In Proceedings of the DARPA Wrkshop of
Scheduling and Control,

Pl anni ng,

Mor gan Kauf mann, Novenber

Nonlinear Planning with Parallel Resource Allocation

Manuela M. Veloso

M. Alicia Pérez

Jaime G. Carbonell

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Most nonlinear problem solvers use a least-
commitment search strategy, reasoning about par-
tially ordered plans. Although partial orders are
useful for exploiting parallelism in execution, least-
commitment is NP-hard for complex domain de-
scriptions with conditional effects. Instead, a
casual-commitment strategy is developed, as a nat-
ural framework to reason and learn about control
decisions in planning. This paper describes () how
NoLIMIT reasons about totally ordered plans using
a casual-commitment strategy, (:¢) how it generates
a partially ordered solution from a totally ordered
one by analyzing the dependencies among the plan
steps, and (¢i7) finally how resources are allocated
by exploiting the parallelism embedded in the par-
tial order. We illustrate our claims with the im-
plemented algorithms and several examples. This
work has been done in the context of the PRODIGY
architecture that incorporates NoLIMIT, a nonlinear
problem solver.

1 Introduction

Nonlinear problem solving is desired when there are strong
interactions among simultaneous goals and subgoals in the
problem space. NoLIMIT, the nonlinear problem solver of the
PRODIGY architecture [Carbonell et al., 1990, Veloso, 1989],
develops a method to solve problems nonlinearly that explores
different alternatives at the operator and at the goal ordering
levels. Commitments are made during the search process,
in contrast to a least-commitment strategy [Sacerdoti, 1975,
Tate, 1977, Wilkins, 1989], where decisions are deferred until
all possible interactions are recognized. With the casual-
commitment approach [Minton et al., 1989], background
knowledge, whether hand-coded expertise, learned control
rules, or heuristic evaluation functions, guides the efficient
exploration of the most promising parts of the search space.
Provably incorrect alternatives are eliminated and heuristi-
cally preferred ones are explored first. Casual commitment is
crucial because it provides a framework in which it is natural
to reason and learn about the control decisions of the problem
solver.

The immediate output of a problem solver that searches
using a casual-commitment strategy is a totally ordered plan.
It is advantageous to know the solution in terms of the least

constrained partial ordering of its steps, which NoOLIMIT gen-
erates by analyzing the dependencies among the different op-
erators. The algorithm implemented constructs a directed
acyclic graph that relates preconditions and effects of opera-
tors and then translates this graph into a partial order.

The independent actions shown in the partially ordered
graph may not directly correspond to parallel executable ac-
tions due to resource contention. We show how a resource
allocation module further analyzes the partial order and gen-
erates the final parallel plan.

This paper is organized in five sections. Section 2 briefly
presents the casual-commitment search algorithm discussing
its motivation and claims. In section 3, we introduce the
algorithm that generates the partially ordered plan from the
totally ordered one. In section 4 we describe the method to
allocate resources, by analyzing the parallelism of the partially
ordered solution. Finally, in section 5, we draw conclusions on
this work. We illustrate our concepts, claims, and algorithms
with several examples throughout the paper.

2 Nonlinear Problem Solving using Casual
Commitment

NoLIMIT reasons about totally ordered plans that are nonlin-
ear, i.e., the plans cannot be decomposed into a sequence
of complete subplans for the conjunctive goal set. All deci-
sion points (operator selections, goal orderings, backtracking
points, etc.) are open to introspection and reconsideration. In
the presence of background knowledge — heuristic or definitive
— only the most promising parts of the search space are ex-
plored to produce a solution plan efficiently [Veloso, 1989].
The skeleton of NoLIMIT’s search algorithm, shown in Ta-
ble 1, describes the basic cycle of the nonlinear planner.

