
'
&

$
%

ICML/COLT 1997LEARNING in PLANNINGManuela M. VelosoComputer Science DepartmentCarnegie Mellon UniversityPittsburgh PA 15213-3891phone: (412) 268-8464fax: (412) 268-5576email: veloso@cs.cmu.eduhttp://www.cs.cmu.edu/~mmv/1 c
 Veloso, CSD, CMU
'

&

$
%

Short Tutorial Description: Learning in PlanningPlanning is a decision making process which involves the generation of sequencesof actions that achieve a set of goals from a given state. The main issues involvedin the computational planning task are: How to acquire and represent theplanning action model? How to generate plans in a computationally tractableway? How to create plans of good quality? and �nally How to scale up toreal-world problems?Machine learning approaches can be applied to planning to automate theprocess of interpreting the planning experience into reusable task knowledge inorder to improve the overall planner's performance. Learning in planning goesbeyond inductive data classi�cation. It addresses the acquisition of knowledgeto e�ciently guide a decision making process to reach solutions of good qualitybased on its input data. Learning in planning provides ground for both appliedand theoretical research.
2 c
 Veloso, CSD, CMU

'
&

$
%

Comments on this Document� Thanks to Daniel Borrajo, Universidad Carlos III, Madrid, for his helporganizing this tutorial.� A list of references (certainly not exhaustive) is included at the end of thedocument.� The author of the tutorial is available for further explanations and contactsafter the tutorial. Feel free to contact veloso@cs.cmu.edu.
3 c
 Veloso, CSD, CMU

'
&

$
%

Outline� Motivation: Planning and Learning� Planning� Learning Applied to Planning� Conclusion
4 c
 Veloso, CSD, CMU

'
&

$
%

Planning involves: Motivation� Given knowledge about a task domain� Given a problem speci�ed as:> an initial con�guration of the state of the \world"> a set of goals to be achieved� Find a solution to the problem, i.e., a way to transform the initialcon�guration into a new state of the world where the goal statement istrue.
5 c
 Veloso, CSD, CMU

'
&

$
%

Many issues to resolve... MotivationA few are:� What knowledge de�nes the task domain?� How to represent the planning action model?� What is the (su�cient) initial state of the world?� What are the (prioritized) goals?� How to acquire domain knowledge e�ciently from expert human planners?� Which algorithm to use to generate the solution plan?� How to generate plans in a computationally tractable way?� How to create plans of good quality?� How to scale up to real-world problems?
6 c
 Veloso, CSD, CMU

'
&

$
%

Reaching Planning Expertise Motivation
PLANNER TASK KNOWLEDGE

ANALYZE PLANS GENERATED� Knowledge engineering approaches:> Handcode and re�ne domain knowledge.> Specify control strategies.> De�ne knowledge to produce quality plans.� Machine learning approaches:> Automate the interpretation of the planning experience into reusabletask knowledge: domain, control, and quality.> Most recent trend: Combine with user's input.7 c
 Veloso, CSD, CMU
'

&

$
%

Tutorial Goals Motivation� Overview of planning algorithms� Overview of learning approaches combined with planningAccumulate and transfer problem solving experience
8 c
 Veloso, CSD, CMU

'
&

$
%

Outline So far and next� Motivation: Planning and Learning> Knowledge engineering bottleneck> Learning: automated improvement with experience> Many learning opportunities in planning� Planning> Introduction> Planning Algorithms� Learning Applied to Planning� Conclusion
9 c
 Veloso, CSD, CMU

'
&

$
%

Example: Process Planning Task Planning[P�erez 95, Gil, Hayes]The essence of AI planning: forming plans to achieve goals.

??

Initial Final

How can we achieve a desired �nal con�guration given some initial given one?� Di�erent processes (actions).� Di�erent machines.� Di�erent tools.� Parts have orientations.� Interaction among processes.� E�ciency, quality, accuracy.� ... 10 c
 Veloso, CSD, CMU

'
&

$
%

Planning Domains PlanningMany AI planning domains with di�erent degrees of realism:� Process planning� Image processing� Logistics transportation� Crisis management� Generating collection procedures� Bank risk management� Credit card fraud detection� Robot navigation� Machine shop scheduling� Blocks world� Puzzles� Matrix algebra� Arti�cial domains� ...
11 c
 Veloso, CSD, CMU

'
&

$
%

Example: Task De�nition Planning

Real world

Planner
Sequence
of actions
(plan)

Goals

Problems

Initial
 state

Possible
actions

Representation

Operators,

constraints

axioms,

sentences,

(logic)

axioms

Grounded

� State-based representation of the world:> Operators: F : states! states (generalized)> Goal: set of sentences which must be true in the �nal state.12 c
 Veloso, CSD, CMU

'
&

$
%

Example: Problem Representation PlanningObjects;;machines(mm2 milling-machine)(drill7 drill-press) ...;;tools(spot-drill3 spot-drill)(twist-drill5 twist-drill)(end-mill6 end-mill)(soluble-oil soluble-oil) ...;;holding devices(vise12 vise) ...;;parts(part17 part)...
PART MACHINE

TWIST-DRILL

DRILL-BIT

SPOT-DRILL

MILLING-
MACHINE

DRILL-
PRESS

TOOL

TYPE HIERARCHY

State(diameter-of-drill-bit twist-drill5 9/64)(material-of part17 aluminum)(size-of part17 length 5)(size-of part17 height 3)(size-of part17 width 3)...Goal ((<part> part))(and (size-of <part> height 2)(has-spot <part> hole1 side1 1.375 0.25)))Plan1. put-tool-drill drill7 spot-drill32. put-holding-device-drill drill7 vise123. clean part174. put-on-machine-table drill7 part175. hold drill7 vise12 part17 side1 side2-side56. drill-in-drill-press drill7 spot-drill3 part17...
??

Initial Final

13 c
 Veloso, CSD, CMU
'

&

$
%

Example: Action Representation Planningdrill-in-drill-press<mach>: type drill-press<drill-bit>: type spot-drill<device>: type (or vise chuck)<part>: type part<hole>: type hole<side>: type sidePre: (holding-tool <mach> <drill-bit>)(holding <mach> <device> <part>)Add: (has-spot <part> <hole> <side>)Del: (is-clean <part>)
put-tool-drill<mach>: type drill-press<tool>: type drill-bitPre: (avail-tool-holder <mach>)(avail-tool <tool>)Add: (holding-tool <mach> <tool>)Del: (avail-tool-holder <mach>)(avail-tool <tool>)Many other actions (In Prodigy: more than 100):� face-mill, remove-tool-from-drill, hold-with-vise,...

