of thegoalstate,andsois notarel-
evanteffect. In fact,asis shown in Figure3, SPRAWL would
enforceno orderingconstraintsbetweenthetwo stepsin its
partialordering.Thoughthedifferentorderingsproducedif-
ferentfinal states,the goal termsare true in eachof these
final states,soit doesn’t matterwhich occurs.

Partial Ordering May Not Include All Relevant
Effects in Total Ordering
Although,aswe discussed,SPRAWL is restrictedto partial
orderingswith no relevanteffectsnot active in thegivento-
tally orderedplan,thisdoesnotmeanthatall relevanteffects
in the totally orderedplan must be relevant effects in the
partial ordering. Sometimes,thereareseveral relevant ef-
fectsin thetotally orderedplanwhichachievethesameaim.

Bäckstr̈om presentedanexamplethatneatlyillustratesthis.
Thetotally orderedplanis shown with its needstreein Fig-
ure13. In thisplan,two differentrelevanteffectsprovidethe
termq to stepc—bothstepa andstepb generateq. Choos-
ingadifferentrelevanteffectto generateq createsadifferent
partialorder. Thetwo partialordersrepresentingeachof the
two relevanteffect choicesareshown in Figures14 and15.

ba c
p q

Figure14: Theonly partialorderingof Bäckstr̈om’s exam-
ple plan permittedby the presentedversionof the needs
analysisalgorithm

Finding Multiple Partial Orderings
In the interestof speed,SPRAWL finds exactly onepartial
orderinganddoesnotsearchthroughdifferentpartialorder-
ings to find a “better” oneaccordingto any measure.The
needsanalysisalgorithmshown in Table1 producesaneeds
treethat encompassesall possiblepartial orderinsgconsis-
tentwith thetotally orderedplan,but theversionof SPRAWL
shown in Table2 arbitrarily choosesonepossiblepartialor-
deringfrom thoserepresentedby the needstree. SPRAWL
canbemodifiedto searchthroughmorepossiblepartialor-
derings,however, findingthebestpartialorderingaccording
to any measureis NP-complete(Bäckstr̈om1993).

WhenanOR logical operatoris encounteredin theneeds
tree, SPRAWL arbitrarily chooseswhich of its branchesto
follow andignorestheothers(Table2, step8). Instead,we
couldsearchthroughthepossibilitiesto find thebranchthat
contributesto thebestpartialordering.

If we modify the needsanalysisalgorithm as discussed
above,thereis sometimesmorethanoneway to accomplish
a need,aswith the needq in Figure13. SPRAWL arbitrar-
ily choosesoneof thesewaysto betheneed’screatorin the
partial ordering(Table2, step8). Again, we could search
throughall possibilitiesinstead,andchoosetheonethatcon-
tributesto thebestpartialordering.

SPRAWL resolvesthreatsin the sameway they werere-
solved in the totally orderedplan. It is possibleinsteadto
searchover all threeways (promotion,demotionandcon-

a

c

bp

q

Figure15: Anotherpartialorderingof Bäckstr̈om’sexample
plan. If we make the discussedmodificationsto the needs
analysisalgorithm, both this partial orderingand the one
shown in Figure14 would berepresentedin theneedstree,
asshown in Figure13.
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Figure13: Bäckstr̈om’s exampleplan,andtheneedstreecreatedif the algorithmdoesnot terminatebrancheswhenthey are
accomplished.Notethatthetermq is accomplishedby two differentsteps:a andb. This meansthattwo partialorderingsare
possible:onein whichstepa providesq to stepc, andonein whichb does.If branchesareterminatedasthey areaccomplished,
theaccomplishedneedmarkedq* , which representsstepa providing q to stepc, would not befound.

frontation) to resolve each. However, the partial ordering
will only beconsistentwith thetotally orderedplanif threats
areresolvedin thesameway.

Definitions
Totally ordered plan S consistsof an initial state, T ,
which is a list of termsthat are true before theplan begins;
a goal state, U , which is a list of termsthat mustbeaccom-
plishedby theplan; anda list of steps,VXWY	�	�	�V  . Each step
hasa list of preconditions,or termsthatmustbetruebefore
thestepis executable;anda list of conditionaleffects,which
describetheeffectsof thestep.Each conditionaleffecthasa
list of conditionsanda list of effects,which becometrue af-
ter theplan stepexecutesif theconditionsof theeffectwere
satisfiedbefore theplanstepexecuted.Thepreconditionsof
thefirst stepin theplan, VZW , mustbetrue in theinitial state
T ; thepreconditionsof each subsequentstepV([ mustbetrue
afterstepsV W 	�	�	�V([�\ W executein order; andthetermsof the
goal state U mustbe true after steps V W 	�	�	]V  executein
order.

Partial ordering ^ A partial ordering ^ of thetotally or-
dered plan S also includesa list of ordering constraints.
Each orderingconstraint specifiesthat a givenstep V [ must
comebefore anotherstep VH_ . Thepreconditionsof thefirst
step in the plan, V W , muststill be true in the initial state
T . However, wenowdemandthat thepreconditionsof each
subsequentstep V [ mustbetrue after anypossibleordering
of the plan stepsthat endsat V([ that is consistentwith the
orderingconstraints; and that thetermsof thegoal state U

mustbetrue after stepsV W 	�	�	-V  executein anyorder con-
sistentwith theorderingconstraints.

Annotated Ordering an ordering of plan stepssupple-
mentedwith a rationale for (someof) the ordering con-
straints.

Relevant Effect an effectwhich affectsthefulfillmentof a
goal term.

Incidental Effect an effect which doesnot affect the ful-
fillmentof a goal term.

Consistent a partial ordering ^ is consistentwith theto-
tally ordered plan S if all relevant effectsactive in ^ are
alsoactivein S .

Minimal Annotated ConsistentPartial Ordering a par-
tial ordering consistentwith the totally ordered plan in
which each orderingconstraint providesa termwhich a rel-
evanteffectdependson or preventsa threat to such a term,
andis annotatedwith which termit providesor protects.

Conclusions
THIS WAS GARBAGE AND NEEDS TO BE REWRIT-
TEN. BASIC MESSAGE, WE HAVE PRESENTED,YAP
YAP YAP, AND WE HOPE IT OPENS THE FIELD
FOR PLAN REUSE/ADAPTATION/RECOGNITION
AND AGENT MODELLING TO RICHER DOMAIN
LANGUAGESWITH CEs.
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