In step 1 of the algorithm, the planner checks whether the
goal is true in the current state. If so, the planner has found
a solution to the problem. In step 2, it computes both the
set of pending goals and the set of applicable operators. A
goal is pending, if it is a precondition of a chosen operator
that is not true in the state. An operator is applicable, if all
its preconditions are true in the state. In step 3, the planner
selects a goal to work on or an operator to apply. If a goal
is chosen, the problem solver expands the goal in step 4, by
generating and selecting a relevant instantiated operator. If
an applicable operator is selected, then, in step 5, it is applied,
i.e. executed in the internal current state to produce a new
state.

PRODIGY provides a rich action representation language

I nnovati ve Approaches to

1990

1. Check if the goal statement is true in the current state, or there

is a reason to suspend the current search path.
If yes, then either return the final plan or backtrack.

2. Compute the set of pending goals G, and the set of possible
applicable operators .A.

3. Choose agoal G from G or select an operator A from A that is
directly applicable.

4. If G has been chosen, then

e expand goal G, i.e., get the set O of relevant instantiated
operators for the goal G,

e choose an operator O from O,
e gotostep 1.

5. If an operator A has been selected as directly applicable, then
e apply A,
e gotostep 1.

Table1: A Skeleton of NoLiMIT’s Search Algorithm.

coupled with an expressive control language. Preconditions
in the operators can contain conjunctions, disjunctions, nega-
tions, and both existential and universal quantifiers with typed
variables. Effects in the operators can contain conditional ef-
fects, which depend on the state in which the operator is ap-
plied. The control language allows the problem solver to rep-
resent and learn control information about the various prob-
lem solving decisions, such as selecting which goal/subgoal
to address next, which operator to apply, what bindings to
select for the operator or where to backtrack in case of fail-
ure. Different disciplines for controlling decisions can be
incorporated [Drummond and Currie, 1989, Anderson and
Farley, 1990]. In PRODIGY, there is a clear division between
the declarative domain knowledge (operators and inference
rules) and the more procedural control knowledge. This sim-
plifies both the initial specification of a domain and the in-
cremental learning of the control knowledge [Minton, 1988,
Veloso and Carbonell, 1990].

Previous work in the linear planner of PRODIGY used
explanation-based learning techniques [Minton, 1988] to ex-
tract from a problem solving trace the explanation chain re-
sponsible for a success or failure and compile search control
rules. We are now extending this work to NoLIMIT, as well as
developing a derivational-analogy approach to acquire control
knowledge [Carbonell, 1986, Veloso and Carbonell, 1990].
The machine learning and knowledge acquisition work sup-
ports NOLIMIT’s casual-commitment method, as it assumes
there is intelligent control knowledge, exterior to its search
cycle, that it can rely upon to make decisions.

2.1 Example

Consider a generic transportation domain with three simple
operators that load, unload, or move a carrier, as shown in
Figure 1 (variables in the operators are shown in bold face).
Suppose that the operator MOVE a carrier has constant
locations locA and locB. This transforms the current gen-
eral domain into a one-way carrier domain. The problem
we want to solve consists in moving two given objects obj1
and obj2 from the location loc A to the location locB using
a ROCKET as the carrier, for example. Without any control
knowledge the problem solver searches for the goal order-
ing that enables the problem to be solved. Accomplishing
either goal individually, as a linear planner would do, in-

(LOAD (UNLOAD (MOVE
(preconds (preconds (preconds
(and (and (at carrier locA))
(at obj loc) (inside obj carrier) (effects
(at carrier loc))) (at carrier loc))) (add (at carrier locB))
(effects (effects (del (at carrier locA))))

(add (inside obj carr)) (add (at obj loc))
(del (at obj loc)))) (del (inside obj carrier))))

Figure 1: A Transportation Domain.