14 c
 Veloso, CSD, CMU

'
&

$
%

Domain Representation Planning� Operators { rules { with:> Precondition expression { must be satis�ed before the operator is applied.> Set of e�ects { describe how the application of the operator changes thestate.� Precondition expression: propositional, typed �rst-order predicate logic,negation, conjunction, disjunction, existential and universal quanti�cation,and functions.� E�ects: add and delete lists.� Universally quanti�ed e�ects.� Conditional e�ects { dependent on conditions on the state.
15 c
 Veloso, CSD, CMU

'
&

$
%

Generating a Solution Plan PlanningSeveral planning algorithms:� Linear planning { Planning with a stack of goals.� Nonlinear planning { Interleaving of goals> State-space search> Plan-space search� Hierarchical planning> Emphasis on action decomposition/re�nement> Very little searchA complex process:� Alternative operators to achieve a goal.�Multiple goals that interact.� E�ciency, quality, and accuracy { hard.16 c
 Veloso, CSD, CMU

'
&

$
%

Search Strategies PlanningUsing a set of operators:� Forward chaining { progression> From the initial state,> Apply operators with preconditions true in the state,> Get new states.� Backward-chaining { regression> From the goal state,> Find operators that can add goal,> Set its preconditions as new goals.� Partial order { network of constraints among plan steps { no direct reasoningabout an explicit state.� Total order { plan steps are ordered during search { use of a uniquelyspeci�ed state. 17 c
 Veloso, CSD, CMU
'

&

$
%

Planning Issues Planning� Representation of plans> Plans as sequence of state changes> Plans as total orders of steps> Plans as successive levels of re�nement> Plans as partial orders of steps� Conditional actions/e�ects� Arbitrary functions computing side-e�ects� Temporal reasoning { actions take time { explicit representation of time� Interleave of planning and execution� Nondeterministic outcome of actions� Probabilistic occurrence of external events> Planning as search, i.e., a decision-making process {learn search heuristics> Planning representation { learn e�cient, complete,correct domain speci�cations 18 c
 Veloso, CSD, CMU

'
&

$
%

Means-ends Analysis State-space[Newell and Simon 60s] [Ernst and Newell 69]GPS Algorithm (initial-state, goals)� If goals � initial-state, then return True� Choose a di�erence d between initial-state and goals� Choose an operator o to reduce the di�erence d� If no more operators, then return False� State=GPS(initial-state, preconditions(o))� If State, then return GPS(apply(o,State), goals)
19 c
 Veloso, CSD, CMU

'
&

$
%

Linear Planning State-spaceSTRIPS reduced Algorithm (initial-state, goals)[Fikes and Nilsson 71]Stack= goalsState=initial-stateRepeat until Stack=emptyCase top of Stack ofoperator:Unmet-preconditions=set of preconditions of o not true in StateIf Unmet-preconditions= empty,Then State=apply(o,State)Else Introduce Unmet-preconditions into Stackset of goals:If goals�State, Then remove goals from Stack(*) Introduce goal g 2goalsj g 62initial-state into Stacksingle goal:If goal�State, Then remove goal from StackElse If goal loop, Then backtrackElse (*) Select operator o j g 2e�ects(o)Introduce o in Stack 20 c
 Veloso, CSD, CMU

'
&

$
%

Linear Planning: Discussion State-spaceAdvantages:� Linear planning assumes that goals are independent.� Reduced search space, because goals are solved one at a time.� Clearly an advantage if goals are independent.Disadvantages:� Linear planning may produce unoptimal solutions.� Linear planning is incomplete.Strict Completeness: A planning algorithm is strictly complete if all thesolutions to a given problem are included in its search space.Completeness: A planning algorithm is complete if at least one solution toa given problem, when one exists, is included in its search space.21 c
 Veloso, CSD, CMU
'

&

$
%

Example: Irreversible Actions State-space(OPERATOR LOAD-ROCKET(preconds((<roc> ROCKET)(<obj> OBJECT)(<loc> LOCATION))(and (at <obj> <loc>)(at <roc> <loc>)))(effects ()(add (inside <obj> <roc>))(del (at <obj> <loc>))))
(OPERATOR UNLOAD-ROCKET(preconds((<roc> ROCKET)(<obj> OBJECT)(<loc> LOCATION)))(and (inside <obj> <roc>)(at <roc> <loc>)))(effects ()(add (at <obj> <loc>))(del (inside <obj> <roc>))))(OPERATOR MOVE-ROCKET(preconds((<roc> ROCKET)(<from-l> LOCATION)(<to-l> LOCATION))(and (at <roc> <from-l>)(has-fuel <roc>)))(effects ()(add (at <roc> <to-l>))(del (at <roc> <from-l>))(del (has-fuel <roc>))))22 c
 Veloso, CSD, CMU

'
&

$
%

Incompleteness of Linear Planning State-spaceInitial state:(at obj1 locA)(at obj2 locA)(at ROCKET locA)(has-fuel ROCKET) Goal statement:(and(at obj1 locB)(at obj2 locB))Goal Plan(at obj1 locB) (LOAD-ROCKET obj1 locA)(MOVE-ROCKET)(UNLOAD-ROCKET obj1 locB)(at obj2 locB) failureGoal Plan(at obj2 locB) (LOAD-ROCKET obj2 locA)(MOVE-ROCKET)(UNLOAD-ROCKET obj2 locB)(at obj1 locB) failure23 c
 Veloso, CSD, CMU
'

&

$
%

State-Space Nonlinear Planning State-spaceExtend linear planning:� From stack to set of goals.� Include in the search space all possible interleaving of goals.State-space nonlinear planning is complete.Goal Plan(at obj1 locB) (LOAD-ROCKET obj1 locA)(at obj2 locB) (LOAD-ROCKET obj2 locA)(MOVE-ROCKET)(at obj1 locB) (UNLOAD-ROCKET obj1 locB)(at obj2 locB) (UNLOAD-ROCKET obj2 locB)
24 c
 Veloso, CSD, CMU

'
&

$
%

PRODIGY4.0 Planning Algorithm State-space1. Terminate if the goal statement is satis�ed in the current state.2. Compute the SET of pending goals G, and the set of applicable operators A.> A goal is pending if it is a precondition, not satis�ed in the current state, of anoperator selected to be in the plan to achieve a particular goal.> An operator is applicable when all its preconditions are satis�ed in the state.3. Choose a goal G from G or select an operator A from A.4. If G has been chosen, then> Expand goal G, i.e., get the set O of relevant instantiated operators that couldachieve the goal G,> Choose an operator O from O,> Go to step 1.5. If an operator A has been selected as directly applicable, then> Apply A,> Go to step 1. 25 c
 Veloso, CSD, CMU
'

&

$
%

Prodigy4.0 Search Representation State-spaceRepresentation of an incomplete plan during search:

I C G

head-plan tail-plangapModifying the current plan { children of a search node:

I Cs G
x

y
z

t

Adding an operator to the tail-plan

I C G
x

y
zs

I s GzC’x y

Applying an operator (moving it to the head) 26 c
 Veloso, CSD, CMU

'
&

$
%

Hierarchical Planning Hierarchical� General-purpose search heuristics do not solve reasonably complex repre-sentations of domains� A well chosen simpli�cation of the representation can improve theperformance� Need to simplify search and representation� Key idea: Identify levels of abstraction, details.Example: abstrips [Sacerdoti, 74]� Each precondition has a criticality value� Planning algorithm: incremental re�nement> For cv from maximum-criticality-value down to minimum- Plan using only preconditions of criticality+cv re�ning previousabstract planOther examples:� noah [Sacerdoti, 75] { Nets of action hierarchies� O-PLAN [Tate 80] { elaborated abstract levels, no search27 c
 Veloso, CSD, CMU
'

&

$
%

Representation in abstrips HierarchicalPUSH-THRU-DOORPreconditions:f6gpushable(box1)^f6gtype(door1,DOOR)^ f6gtype(room1,ROOM)^f2gstatus(door1,OPEN)^f1gnext-to(box1,door1)^ f1gnext-to(ROBOT,box)^9 room2 [f5gin-room(box,room2)^f5gin-room(ROBOT,room2)^f6gconnects(door1,room1,room2)]Deletions:at(ROBOT,$1,$2)^next-to(ROBOT,$1)^at(box1,$1,$2)^next-to(box1,$1)^next-to($1,box1)^in-room(ROBOT,$1)^in-room(box1,$1)Additions:in-room(box1,room2)^in-room(ROBOT,room2)^next-to(ROBOT,box1)
28 c
 Veloso, CSD, CMU

