Layered Disclosure: Why is the agent doing what it’'s
doing?

Extended Abstract: full version available at www.cs.cmu.edu/ pstone/RoboCup/CMUnited99-sim.html

Peter Stone
AT&T Labs — Research
180 Park Ave., room A273
Florham Park, NJ 07932

pstone@research.att.com

1. INTRODUCTION

A perennial challenge in creating and using complex au-
tonomous agents is following their choices of actions as the
world changes dynamically, and understanding why they act
as they do. Our work focuses on environments in which
agents have complex, possibly noisy, sensors and actuators.
In such scenarios, even the human who develops an agent
is often unable to identify what exactly caused the agent to
act as it did in a given situation. This paper reports on our
work to support human developers and observers to better
follow and understand the actions of autonomous agents.

To this end, we introduce the concept of layered disclosure
by which autonomous agents include in their architecture
the foundations necessary to allow them to disclose to a
person upon request the specific reasons for their actions.
The person may request information at any level of detail,
and either retroactively or while the agent is acting. We say
that the person is probing for information, while the agent
is explicitly disclosing the information.

A key component of layered disclosure is that the relevant
agent information is organized in layers. In general, there is
far too much information available to display all of it at all
times. The imposed hierarchy allows the user to select at
which level of detail he or she would like to probe into the
agent in question.

Layered disclosure has two main uses: (i) as a debugging
tool for agent development in complex environments, and
(ii) as a vehicle for interactive agent control.

When an agent does something unexpected or undesirable,
it is particularly useful to be able to isolate precisely why it
took such an action. Using layered disclosure, a developer
can probe inside the agent at any level of detail to determine
precisely what needs to be altered in order to attain the
desired agent behavior.

Patrick Riley
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213

pfr@cs.cmu.edu

Manuela Veloso
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213

veloso@cs.cmu.edu

The fact that layered disclosure also works in real time
means that a user can monitor the internals of an agent as it
acts. When coupled with an interface for influencing agent
behaviors, layered disclosure could be used to allow the in-
terleaving of autonomous and manual control of agents.

We implemented layered disclosure in the simulated robotic
soccer domain. It played an important role in our successful
development of the 1999 RoboCup simulator-league cham-
pion CMUnited-99 team [1].

2. LAYERED DISCLOSURE

In developing layered disclosure, we began with the assump-
tion that agents’ actions and the actual states of the world
over time are generally observable. On the other hand,
several agent characteristics are generally unobservable, in-
cluding the agents’ sensory perceptions; the agents’ internal
states (current role in team, current task assignment, etc.);
the agents’ perceived current world states; and the agents’
reasoning processes. The goal of layered disclosure is to
make these unobservable characteristics observable, either
retroactively, or in real-time as an agent is acting. Further-
more, to avoid being overwhelmed with data, the observer
must be able to probe into the agent at an arbitrary level of
detail or abstraction.

There are four main steps to realizing this goal.

1. The developer must organize the agent’s perception-
cognition-action process in different levels of detail.

2. The agent must store a log of all information from
its internal state, world model, and reasoning process.
3. This log must be synchronized with a recording of
the observable world (or generated in real-time).

4. An interface is needed to allow the developer to
probe a given agent’s internal reasoning at any time
and any level of detail.

2.1 Layered Organization

The first step to implementing layered disclosure is the gen-
eration of a layered organizational structure of information
to be stored. This organization could include an operator
hierarchy such as that used in hierarchical task network
(HTN) planning [2]. However, it should also include in-
formation beyond the agent’s reasoning process such as its
perceptions, its internal state, and anything else that might
influence its decision-making.



In particular, not all relevant information is necessarily present

in an agent’s action trace. For example, if an agent executes
action with precondition # > 45 at time ¢, then one can con-
clude that at time ¢ the variable & had a value greater than
45. However, one might want to know exactly what the value
of £ was at time ¢ and how it got to be so. z = 46 may be a
qualitatively different symptom from xz = 10,000. Layered
disclosure allows one to probe into an agent to determine
the value of z at time ¢, and, if probing more deeply, the
agent’s exact sensory perceptions and/or past states which
caused z to be set to its actual value at time ¢.