hibits the accomplishment of the other goal, as a precondition
of the operator LOAD cannot be achieved: the ROCKET
cannot be moved back to the object’s initial position. So
interleaving of goals and subgoals at different levels of the
search is needed to find a solution. NOLIMIT solves this
problem, where linear planners fail (but where, of course,
other least-commitment planners also succeed), because it
switches attention to the conjunctive goal (at obj2 locB) be-
fore completing the first conjunct (at obj1 locB). This is shown
in Figure 2 by noting that, after the plan step 1 where the
operator (LOAD ROCKET obj1 locA) is applied, NoLIMIT
changes its focus of attention to the other top-level goal and
applies the operator (LOAD ROCKET obj2 locA). NoLimIT
returns the totally ordered solution (LOAD ROCKET objl
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET),
(UNLOAD ROCKET obj1 locB), (UNLOAD ROCKET obj2
locB).

Figure2: The Complete Conceptual Tree for a Successful Solution
Path. The numbers at the nodes show the execution order of the plan
steps.

Clearly, NoLimIT solves much more complex and general
versions of this problem. The present minimal form was
used to illustrate the casual-commitment strategy in nonlinear
planning, allowing full interleaving of goals and subgoals. We
present below examples with a complex logistics domain.

3 Total and Partial Orders

A partially ordered graph is a convenient way to represent the
ordering constraints that exist among the steps of the plan.
Consider the partial order as a directed graph (V, E), where
V/, the set of vertices, is the set of steps (instantiated operators)
of the plan, and E is the set of edges (ordering constraints)

in the partial order. Let V' = {opo,op2,...,0pns1}. We
represent the graph as a square matrix P, where PJ[i, j] = 1,
if there is an edge from op; to op;. There is an edge from op;
to op;, if op; must precede op;, i.e. op; < op;. The inverse
of this statement does not necessarily hold, i.e. there may be
the case where op; < op; and there is not an edge from op;
to op;. The relation < is the transitive closure of the relation
represented in the graph for the partial order. Without loss of
generality consider operators opg and op,, +1 of any plan to be
the additional operators named start and finish, represented
in the Figures below as s and f.

3.1 Transforming a Total Order into a Partial Order

A plan step op; necessarily precedes another plan step op; if
and only if op; adds a precondition of op;, or op; deletes a
precondition of op;. For each problem, the start operator s
adds all the literals in the initial state. The preconditions of
the finish operator f are set to the user-given goal statement.
Let the totally ordered plan 7 be the sequence op1, .. ., op,
returned by NoLIMIT as the solution to a problem. In Table 2,
we show the algorithm to generate the partially ordered plan
from this totally ordered one, 7.

Input: A totally ordered plan 7 = op1, opa, . . ., opx, and the start
operator s with preconditions set to the initial state.
Output: A partially ordered plan shown as a directed graph P.

procedure Build_Partial_Order(7, s):
1. for i « ndown-to 1 do
2. for each precond in Preconditions_of(op;) do
3. supporting_operator «—
+ Last_Op_Adding_Precond(precond,i)
Add_Directed_Edge(supporting_operator,op;,P)
for each del in Delete_Effects(op;) do
supported_operators «
+ All_Ops_Needing_Effect(del,i)
for each supported_operator do
Add_Directed_Edge(supported operator,op;,P)
for each add in Primary _Adds(op;) do
0. adversary_operators «—
+ Ops_Deleting_Primary_Add(add,i)
11. for each adversary_operator do
12. Add_Directed_Edge(adversary operator,op;,P)
13. P + Remove_Transitive_Edges(P)