'
&

$
%

Example of Planning in noah Hierarchical

J Put A on B

S

clear(C)

clear(B)
S J

clear(C)
Put B on C

Put C on <obj1>

S

clear(C)

clear(B)
S J

clear(C)
Put B on C Put A on B

Put C on <obj1>
+

-

29 c
 Veloso, CSD, CMU
'

&

$
%

Several Other Planning Algorithms State/Plan-space� TWEAK [Chapman 87], SNLP [McAllester & Rosenblitt 91] , UCPOP[Penberthy and Weld 92]> Emphasis on plan-space search� NONLIN [Tate 76], O-PLAN [Tate], SIPE [Wilkins 88]> Emphasis on plan decomposition� UNPOP, Planning and acting [McDermott 78]� Reactive planning [George� & Lansky 87], [Firby 87], [Hendler &Sanborn 87]� Action and time [Allen 84] [Dean & McDermott 87]� Walksat [Selman et al. 92, Kautz & Selman 92, 96]� Flecs [Veloso & Stone 95]� Graphplan [Blum & Furst 95] 30 c
 Veloso, CSD, CMU

'
&

$
%

Plan-Space Partial-Order Nonlinear PlanningPlan-spaceSNLP Planning Algorithm [McAllester & Rosenblitt 91]1. Terminate if the goal set is empty.2. Select a goal g from the goal set and identify the plan step that needsit, Sneed.3. Let Sadd be a step (operator) that adds g, either a new step or a step thatis already in the plan. Add the causal link Sadd g! Sneed, constrain Sadd tocome before Sneed, and enforce bindings that make Sadd add g.4. Update the goal set with all the preconditions of the step Sadd, and delete g.5. Identify threats and resolve the con
icts by adding ordering or bindingsconstraints.� A step Sk threatens a causal link Si g! Sj when it occurs between Si andSj, and it adds or deletes p.� Resolve threats by using promotion, demotion, or separation.31 c
 Veloso, CSD, CMU
'

&

$
%

State-space and Plan-space Comparison� Planning is NP-hard.� Two di�erent planning approaches: state-space and plan-space planningState-space Plan-spaceCommitments in planstep orderings Yes NoTherefore, su�er withgoal orderings Yes NoTherefore, handle goalinteractions Poorly E�ciently
32 c
 Veloso, CSD, CMU

'
&

$
%

Step Ordering Commitments ComparisonWHY?Use of a uniquely speci�ed STATE of the world while planningIn prodigy4.0 advantages include:� Means-ends analysis - plan for goals that reduce the di�erences betweencurrent and goal states.� Informed selection of operators - select operators that need less planningwork than others.� State useful for learning, generation and match of conditions supportinginformed decisions.� Helpful for generating anytime planning - provide valid, executable, plansat any time.� Probabilistic planning - may be useful to reason about states, events thata�ect them, and eventual transitions. 33 c
 Veloso, CSD, CMU
'

&

$
%

Parallel between Commitments - Example ComparisonOperator Polish Operator Drill-Holepreconds:�() preconds: ()adds: polished adds: has-holedeletes: () deletes: polishedGoal: polished and has-hole Goal: polished and has-holeInitial state: empty Initial state: polishedprodigy4.0 snlp- plan for goal polished- select Polish� order Polish as �rst step- plan for goal has-hole- select Drill-Hole� order Drill-Hole � Polish� polished deleted, backtrack- Polish � Drill-Hole
- plan for goal polished- select Initial state� link Initial to polished- plan for goal has-hole- select Drill-Hole� link Drill-Hole to has-hole� threat - relink polished- select Polish- link Polish to polished- Polish � Drill-Hole34 c
 Veloso, CSD, CMU

'
&

$
%

Serializability and Linkability Comparison� A set of subgoals is serializable [Korf]:� If there exists some ordering whereby they can be solved sequentially,� without ever violating a previously solved subgoal.� Easily serializable, laboriously serializable [Barrett and Weld].� A set of subgoals is easily linkable:� If, independently of the order by which the planner links these subgoalsto operators,� it never has to undo those links.� Otherwise it is laboriously linkable.
35 c
 Veloso, CSD, CMU

'
&

$
%

Laboriously Linkable Goals Comparisonoperator Aipreconds g�; gi�1adds gideletes g� operator A�preconds ()adds g�deletes ()Initial state: g�Goal statement: g�; g5Plan: A1; A�; A2; A�; A3; A�; A4; A�; A5
0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16

T
im

e
in

 m
se

cs
Highest goal

prodigy4.0
snlp

36 c
 Veloso, CSD, CMU

'
&

$
%

The Importance of the Commitment Choice Comparison� prodigy4.0's algorithm simpli�es to the regular expression(Subgoal Apply�)�.Two main choices:- Plan for a goal OR- Change the state, i.e. simulate execution.� prodigy4.0 uses state to determine : : :> if the goal state has been reached.> which goals still need to be achieved.> which operators are applicable.> which operators to try �rst while planning.
37 c
 Veloso, CSD, CMU

'
&

$
%

Two Heuristics: SAVTA, SABA Comparisonsavta: Eager application = Eager state changesSubgoal After eVery Try to Applysaba: Eager subgoaling = Delayed state changesSubgoal Always Before Applying

I Cs G
x

y
z

t

I C G
x

y
zs

APPLYING - CHANGING THE STATE SUBGOALING - CONTINUE PLANNING

I s GzC’x y

38 c
 Veloso, CSD, CMU

'
&

$
%

Eagerly Subgoaling Can Be Better ComparisonOperator: paint-white <obj> paint-yellow <obj> � � � paint-black <obj>preconds: (usable white) (usable yellow) � � � (usable black)adds: (white <obj>) (yellow <obj>) � � � (black <obj>)deletes: (usable white) � � � (usable white)� � � (usable yellow)... ...(usable brown)Operator: Aipreconds: fIigadds: fGigdeletes: fIjjj < ig

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

T
im

e:
 m

se
c

Number of Goals

Eager Subgoaling
Eager Applying

39 c
 Veloso, CSD, CMU
'

&

$
%

Eagerly Applying Can Be Better ComparisonOperator: paint-with-brush1 : : : paint-with-brush8<parts> <color> � � � <parts> <color>preconds: (unused brush1) � � � (unused brush8)adds: (painted <parts> <color>) � � � (painted <parts> <color>)deletes: (unused brush1) � � � (unused brush8)Operator: Aipreconds: fIigadds: f< g >gdeletes: fIig
0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16

T
im

e:
 m

se
c

Number of Goals

Eager Subgoaling
Eager Applying

40 c
 Veloso, CSD, CMU

'
&

$
%

FLECS { Flexible Commitment Strategy ComparisonOperator: designate-roller �ll-roller paint-wall<wall> <roller> <color> <roller> <color> <wall> <roller> <color>preconds: (clean <roller>) (clean <roller>) (ready(needs-painting <wall>) (chosen <wall> <roller> <color>)<roller> <color>) (�lled-with-paint<roller> <color>)adds: (ready (�lled-with-paint (painted <wall> <color>)<wall> <roller> <color>) <roller> <color>)(chosen <roller> <color>)deletes: (clean <roller>) (ready<wall> <roller> <color>)(needs-painting <wall>)Initial State Goal Statement An Optimal Solution(needs-painting wallA) (painted wallA red) <Designate-Roller wallA roller1 red>(needs-painting wallB) (painted wallB red) <Designate-Roller wallB roller1 red>(needs-painting wallC) (painted wallC red) <Designate-Roller wallC roller1 red>(needs-painting wallD) (painted wallD green) <Fill-Roller roller1 red>(needs-painting wallE) (painted wallE green) <Paint-Wall wallA roller1 red>(clean roller1) <Paint-Wall wallB roller1 red>(clean roller2) <Paint-Wall wallC roller1 red><Designate-Roller wallD roller2 green><Designate-Roller wallE roller2 green><Fill-Roller roller2 green><Paint-Wall wallD roller2 green><Paint-Wall wallE roller2 green>time(sec) solutioneager applying 500 noeager subgoaling 500 novariable strategy 4 yes 41 c
 Veloso, CSD, CMU
'

&

$
%

Summary { Planning Comparison� Several di�erent planning algorithms.� There is not a planning strategy that is universally betterthan the others.� Even for a particular planning algorithm: There is no single domain-independent search heuristic that performs more e�cientlythan others for all problems or in all domains.