A possible coarse breakdown of an agent’s perception-cognition-

action process is as follows, where layers with greater num-
bers represent information that is stored at a deeper layer
(scale 1-50):

Levels 1-10: The agent’s abstract high-level goals.

Levels 11-20: The agent’s action decisions, perhaps
organized hierarchically.

Levels 21-30: Lower-level details regarding the specifics
of these actions including all variable bindings.

Levels 31-40: The agent’s internal state.

Levels 41-50: The agent’s sensory perceptions.

22 ThelogFile

Each agent’s log file is its repository for all useful informa-
tion that one might want to examine, either as the agent is
acting or after the fact. It is generated and stored locally
by the agent, or sent directly to the interface for immediate
display. Each bit of information is time-stamped and tagged
with its corresponding layer indicating its depth within the
agents’ reasoning process. The interface program can then
display this information appropriately.

In general, the log file is of the format
<time> (<level ind>) <Text>
where

<time> is the agent’s conception of the current time.
<level ind> is the information’s layer.
<Text> is arbitrary agent information to be displayed.

Note that in a distributed or asynchronous environment, the
agent does not in general have access to the “real world” or
global time.

2.3 Synchronization

When doing layered disclosure in real time, the agent simply
outputs the requested layer of information relating to the
current moment. However, when doing layered disclosure
after the fact, the agent’s log files, which record what would
otherwise be unobservable, must be synchronized with a
recording of the observable world. That is, the human ob-
server needs to be able to identify what point of the log file
corresponds to a given point in the recording of the world.
The more exact a correspondence can be determined, the
more useful the disclosure will be.

In some domains, synchronization may be difficult to achieve.

Without synchronization, layered disclosure can still be used
retrospectively to understand what an agent was doing given
its perception of the world. However, to understand the en-
tire loop, that is to understand whether an agent’s action

was appropriate to what was really going on, and to access
the agent’s state from a recording of the world, synchroniza-
tion is needed.

In order to make such synchronization possible, it is nec-
essary to have a time-stamped recording with time-stamps
that correspond to the time-stamps in the log files described
above. In environments such that agents have accurate
knowledge of the global system or real-world time, the syn-
chronization can be based on this time. Otherwise, the agent
must actively transmit its internal time in such a way that
it is visible to the recorder, perhaps in conjunction with the
agent’s actions. It is then the job of the interface to display
to the user both the recording and the requested layered
disclosure information.

2.4 Interface

When using layered disclosure retrospectively, the interface
should include some representation of the agents’ actions in
the form of a recording. When using layered disclosure in
real time, the real world acts as this representation. In addi-
tion, the interface includes a method for the user to specify
an agent (if there are multiple agents) and an information
layer. The interface then displays the specified layer of in-
formation for the specified agent at the moment in question.
The interface can also visually separate the layers to aid the
human observer.

In general, there is far too much information available to
display all of it at all times. The imposed hierarchy allows
the user to select at which level of detail he or she would
like to probe into the agent in question.

3. CONCLUSION

Layered disclosure is potentially applicable in any agent-
based domain. While our application is in a multiagent en-
vironment, it is inherently implemented on an individual
agent: each agent discloses its own internal state. In order
to take advantage of layered disclosure, one only needs to
provide support for agents to store and disclose their per-
ceptions, internal states, perceived current world states, and
reasoning processes; as well as (in the retroactive case) a
method for synchronization between the agent’s logfile and
a recording of the world.

Layered disclosure has proven to be very useful to us in
our development of simulated robotic soccer agents. We
envision that layered disclosure will continue to be useful in
such agent development projects, particularly with complex
agents acting in complex, dynamic environments. We also
plan to begin using layered disclosure in interactive semi-
autonomous agent-control scenarios.

4. REFERENCES

[1] P. Stone, P. Riley, and M. Veloso. The CMUnited-99
champion simulator team. In M. Veloso, E. Pagello, and
H. Kitano, editors, Robo Cup-99: Robot Soccer World Cup
11T, Berlin, 2000. Springer Verlag.

[2] D. E. Wilkins. Domain-independent planning:
Representation and plan generation. Artificial Intelligence,
22:269-301, 1984.