I

=Sl

Table2: Building a Partial Order from a Total Order

Step 1 loops through the plan steps in the reverse of the
execution order. Lines 2-4 loop through each of the pre-
conditions of the operator, i.e. plan step. The procedure
Last_ Op_Adding_Precond (not shown) searches from the op-
erator op; back to, at most the operator s, for the first operator
(supporting_operator) that has the effect of adding the pre-
condition in consideration. Note that one such operator must
be found as the given 7 is a solution to the problem (in
particular the initial state is added by the operator s). All
the supporting_operators of an operator op; must precede it.
The algorithm sets therefore a directed edge from each of
the former into the latter. Lines 5-8 similarly loop through
each of the delete effects of the operator. The procedure
All_Ops_Needing_Effect (not shown) searches for all the ear-
lier operators that need, i.e. have as a precondition, each
delete effect of the operator. We call such operators, sup-
ported_operators. Lines 7-8 capture the precedence relation-

ships by adding directed edges from each supported_operator
to the operator that deletes some of their preconditions. Lines
9-12 guarantee that the primary adds of this operator are
kept in the partial order. An add effect is primary if it in
the subgoaling chain of a user given goal conjunct. The
procedure Ops_Deleting_Primary_Add identifies the the ad-
versary_operators that, earlier in the plan, delete a primary
add. Any such operator cannot be performed after the cur-
rent operator. Hence line 12 sets a directed edge from each
adversary_operator to the operator under consideration. Fi-
nally, line 13 removes all the transitive edges of the resulting
graph to produce the partial order. Every directed edge e
connecting operator op; to op; is removed, if there is an-
other path that connects the two vertices. The procedure Re-
move_Transitive_Edges tentatively removes e from the graph
and then checks to see whether vertex op; is reachable from
op;. If this is the case, then e is removed definitively, other-
wise e is set back in the graph.

If n is the number of operators in the plan, p is the average
number of preconditions, d is the average number of delete
effects, and a is the average number of add effects of an
operator, then steps 1-12 of the algorithm Build_Partial_Order
run in O((p + d + a)n?). Note that the algorithm takes
advantage of the given total ordering of the plan, by visiting,
at each step, only earlier plan steps. The final procedure
Remove_Transitive_Edges runs in O(e), for a resulting graph
with e edges [Ahoetal., 1974]. Empirical experience with test
problems shows that the algorithm Build Partial Order runs
in meaningless time compared to the search time to generate
the input totally ordered plan.

We now illustrate the algorithm in the simple one-way
rocket problem introduced in the previous section. NOLIMIT
returned the totally ordered plan 7 = (LOAD ROCKET objl
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET),
(UNLOAD ROCKET obj1 locB), (UNLOAD ROCKET obj2
locB). Let op; be the ith operator in 7. In Figure 3 we show
the partial order generated by the algorithm, before remov-
ing the transitive edges. As previously seen, the goal of the
problem we solved is the conjunction (and (at obj1 locB) (at
obj2 locB)). These two predicates are added by the UNLOAD
steps, namely by op4 and ops respectively. The edges labelled
“g” show the precedence requirement between op4 and ops,
and the finish operator f. The numbers at the other edges in
Figure 3 represent the order by which the algorithm introduces
them into the graph.

Figure 3: Partial Order with Transitive Edges.

As an example, while processing ops (UNLOAD ROCKET
obj2 locB), it sets the edges 1 and 2, as the preconditions of
ops, namely (inside obj1 ROCKET) and (at ROCKET locB)
(see Figure 1), are added by op, and op3 respectively. When
processing ops (MOVE ROCKET), edge 5 is set because op3’s
precondition (at ROCKET locA) is in the initial state. The

edges 6 and 7 are further set, because ops deletes (at ROCKET
locA) that is needed (as a precondition) by the earlier steps
op1 and op,. Removing the transitive edges, namely edges 1,
3, and 5, in this graph results in the final partial order.

4 Exploiting Parallelism in the Plan Steps

When there are multiple execution-time agents in a domain,
they must be able to organize their activities so that they can
cooperate with one another (e.g. to push a very heavy block)
and avoid conflicts (e.g. not to tyr to use the same tool at the
same time).