SABA-reactive

SABA-memory

SAVTA

D0-side-effect

DmS2*

D0-side-effect

DmS1, D1S1*,
and DmS2*

DmS1, D1S1*,
and DmS2*Learning is appropriate for ANY planner.42 c
 Veloso, CSD, CMU

'
&

$
%

Outline So far and next� Motivation� Case-Based Reasoning� Rule-Based, Operator-Based Planning> Planning Algorithms> State-space planning; linear and nonlinear> Hierarchical planning> Plan-space planning> Comparison: Prodigy4.0 and SNLP; Di�erent search heuristics inProdigy4.0.> No universally optimal planning search algorithm or representation.> Learning from experience may improve planning performance.� Learning Applied to Planning� Planning by Analogical/Case-based Reasoning� Conclusion 43 c
 Veloso, CSD, CMU
'

&

$
%

Macro-Operators Macro-Ops� First idea to apply learning to planning=problem solving� Learning started being applied to state-space planning (strips [Fikes &Nilsson, 72])� Originally conceived for two-fold purpose:> Learning sequences of actions> Monitoring execution of plans� Key idea: create new operators by joining the descriptions of the individualoperators that form a plan� Creation of macro-operators through triangle tables� Examples: Rubik's cube [Korf, 83], act� [Anderson, 83], morris [Minton,85], ...� Iterative macro-operators [Cheng & Carbonell 86] , [Shell & Carbonell 89]� Flexible reuse of macro-operators [Yang & Fisher 92]44 c
 Veloso, CSD, CMU

'
&

$
%

Triangle Tables Macro-Ops� on-table(A)� clear(A)� arm-empty pick-up(A)� clear(B) � holding(A) stack(A,B)� clear(C) clear(A)� on(C,D) on(A,B)� arm-empty unstack(C,D)clear(A) holding(C)on(A,B) clear(D)
45 c
 Veloso, CSD, CMU

'
&

$
%

Discussion: Macro-Operators Macro-Ops� Advantages:> Reuse of past experience> Replanning from failures> Less search depth> Less matching time> Side-e�ect: learning operators subsequences� Disadvantages:> Considered in addition to simple operators> Increased branching factor� Need to consider utility
46 c
 Veloso, CSD, CMU

'
&

$
%

Analytical Learning ebl=ebgMachine learning:� Inductive methods> Data-intensive> Extract a general description of a concept from many examples� Deductive methods> Knowledge-intensive> Explain and analyze single example of instance of concept> Explanation identi�es the relevant features of the example = su�cientconditions for describing the concept.> Generalize instantiated explanation to apply to other instances of theconcept.
47 c
 Veloso, CSD, CMU

'
&

$
%

Explanation-Based Generalization { ebg ebl=ebgInputs:� Target concept de�nition� Training example� Domain theory� Operationality criterionOutput:Generalization of the training example, that is� su�cient to describe the target concept, and� satis�es the operationality criterion.
48 c
 Veloso, CSD, CMU

'
&

$
%

ebl: A Deductive Learning Method ebl=ebgWhy are examples needed?� Domain theory contains all the information: simply operationalize targetconcept.� Examples help to focus on the relevant operationalizations:characterize only examples that actually occur.Actual purpose of ebl:> not to \learn" more about target concept,> but to \re-express" target concept in a more operational manner (=e�-ciency).
49 c
 Veloso, CSD, CMU

'
&

$
%

ebl Applied to Problem Solving/Planning ebl=ebgInputs:� Target concept de�nition { decision to be made� Training example:> The search episode with its successes and failures� Domain theory:> Operators used in the search> Objects and possibly relationships in the world which may be used tobuild the explanation� Operationality criterion:> Describe concept using terms that are interpretable (e�ciently) by theproblem solver> Several possible criteria
50 c
 Veloso, CSD, CMU

'
&

$
%

ebl Applied to Problem Solving/Planning ebl=ebgOutput:Generalization of the training example, that is� Su�cient to describe the target concept,� and satis�es the operationality criterion.1. Explain (prove) why example is instance of targetconcept.� uses domain theory� prunes away unimportant aspects of example� �nal explanation is operational2. Generalize explanation
51 c
 Veloso, CSD, CMU

'
&

$
%

ebl in prodigy ebl=ebgGoal: { improve the e�ciency of the planner{ learn control rules.� knowledge-intensive approach� analyzes trace of solving a problem� explains \why" the choices made during problem solving were, or were not,appropriate� acquires control knowledge { better search heuristicsControl rule:� Applies at individual decisions.� Antecedent matches the state of the planner at decision making time.� Antecedent is operational { planner can match its state using control rulelanguage.� Consequent selects, rejects or prefers particular alternatives.52 c
 Veloso, CSD, CMU

'
&

$
%

Examples of Control Rules in prodigy ebl=ebg(CONTROL-RULE SELECT-OP-UNSTACK-FOR-HOLDING(if (and (current-goal (holding <x>))(true-in-state (on <x> <y>))))(then select operator UNSTACK))(CONTROL-RULE SELECT-BINDINGS-UNSTACK-HOLDING(if (and (current-goal (holding <x>))(current-ops (UNSTACK))(true-in-state (on <x> <y>))))(then select bindings ((<ob> . <x>) (<underob> . <y>))))(CONTROL-RULE SELECT-OP-PUTDOWN-FOR-ARMEMPTY(if (and (current-goal (arm-empty))(true-in-state (holding <ob>))))(then select operator PUT-DOWN))(CONTROL-RULE SELECT-BINDINGS-PUTDOWN(if (and (current-ops (PUT-DOWN))(true-in-state (holding <x>))))(then select bindings ((<ob> . <x>)))) 53 c
 Veloso, CSD, CMU
'

&

$
%

Discussion ebl=ebg� Very successful in a variety of domains.� Learned rules are applied as other rules, i.e. if their antecedent totallymatches planning situation.� If ebl system is eager to learn provably correct knowledge, the explanatione�ort is really large and the ebl system requires a complete domain theoryfor generalization.Utility problem: The more rules learned, the slower the deliberation� Possible solutions:> Perform utility analysis and discard low-utility rules> Heuristics to learn only e�ective knowledge> Incremental re�nement of learned rules� Factors in
uencing utility of control knowledge> Matching cost (cost of utilization)> Frequency of application> Savings every time it is applied 54 c
 Veloso, CSD, CMU