Our approach for doing multiagent planning is a centralized
one [Georgeff, 1983, Lansky and Fogelsong, 1987]. An ini-
tial planning phase produces a plan as parallel as possible by
reasoning about a presumably infinite number of resources.
Real available resources are then assigned to obtain the fi-
nal parallel plan [Wilkins, 1989]. A problem is first solved
creating generic instances of the resources. In this context,
“resources” refer to agents, such as robots, or trucks or air-
planes in a logistics transportation domain, or machines in a
process planning domain. Control rules assign different re-
sources to different unrelated goals to obtain a plan as parallel
as possible. In some cases the same resource can be used to
solve different unrelated goals. For example, it is better to
load different objects in the same truck if they have the same
destination), if minimization of resources usage is preferred
by the control knowledge.

Let 7 be the resulting plan and s the start operator. Table 3
outlines the algorithm for resource allocation.

1. Generate the partial order graph P using the algorithm in Ta-
ble 2 with inputs 7 and s.

2. Insert parallel split and join nodes in the partial order graph P
obtaining a graph P’.

3. Recursively analyze in P’ the parallel branches inside a split-
join pair. If some of the parallel branches are in conflict insert
sequential split and join nodes. If all the parallel branchesare in
conflict, transform the parallel split-join pair into a sequential
one. Let P” be the resulting graph.

4. From P", assign real resources to the generic instances.

5. Assign plans to the individual resources and monitor their ex-
ecution to avoid conflicts.

Table 3: Algorithm for Resource Allocation.

In step 1 the algorithm section 3.1 generates the partial
order graph from 7. Step 2 extends this graph with nodes
that are not associated with steps in the plan. They only serve
as guidelines to determine which actions can be executed in
parallel. If a node op; has several successors op;,, ..., op;,,
a parallel split node is inserted having op; as a predecessor
and op;,, ..., op;, as successors. The edges between op;
and opi,, ..., op;, are removed. Similarly, if a node op;
has several predecessors opj,, ...,op;,, a parallel join node is
inserted having op; as only successor and opj,, ..., opj, as
predecessors. The edges between op;,, ..., op;, and op; are
removed.

Step 3 analyzes the parallel branches. It may be necessary
to add sequential split and join nodes to the graph, or replace
some of the parallel ones. The branches inside a sequential

split-join pair must be executed sequentially although any
order is allowed.

A class of objects C' can be declared as a possible reason
for conflict. Two actions are in conflict if they use the same
instance of C', and hence they are not allowed to occur si-
multaneously. A conflict between two branches is detected
when there is not a pair of actions, one of each branch, that
can be executed at the same time. If all the actions of the
two branches are in conflict, they are enclosed in a sequen-
tial split-join pair. If only some of them are, the parallel
split-join remains. Committing to executing the branches in
sequence would constrain the parallelism in the plan, as the
actions not in conflict could still be done simultaneously. As
we describe below, an execution monitor is responsible for
avoiding that the conflicting actions are performed simultane-
ously. This analysis is done recursively to deal with nested
split-join pairs.

Step 4 assigns real resources to the generic instances, by
recursively analyzing the branches inside a split-join pair. If
enough resources are available, the algorithmassigns different
ones to each branch. Otherwise the available resources are
shared by several branches. These branches are put inside
a sequential split-join pair so the monitor can execute them
without conflicts. The planner may have to be called again
to obtain the actions that situate the real resource in the same
initial state as the generic one it replaces.

From the global parallel plan obtained so far, step 5 generate
plans for each of the agents or resources. A monitor module
is responsible for synchronizing the execution of the different
plans (for example, in the case when two or more agents
are necessary to perform an action). It uses the sequential
split and join nodes to deal with conflicts or resource sharing
among different branches. Those conflicts can be considered
ascritical regions. Standard operating systems methods can be
used to enforce synchronization in the plans so the conflicting
critical regions are not entered at the same time [Georgeff,
1983].

4.1 Example in the Extended-STRIPS Domain

To illustrate this we will consider a simple example where
two robots, R1 and R2, have to move two blocks, a heavy
one H, and a light one L. The two robots have to cooperate to
push H. The domain is an extension of the STRIPS domain; the
operators include going to locations, going through doors and
pushing objects to locations. There are also “team” operators
that require the cooperation of two robots to perform an action
(e.g. t-push-to-location). Only one robot can go through a
door at a time, therefore doors are considered reasons for
potential conflicts. Figures 4 (a) and (b) show the initial state
and goal statement, and (c) shows the initial state using generic
robots GR1, GR2 and GR3.

The problemiis first solved with generic robots. Their initial
situation was decided based on domain dependent heuristics
such as the initial situation of the available robots and of the
objects that have to be pushed. The solution is:

3|R1 3 3|GRT
2 diz_ |2 diz_ |2 di2__ |
1 1 1
0 0 0 3
0 1 2 3 0 1 2 3 0 1 2 3
(@) (b) (©

Figure4: Initial State, Goal Statement, and Initial State with Generic
Resources for the Example Problem. Coordinates represent the lo-
cations within the rooms.

(goto-loc GR1302 2)

(go-thru-door GR1 door1222 2 1)

(goto-loc GR12 12 0)

(goto-loc GR2302 2)

(go-thru-door GR2 door1222 2 1)

(goto-loc GR22 12 0)

(t-push-to-loc GR1 GR2 heavy-block 2 0 3 1)
(push-to-loc GR3 light-block 0 0 3 1)

Vol ioro
@@/\@

Figure5: Partial Order Graph for the Example Problem.

O~NOOOT A WN P

Figure 5 shows the partial order generated by the algorithm
in section 3. The only conflict is between 2 and 5 when GR1
and GR2 try to go through the door at the same time. As
the other actions (1, 3, 4, 6) in the parallel branches do not
conflict, these branches are not put inside a sequential split
join pair. The resource assignment step assigns R1 to GR1,
and R2 to both GR2 and GR3. After this step the graph looks
like in Figure 6.

€ +@+@>®*@\
) (0)~(5)~(6) (D)
4 -

Figure6: Graph after Assigning Resources.

Now the task of the monitor is to control the plan execution
avoiding the conflict at the door and deciding which of the
two branches will be executed first. The planner is called to
plan the actions of R2 to join the end of branch 1-2-3 with
the beginning of branch 4-5-6. A resulting parallel plan is
the one shown below, where branch 1-2-3, and branch 4-5-6
are monitored to be executed in parallel avoiding the conflict
between steps 2 and 5. Step 7’ is added to the plan.

monitored-parallel-split

1 (goto-locR13022)

2 (go-thru-door R1doorl22221)
3 (goto-locR12120)

4 (goto-locR23022)

5 (go-thru-door R2 doorl2222 1)
6 (goto-locR22120)
monitored-parallel-join

7 (t-push-to-loc R1 R2 heavy-block 2 0 3 1)
7’ (goto-locR23100)
9 (push-to-loc R2 light-block 0 0 3 1)

4.2 Example in the Logistics Domain

We are currently implementing a complex logistics planning
domain. In this domain, packages are to be moved among
different cities. Packages are carried within the same city in
trucks and across cities in airplanes. Trucks and airplanes
may have limited capacity. At each city there are several lo-
cations, e.g. post offices (po) and airports (ap). This domain
(without introducing the capacity of carriers) is an extension
of the generic transportation domain (see Figure 1). Consider
carriers of type TRUCK and AIRPLANE. The logistics do-
main consists of the operators LOAD TRUCK (LT), LOAD
AIRPLANE (LA), UNLOAD TRUCK (UT), UNLOAD AIR-
PLANE (UA), DRIVE TRUCK (DT), FLY AIRPLANE (FA).
Consider the problem shown in Figure 7 where bo, pg and sf
stand for Boston, Pittsburgh and San Francisco respectively.
There are three packages (pl, p2, p3), two airplanes (al, a2),
and four trucks (tbol, tho2, tsf, tpg). NOLIMIT returns the plan
in Figure 8, and Figure 9 shows the partial order generated by
the algorithm in Table 2.