'
&

$
%

Learning in Nonlinear Plan-Space Plan-space Learning� Application of known methods for State-space planners in Plan-Spaceplanners� Explanations in previous work compute the set of weakestpreconditions� These methods cannot be applied to partially ordered plans, because theynot capture all interactions among plan operators of a partially ordered plan� In Plan-Space planners, explanations are based on the Modal TruthCriterion� [Kambhampati & Kedar 91], [Kambhampati & Chen 93]
55 c
 Veloso, CSD, CMU

'
&

$
%

Learning Control Rules in PO planningPlan-space Learning� Di�erences with State-Based Planning> Di�erent algorithm for regressing and generalizing explanations> Di�erent types of failures� Examples: snlp+ebl (Katukam and Kambhampati, 94) anducpop+ebl (Qu and Kambhampati, 95)� Types of failures> Analytical> Cross of depth limits (need of domain axioms)
56 c
 Veloso, CSD, CMU

'
&

$
%

snlp Decision Points Plan-space Learning1. Selection of open condition2. Establishment of open conditions> Existing step (which one?)> Initial state (particular case of above)> New step (which one?)3. Selection of a threat (which one?)4. Resolution of a threat> Promotion (where?)> Demotion (where?)> Separation (addition of non-codesignation constraints) (snlp)> Confrontation (conditional e�ects) (ucpop)
57 c
 Veloso, CSD, CMU

'
&

$
%

Learning Process Plan-space Learning� Backtracking applied to situations 2 and 4� Intra-trial learning vs. after-trial learning� Learning of selection and rejection search control rules> Construction of initial explanation> Regression of explanation over the decisions> Propagation of explanation up the failure branch> Generation of control rules> Simple utility analysis (do not learn when level of failure falls belowconstant l)> Rules storage (bounded isomorphism checks are done)
58 c
 Veloso, CSD, CMU

'
&

$
%

Analytical Failures Plan-space Learning� Can be explained in terms of:> Inconsistencies in the ordering constraints(e.g. (s1 � s2) ^ (s2 � s1))> Inconsistencies in the binding constraints (e.g. x � y ^ x 6� y)> Unestablishable open conditions(e.g. goal: p(x) and 6 9s 2 S j p(x) 2e�ects(s))� Generalization> Standard ebl: constants for variables> Bindings forced by initial and goal states are removed> Only binding constraints from the initial explanation are kept> Step names are also generalized (except for the start step)� Discussion> Good results on some synthetic domains> Ine�ective in recursive domains 59 c
 Veloso, CSD, CMU
'

&

$
%

Depth Limit Failures Plan-space Learning� No domain independent explanation can be given to these failures� Possible to use strong consistency checks based on domain axioms� Restricted representation of domain axioms [Drummond & Curry, 88]Operation:� Necessarily preservable conditions (np-conditions) of a step s0:np-conditions(s0) = fc j s1 c! s2 2 L ^s1 � s0 � s2g� preconds(s0)[np-conditions(s0) must be consistent with respect to domainaxioms
60 c
 Veloso, CSD, CMU

'
&

$
%

Discussion Plan-space Learning� Experimental data con�rms the utility of learning search control rules forpartial-order nonlinear planners (snlp and ucpop)� The regression and propagation phases can be used as a form of dependency-directed backtracking� In snlp experiments, no control rule was generated from analytical failures� In ucpop experiments, the richer the representation, the easier to learnfrom analytical failures� Depth Limit Failures require domain axioms� Generated control rules are di�cult to understand by an expert
61 c
 Veloso, CSD, CMU

'
&

$
%

Learning To Achieve Plan Quality Learning Quality� Beyond learning to improve problem solving e�ciency.� Real-world applications begin to require good quality solutions.� Interactions among goals and scenarios a�ect the quality of solutions> Explicit goal interactions { e�ciency> Quality goal interactions (harder to learn)� Plan length might not be the only cost measure� Two approaches:> quality learns from the di�erence between a good solution and a worsesolution [P�erez 95]> hamlet learns to select alternatives that lead to optimal solutions[Borrajo & Veloso 94, 96]
62 c
 Veloso, CSD, CMU

'
&

$
%

Learning to Generate Quality Plans quality� Learn control knowledge to guide future search towards better plans(instead of \post-facto" plan modi�cation)

 Domain
knowledge Problems Expert

Plan quality
 metric

Search control knowledge
 for faster planning

Search control knowledge
 for better plans

PRODIGY QUALITY

Plan Checker
Interactive

� Learning = change of representation:From quality metric into search control knowledge available at problemsolving decision time, since plan and search tree are only partially available.63 c
 Veloso, CSD, CMU
'

&

$
%

QUALITY: The Architecture [P�erez 95] quality

Interactive
plan

checker
USER

Quality
Metric

learned search
control knowledge

search
trace

Learnerplan

improved plan

partial order
plan P

Quality
Metric

64 c
 Veloso, CSD, CMU

'
&

$
%

Discussion quality� Learn control rules to prefer operators, bindings, and goals in domain-independent fashion.� Learning is driven by failure, when current control strategy must beoverridden.� If the quality metric changes, the learned knowledge is invalidated andre-learned.� Limited class of quality metrics.{ Tradeo�s in the quality factors lead to con
icts between rules.{ Non-local tradeo�s are hard to capture with local control rules.Solution: algorithms to learn and use control-knowledge trees.
65 c
 Veloso, CSD, CMU

'
&

$
%

Learning in Planning Search Trees hamletLabeling procedure:� Find failure and successes to learn from� Traverse trace (in post-order) labeling each node (failure, success, unknown).Generation of control rules:� Identify relevant features by goal regression� Generalize instances in rules� Left hand side (antecedent): conjunction of relevant features� Right hand side (consequent): the decision learnedOutcome:� Learned rules may be overspeci�c, i.e. may have a superset of the realrelevant features.� Learned rules may be overgeneral, i.e. may have a subset of the real relevantfeatures (when applied to nonlinear planning)66 c
 Veloso, CSD, CMU

'
&

$
%

Example - The Logistics Domain hamlet� Packages are moved between cities. Trucks carry packages between locationswithin a city and airplanes carry packages across cities.� There is no knowledge about> not moving carriers if they need to be loaded> unload a truck if an object is in the same city> load two objects \at the same time" if they need to go to the same place,and they are in the same place� Changing representation is an open research option that we are alsoexploring(operator FLY-AIRPLANE(preconds ((<plane> AIRPLANE)(<loc-from> AIRPORT)(<loc-to> AIRPORT))(at-airplane <plane> <loc-from>))(e�ects ((add (at-airplane <plane> <loc-to>))(del (at-airplane <plane> <loc-from>)))))67 c
 Veloso, CSD, CMU
'

&

$
%

Other Logistics Domain Operators hamlet(OPERATOR UNLOAD-AIRPLANE(params <obj> <airplane> <loc>)(preconds ((<obj> object) (<airplane> airplane) (<loc> airport))(and (at-airplane <airplane> <loc>)(inside-airplane <obj> <airplane>)))(e�ects ((del (inside-airplane <obj> <airplane>))(add (at-object <obj> <loc>)))))(OPERATOR LOAD-TRUCK(params <obj> <truck> <loc>)(preconds ((<obj> object) (<truck> truck) (<loc> location))(and (at-truck <truck> <loc>)(at-object <obj> <loc>)))(e�ects ((del (at-object <obj> <loc>))(add (inside-truck <obj> <truck>)))))(OPERATOR DRIVE-TRUCK(params <truck> <loc-from> <loc-to>)(preconds ((<truck> truck) (<loc-from> location) (<loc-to> location))(and (same-city <loc-from> <loc-to>)(at-truck <truck> <loc-from>)))(e�ects ((del (at-truck <truck> <loc-from>))(add (at-truck <truck> <loc-to>)))))
68 c
 Veloso, CSD, CMU

'
&

$
%

Basic ebl is Over-General hamletProblem:
Airport1

Airport1
Post Office1 Post Office2

Airport2

City2

Airport1

City1
Post Office1

Airport1

City1
Post Office2

Airport2

City2

City1

Goal Statement

Initial State

package1
package2package3

truck1
truck3

plane1 truck2

plane1
package1If only caring for e�ciency, ebl learns the following rule:(control-rule select-bind-
y-airplane-2(if (current-operator
y-airplane)(current-goal (at-airplane <plane1> <airport3>))(true-in-state (at-airplane <plane1> <airport2>)))(then select bindings ((<plane> . <plane1>)(<loc-from> . <airport2>)(<loc-to> . <airport3>))))69 c
 Veloso, CSD, CMU

'
&

$
%

HAMLET: Deduction and Induction hamlet� Extend the basic ebl approach developed for linear problem solving> De�ne new learning opportunities> Consider solution quality� Reduce the explanation e�ort> No need to acquire extra domain knowledge� Incrementally re�ne control knowledge> Converges towards an experience-supported correct set of rulesRule learned by hamlet (previous example):(control-rule select-bind-
y-airplane-1(if (current-operator
y-airplane)(current-goal (at-airplane <plane1> <airport3>))(true-in-state (at-airplane <plane1> <airport2>))(true-in-state (at-object <package4> <airport1>))(other-goals ((at-object <package4> <airport3>))))(then select bindings ((<plane> . <plane1>)(<loc-from> . <airport1>)(<loc-to> . <airport3>))))70 c
 Veloso, CSD, CMU

'
&

$
%

hamlet's Architecture hamlet

Domain

L

L’’

L’

ST ST’

ST ST’
Training
problems

 Bounded
Explanation
 Module

PRODIGY

Inductive
 Module

Refinement
 module

Learned
Control
Knowledge

Quality
Measure

HAMLET

71 c
 Veloso, CSD, CMU
'

&

$
%

hamlet's Algorithm hamletLet L refer to the set of learned control rules.Let ST, ST' refer to search trees.Let P be a problem to be solved.Let Q be a quality measure.Initially L is empty.For all P in training problemsST = Result of solving P without any rules.ST' = Result of solving P with current set of rules L.If positive-examples-p(ST, ST',Q)Then L' = Bounded-Explanation(ST, ST',Q)L"= Induce(L,L')If negative-examples-p(ST, ST',Q)Then L=Re�ne(ST, ST',L")
72 c
 Veloso, CSD, CMU

'
&

$
%

Bounded Explanation Module hamlet� hamlet's characteristics> no need for extra domain knowledge> reduced explanation e�ort> convergence towards correctness� Bounded explanation steps> Labeling the decision tree. Eagerness> Credit Assignment. Optimal learning> Generation of control rule. Goal Regression> Parametrization. Variable di�erentiation
73 c
 Veloso, CSD, CMU

'
&

$
%

Generalized decision tree - Prodigy hamlet

goal 1 goal g

operator
o

bindings

subgoal

operator
1

1 bindings b

211

 apply
operator 1

goal goal ggoal goal
1g

1

 apply
operator

subgoal

bindings
1

74 c
 Veloso, CSD, CMU

'
&

$
%

A Typical Search Tree hamlet

What are the learning opportunities?75 c
 Veloso, CSD, CMU
'

&

$
%

Induction Module hamlet� Why induction?> Bounded explanation generates possibly over-speci�c rules� hamlet does induction over> State> Subgoaling structure> Interacting goals> Type hierarchy� Inductive operators> Deletion of rules that subsume others> Intersection of preconditions. state> Re�nement of subgoaling dependencies. prior goal> Relaxing the subgoaling dependencies. prior goal> Re�nement of the set of interacting goals. other goals> Find common superclass. type of object76 c
 Veloso, CSD, CMU

'
&

$
%

Inducing Over Two Rules hamlet� Old rule:(control-rule select-unload-airplane-1(if (current-goal (at-object <object1> <airport2>))(true-in-state (at-airplane <plane4> <airport3>))(true-in-state (at-object <object1> <airport3>)))(then select operators unload-airplane))� New rule:(control-rule select-unload-airplane-2(if (current-goal (at-object <object1> <airport2>))(true-in-state (at-airplane <plane4> <airport5>))(true-in-state (at-object <object1> <airport3>)))(then select operators unload-airplane))� Induced rule:(control-rule induced-select-unload-airplane-3(if (current-goal (at-object <object1> <airport2>))(true-in-state (at-object <object1> <airport3>)))(then select operators unload-airplane))77 c
 Veloso, CSD, CMU
'

&

$
%

Re�ning hamlet� Why re�nement?> hamlet may produce over-general rules� Negative examples: occasions in which control rules have been applied andshould have not� A negative example for hamlet is> Situation in which a control rule was applied, and> the resulting decision led to a failure, or> the resulting decision led to a worse solution than the best one for thatdecision
78 c
 Veloso, CSD, CMU

'
&

$
%

Negative Cases hamlet
without rules with rules

rule i

rule i

5 3 5 3

79 c
 Veloso, CSD, CMU
'

&

$
%

Overgeneralization hamlet� Induced rule(control-rule induced-select-unload-airplane-3(if (current-goal (at-object <object1> <airport2>))(true-in-state (at-object <object1> <airport3>)))(then select operators unload-airplane))� New rule(control-rule induced-select-unload-airplane-4(if (current-goal (at-object <object1> <airport2>))(true-in-state (inside-airplane <object1> <airplane4>)))(then select operators unload-airplane))� Overgeneral rule(control-rule induced-select-unload-airplane-5(if (current-goal (at-object <object1> <airport2>)))(then select operators unload-airplane))
80 c
 Veloso, CSD, CMU

'
&

$
%

Empirical Results - Quality and Incremental hamletTest sets Unsolved Solved by both (279 problems, 53.14%)problems Better solutions Solution length Nodes exploredGoals Problems without with without with without with without withrules rules rules rules rules rules rules rules1 100 5 0 0 11 327 307 2097 15692 100 15 6 0 25 528 479 3401 23085 100 44 18 1 33 865 777 5170 346310 100 68 32 1 24 770 668 3482 294120 75 62 36 0 10 505 455 2216 192450 50 49 40 0 0 34 34 143 141Totals 525 243 132 2 103 3029 2720 16509 12346% 46.3% 25.1% 0.7% 36.9% Ratio 1.3Unsolved Solved by bothTraining problems Better solutions Ratio Ratio Ratioproblems Solution Length Time Nodeswithout with without with without/ without/ without/rules rules rules rules with rules with rules with rules75 46.29 % 36.38 % 0.35 % 25.89 % 1.11 0.49 1150 46.29 % 34.29 % 0.72 % 31.9 % 1.06 0.33 1.25400 46.29 % 25.14 % 0.72 % 36.92 % 1.08 0.32 1.3481 c
 Veloso, CSD, CMU
'

&

$
%

Summary { Analytical Learning hamlet� Long-term goal of automating planning e�ciency.� Knowledge in domain theory is not usually e�ective.� Explain examples to produce operational control knowledge for decisions.� Provably correct explanations that generalize to new situations are hard tolearn.� Di�cult goal and operator choice interactions can be learned through acombined deductive and inductive approach.� User's quality metrics can be cast in the learned knowledge.
82 c
 Veloso, CSD, CMU