INITIAL STATE:
Pg bo sf
Lo L
po ap po ap po ap
GOAL STATEMENT:
Pg bo sf
[p3] (P [p?]
po ap po ap po ap

Figure 7: A Problem in the Logistics Domain.

1.(LT p3tpg pg-po)
2.(DT tsf sf-po sf-ap)
3.(DT tpg pg-po pg-ap)
4.(UT p3tpg pg-ap)
5.(LA p3al pg-ap)
6.(FA al pg-ap bo-ap)
7.(UA p3 al bo-ap)

10.(UT p3 thol bo-po)
11.(DT tbo2 bo-ap bo-po)
12.(LT p2 tho2 bo-po)
13.(LT p1 tho2 bo-po)
14.(DT tbo2 bo-po bo-ap)
15.(UT p2 tho2 bo-ap)
16.(UT p1 tho2 bo-ap)

19.(FA a2 bo-ap sf-ap)
20.(UA p2 a2 sf-ap)
21.(UA pl a2 sf-ap)
22.(LT p2 tsf sf-ap)
23.(LT p1tsf sf-ap)
24.(DT tsf sf-ap sf-po)
25.(UT p2 tsf sf-po)

8.(LT p3thol bo-ap)
9.(DT thol bo-ap bo-po)

17.(LA p2 a2 bo-ap)
18.(LA pl a2 bo-ap)

26.(UT p1 tsf sf-po)

Figure 8: Totally Ordered Plan - Logistics Domain.

Suppose now that when executing this plan, there is avail-
able only one airplane (a) and only one truck in Boston (tbo).
The resource allocation algorithm assigns a to both a1 and
a2, and tbo to both tbol and tbo?2 after generating the parallel
serial graph. Figure 10 shows a possible solution for the plans
of a and tho. Using the information on the graph built by

Figure 9: Partially Ordered Plan - Logistics Domain.

the algorithm, the monitor synchronizes the execution of the
plans for the different agents, without violating the constraints
discovered by the algorithm.

Plan for truck tbo:
(DT tho bo-ap bo-po)
(LT p2 tbo bo-po)
(LT p1tbo bo-po)
(DT tho bo-po bo-ap)
(UT p2 tho bo-ap)
(UT pltbo bo-ap)
(LT p3tbo bo-ap)
(DT tho bo-ap bo-po)
(UT p3 tho bo-po)

Figure 10: Plans for Each Resource.

Plan for airplane a:
(LA p3apg-ap)
(FA a pg-ap bo-ap)
(UA p3 a bo-ap)
(LA p2 a bo-ap)
(LA pl1abo-ap)
(FA a bo-ap sf-ap)
(UA p2 a sf-ap)
(UA plasf-ap)

We are refining the monitor synchronization mechanism to
deal with more complex conflict constraints, by using domain
dependent heuristics.

5 Conclusion

In this paper, we first discuss the use of a casual-commitment
strategy to generate plans for nonlinear problems. This strat-
egy provides a natural framework to learn and reason about
control decisions during the planning process. The method
becomes increasingly efficient as the planner learns control
knowledge from experience. Committing while searching
generates a totally ordered solution. As it is advantageous to
know the least constrained partial ordering of the plan steps,
we then discuss how we efficiently generate a partial order
from the total order returned by the casual-committing prob-
lem solver. Finally, we show a resource allocation strategy
that reasons about the partially ordered plan to convert it into
a parallel executable graph.

This work has been done in the context of the PRODIGY
architecture that is designed as a testbed for machine learn-
ing research. Casual commitment relies upon learned control
knowledge to efficiently make decisions. The resource alloca-
tion module isan ongoing research effort to address multiagent
(or multi-resource) planning and execution.