'
&

$
%

Why Analogical Reasoning AnalogyDerivational analogy/case-based reasoning in planning:� Learns from local and global decisions chains { accumulates successfulplans with justi�ed local choices.� Reuses partially matched learned experience { past and new problemsneed only to be similar for reuse.� Performs lazy generalization, as learned episodes are not explained forcorrectness. (Therefore it does not require a complete domain theory.)Tradeo�s EBL { Analogical reasoning:� Hard to beat if provably correct learned knowledge.� Learning at local decisions may increase the transfer of learned knowledge(but increases also the matching cost).� Need to de�ne a similarity metric between planning situations.83 c
 Veloso, CSD, CMU
'

&

$
%

Prodigy/Analogy Analogy

C A S E L I B R A R Y

ANNOTATED

derivational trace

PROBLEM SOLVER

Base level

NEW
problem

INDEXED

case

Identify relevant features:

FOOT-PRINT initial state

Identify independent subparts:

PARTIALLY ORDER case

Analogical REPLAY

of guiding cases

RETRIEVE

similar cases

84 c
 Veloso, CSD, CMU

'
&

$
%

Challenges of Analogy { CBR in Planning Analogy� How to accumulate episodic problem solving experience?What to preserve from the search tree?� How to organize a large case library?What are the appropriate indices?� How to retrieve past experience e�ciently?What are similar problem situations?� How to reuse a set of previously solved analogous problems?What to transfer from partial matches?
85 c
 Veloso, CSD, CMU

'
&

$
%

Retaining Episodic Experience AnalogyWhat to preserve from a planning search experience?� What is needed at replay time: guidance for choices.� What is naturally known at search time.� Identify decision points in the search procedure.� Create language to capture justi�cations at search time and associatemeaning for replay time.
86 c
 Veloso, CSD, CMU

'
&

$
%

Automatic Case Generation AnalogyA plan to be stored, i.e., a case, corresponds to:� the compacted search tree� a sequence of annotated decision nodes� captures planning rationaleAnnotations are the justi�cationsfor the decisions taken:� Dependencies between goals and plan steps� Record of failed explored alternative steps� Pointers to eventual control guidanceGoal Node Applied Op Node Chosen Op Node:step :step :step:sibling-goals :sibling-goals :sibling-relevant-ops:sibling-applicable-ops :sibling-applicable-ops :why-this-operator:why-subgoal :why-apply :relevant-to:why-this-goal :why-this-operator:precond-of 87 c
 Veloso, CSD, CMU
'

&

$
%

Example { Learning a Planning Case Analogy

tr9
pl1

p3 a3
city c3

ob4

ob7

tr9

ob4

(at-obj ob4 p3)
(state (and

(at-obj ob7 a3)
(at-truck tr9 a3)
(at-airplane pl1 a3)
(same-city a3 p3))

(goal
(inside-truck ob4 tr9))

88 c
 Veloso, CSD, CMU

'
&

$
%

Example (cont.) Analogy
(load-truck ob4 tr9 a3)

(drive-truck
tr9 a3p3)

APPLY
(drive-truck
tr9 a3 p3)

APPLY
(load-truck
ob4 tr9 p3)

n2

n3

n4

n5

n6

n1

n8

n9

n10

n11

n12

n7

cn1

cn4

cn5

cn6

cn2

cn3

:sibling-ops

(goal-loop

(drive-truck tr9 a3 p3)

APPLY

APPLY

:precond-of cn2

:relevant-to cn3

(drive-truck tr9 a3 p3)

(inside-truck
ob4 tr9)

(inside-truck ob4 tr9)

(load-truck
ob4 tr9 p3) (load-truck ob4 tr9 p3)

:relevant-to cn1

:precond-of user

((load-truck ob4 tr9 a3)

(inside-truck ob4 tr9)
(at-obj ob4 a3)))

(unload-truck
ob4 tr9 a3)

Failure
goal-loop

(at-obj
ob4 a3)

(unload-airplane
ob4 pl1 a3

(inside-airplane
tr9 pl1)

(load-airplane
ob4 pl1 a3)

Failure
goal-loop

(inside-truck
ob4 tr9

(at-obj
ob4 a3)

(at-truck tr9 p3)

(at-truck
tr9 p3)

(load-truck
ob4 tr9 a3)

89 c
 Veloso, CSD, CMU
'

&

$
%

Storage { Indexing a Case AnalogyWhat are the appropriate indices?� The goal statement and the initial state de�ne a problem.� Parameterize the instantiated situation.Index through:the relevant initial state,the set of interacting goals
90 c
 Veloso, CSD, CMU

'
&

$
%

Class Hierarchy Analogy� Instances are de�ned through a class hierarchy.����������������9 �������+ SSSSSwPPPPPPPPPPPPqXXXXXXXXXXXXXXXXXXXz

� JJJ^ ������ @@@@R ���= QQQQs ���� AAAUQQQQQs���	.��/ AAU ��	 AAU ��	 AAU ��/ AAU ��/ AAU ��/ AAU

� ��/ R ZZ~SSw ��� AAUPackageLetter Box Airplane CityLocation B747B737DC10AirBus300
UniverseRoad Carrierlt1 - lt15 b3 - b17 c1 - c15Post-O�cepo1 - po15 a1 - a25Airport I90 - I88 tr1 - tr99Truckfedx4 airb10 fedx77 ups99 dhl45� Conservative reliable approach:> Parameterize to the immediate parent91 c
 Veloso, CSD, CMU

'
&

$
%

Foot-Printing the Initial State Analogy� The derivational trace identi�es for each goal the set of weakestpreconditions necessary to achieve that goal (goal regression).

WITHOUT

FOOT-PRINTING

WITH

FOOT-PRINTING

Initial State Initial State

G1 G2 G1 G2

92 c
 Veloso, CSD, CMU

'
&

$
%

Indexing Parts of a Case AnalogyPartially ordered solution identi�esindependent subparts of a problem solving episode.Goals in each subpart interact.
93 c
 Veloso, CSD, CMU

'
&

$
%

Retrieval Strategy Analogy� Get guidance for possible interacting goalsRetrieve past cases where the problem solverexperienced equivalent goal interactions.� Goal interactions are responsible for the majority of the search.
94 c
 Veloso, CSD, CMU

'
&

$
%

Search Savings AnalogyLet� b { average branching factor of the search tree,� l { solution length,� S { search e�ort without analogy,� �tr { match value between the case retrieved and the new problem, as afunction of the retrieval time tr.Then the complexity of S is S = O(bO(l)).E�ect of analogical reasoning:decrease of the average branching factor(directly related to the match value of the guiding case)Sanalogy = ((1 � �tr)b)lDesired integration PS-CBR inequality:tr + ((1� �tr)b)l � bl95 c
 Veloso, CSD, CMU
'

&

$
%

Optimal Retrieval Interval Analogytr + (1�m(1� dC��tr))lbl � bl

t retrieval

2

1

a
n
a
l
o
g
i
c
a
l

r
e
t
r
i
e
v
a
l

a
n
d

s
e
a
r
c
h

e
f
f
o
r
t
s optimal

interval

There is an optimal retrieval time intervalwhich is a function of the match rate increase �.96 c
 Veloso, CSD, CMU