Acknowledgements

Our special thanks to Daniel Borrajo for a major part of NOLIMIT’S
implementation. Without him, it would have been very difficult
to include many powerful features in NoLimIT. We acknowledge
Craig Knoblock and Yolanda Gil for providing useful comments on
a draft. The authors thank the whole PRODIGY research group for
helpful discussions.

This research was sponsored by the Defense Advanced Research
Projects Agency (DOD) and monitored by the Avionics Labora-
tory, Air Force Wright Aeronautical Laboratories, Aeronautical Sys-
tems Division (AFSC), Wright-Patterson AFB, OH 45433-6543 un-

der Contract F33615-87-C-1499, ARPA Order No. 4976, Amend-
ment 20. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency or of the U.S. Government. The
second author was supported by a Fellowship from the Ministerio de
Educaciony Ciencia of Spain.

References

[Aho et al., 1974] A. V. Aho, J. E. Hopcroft, and J. D. Uliman. The
Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, Massachusetts, 1974.

[Anderson and Farley, 1990] John S. Anderson and Arthur M. Far-
ley. Partial commitment in plan composition. Technical Report
TR-90-11, Computer Science Department, University of Oregon,
1990.

[Carbonell et al., 1990] Jaime G. Carbonell, Craig A. Knoblock,
and Steven Minton. Prodigy: An integrated architecture for plan-
ning and learning. In K. VanLehn, editor, Architectures for In-
telligence. Erlbaum, Hillsdale, NJ, 1990. Also Technical Report
CMU-CS-89-189.

[Carbonell, 1986] Jaime G. Carbonell. Derivational analogy: A the-
ory of reconstructive problem solving and expertise acquisition.
In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning, An Artificial Intelligence Approach, Volume
11, pages 371-392. Morgan Kaufman, 1986.

[Drummond and Currie, 1989] Mark Drummond and Ken Currie.
Goal ordering in partially ordered plans. In Proceedings of the
Eleventh International Joint Conferenceon Artificial Intelligence,
pages 960-965, Detroit, MI, 1989.

[Georgeff, 1983] M. Georgeff. Communication and interaction in
multi-agent planning. In Proceedings of the National Conference
of the American Association for Artificial Intelligence, pages 125—
129, Washington, DC, August 1983.

[Lansky and Fogelsong, 1987] A. L. Lansky and D. S. Fogelsong.
Localized representation and planning methods for parallel do-
mains. In Proceedings of the National Conference of the American
Association for Artificial Intelligence, pages 240-245, Seattle,
Washington, August 1987.

[Minton et al., 1989] Steven Minton, Craig A. Knoblock, Dan R.
Kuokka, Yolanda Gil, Robert L. Joseph, and Jaime G. Carbonell.
PRODIGY 2.0: The manual and tutorial. Technical Report CMU-
CS-89-146, School of Computer Science, Carnegie Mellon Uni-
versity, 1989.

[Minton, 1988] Steven Minton. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Kluwer Academic
Publishers, Boston, MA, 1988.

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlinear nature of plans.
In Proceedings of IJCAI-75, pages 206-213, 1975.

[Tate, 1977] Austin Tate. Generating project networks. In Pro-
ceedings of the Fifth International Joint Conference on Artificial
Intelligence, pages 888-900, 1977.

[Veloso and Carbonell, 1990] Manuela M. Veloso and Jaime G. Car-
bonell. Integrating analogy into a general problem-solving archi-
tecture. In Maria Zemankova and Zbigniew Ras, editors, Intelli-
gent Systems, pages 29-51. Ellis Horwood, Chichester, England,
1990.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving us-
ing intelligent casual-commitment. Technical Report CMU-CS-
89-210, School of Computer Science, Carnegie Mellon Univer-
sity, 1989.

[Wilkins, 1989] David E. Wilkins. Can Al planners solve practical
problems? Technical Note 468R, SRI International, 1989.