'
&

$
%

E�cient Resource-Bounded Retrieval Analogy� Indexing hash tables reduce the set of candidate analogs in constant time.� Matching algorithm is incremental to allow stopping retrieval if some\reasonable" partial match is found.� No e�ort to retrieve the best set of candidate analogs in the case library.
97 c
 Veloso, CSD, CMU

'
&

$
%

Example { Retrieval of Similar Problems Analogy

Past cases

New problem

(relevant-state

(goal

(at-obj <ob12> <ap29>) (relevant-state

(goal

(relevant-state

(goal

(initial-state

(goal

(relevant-state

(goal

(inside-airplane ob3 pl5)

(inside-airplane <ob12> <pl18>))

(inside-airplane ob3 pl5))

(at-airplane <pl18> <ap37>))

(at-airplane pl5 a12))

(at-obj ob3 <ap29>)

(inside-truck ob8 tr2))

(inside-truck ob3 tr2)

(at-truck tr2 p4)

(at-airplane pl5 a12)

(at-obj ob8 p4))

(inside-truck <ob32> <tr57>))

(at-obj <ob32> <po19>)

(at-truck <tr57> <ap7>))

(inside-truck ob8 tr2))

(at-obj ob8 p4)

(at-truck tr2 <ap7>))98 c
 Veloso, CSD, CMU

'
&

$
%

Generation and Replay Analogy
CASE

CONTENTS

CASE

REPLAYGeneration and replayshare representational languageGeneration creates case language.The replay procedure interprets it.Replay involves:� a complete reinterpretation of the justi�cation structures in the new context� the development of appropriate actions to be taken when transformedjusti�cations are no longer valid. 99 c
 Veloso, CSD, CMU
'

&

$
%

Analogical Replay Of Multiple Plan Cases Analogy1. Terminate if the goal is satis�ed in the state.2. Choose a guiding case. If a failure, then backtrack and reset pointers toguiding cases.3. If a goal is chosen, then3.1. Validate the goal justi�cations. If not validated, go to step 2.3.2. Create a new goal node; link it to the case node. Advance the case.3.3. Select the operator chosen in the case.3.4. Validate the operator and bindings choices. If not validated, base-levelplan for the goal. Go to step 2.3.5. Link the new operator node to the case node. Advance the case. Go tostep 2.4. If an applicable operator is chosen, then4.1. Check if it can be applied in the current state. If it cannot, do extraplanning for the new goals. Go to step 2.4.2. Link the new applied operator node to the case node. Advance thecase. Apply the operator. Go to step 1.100 c
 Veloso, CSD, CMU

'
&

$
%

Sketch { Replaying Multiple Cases Analogy
101 c
 Veloso, CSD, CMU

'
&

$
%

Reuse of Annotated Experience AnalogyExtend case when extra planning is neededReduce case when past planning is not neededAdvantages of replay:� Proposal and validation of choices versus generation and search ofalternatives� Reduction of the branching factor> past failed alternatives are pruned by validating the record of pastfailures;> if needed, prodigy/analogy backtracks also in the guiding casesand uses information on failure to make more informed backtrackingdecisions.� Subgoaling links identify the subparts of the case to replay { the steps thatare not part of the active goals are skipped.102 c
 Veloso, CSD, CMU

'
&

$
%

Replay of Multiple Planning Cases AnalogyPlanning Cases New Planning EpisodeChosen step Proposed stepGoal dependencies Search directionOperator choices Operator selectionsRecord of failures Pruning of alternativesSibling alternatives Proposed sibling stepsAdditional reasons Additional controlExtend cases when extra planning is needed.Reduce cases when past planning is not needed.Planning cases are merged to maintain global rationaleGlobal rationale includes:� Interdependency between plan steps choices.� Justi�cation-based selection of alternatives.� Avoidance of failures encountered.� Additional information gathered.An intelligent incremental learning process103 c
 Veloso, CSD, CMU
'

&

$
%

Experiments AnalogySeveral di�erent domains, including logistics transportation� Solvability horizon of generative planner is greatly increased due to theintegrated replay of planning cases.Example application domain: Route planning� Routes are accumulated in a case library.� Routes are abstracted and indexed according to situational parameters, suchas: time of the day, day of the week, and driver.� Geometric features are used by the similarity metric used at retrieval time[Haigh,Shewchuk].� Multiple routes are merged at planning time.� Planning cases are integrated with generative planning.� Relevant parts of the cases are validated, pursued and merged.� Generative planner does any extra planning work needed to merge theplanning cases. 104 c
 Veloso, CSD, CMU

'
&

$
%

Solvability Horizon and Complexity Analogy

0

50

100

150

200

250

N
u

m
b

e
r

o
f

P
ro

b
le

m
s
 S

o
lv

e
d

0 50 100 150 200 250 300 350 400
Time Bound (seconds)

With Analogy
Without Analogy

0

50

100

150

200

250

N
u

m
b

e
r

o
f

P
ro

b
le

m
s
 S

o
lv

e
d

0 50 100 150 200 250 300 350 400
Time Bound (seconds)

With Analogy
Without Analogy

0

50

100

150

200

250

N
u

m
b

e
r

o
f

P
ro

b
le

m
s
 S

o
lv

e
d

0 50 100 150 200 250 300 350 400
Time Bound (seconds)

With Analogy
Without Analogy

0

50

100

150

200

250

N
u

m
b

e
r

o
f

P
ro

b
le

m
s
 S

o
lv

e
d

0 50 100 150 200 250 300 350 400
Time Bound (seconds)

With Analogy
Without Analogy

105 c
 Veloso, CSD, CMU
'

&

$
%

Retrieval plus Replay Time Analogy

0

5

10

15

20

25

30

35

40

T
im

e
(s

ec
o

n
d

s)

0 5 10 15 20 25 30 35 40 45 50
Simple Problems

Runtime Without Analogy
Retrieval + Analogical Replay

0

20

40

60

80

100

120

T
im

e
(s

ec
o

n
d

s)

0 5 10 15 20 25 30 35 40 45 50
Harder Problems

Runtime Without Analogy
Retrieval + Analogical Replay

Simple problems Harder problemsResource-Bounded Retrieval
106 c
 Veloso, CSD, CMU

'
&

$
%

Solution Length AnalogyBase-level planner Analogical plannerbetter even better-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 131 2 2 7 28 39 168 72 36 37 26 16 9 7 3 2 2 0 0 179 168 21117.25% 36.68% 46.07%7.9% 16.8% 21.1% 54.2%7.9% 92.1%
107 c
 Veloso, CSD, CMU

'
&

$
%

Route Planning by Analogy Analogy
108 c
 Veloso, CSD, CMU

'
&

$
%

Discussion { prodigy/analogy Analogy� Integration of analogical reasoning into general problem solving as a methodof learning at the strategy level.� Characteristics of learning by analogical reasoning inprodigy/analogy:{ The strategy-level learning process is cast as the automation of thecomplete cycle of� constructing,� storing,� retrieving,� and replaying problem solving episodes.{ No substantial e�ort invested in deriving general rules of behavior toapply to individual decisions.{ Learned knowledge is
exibly applied to new situations, i.e., even if onlya partial match exists among past and new problems.
109 c
 Veloso, CSD, CMU

'
&

$
%

Learning Domain Knowledge observe� Gil 92 { EXPO> Automated re�nement of planning operators> Re�nement through controlled experimentation� Chen 92 { LIFE> Automated discovery of problem solving operators�Wang 95 { OBSERVE> Automated learning of planning operators> Observation of planning agent> Re�nement through own practice
110 c
 Veloso, CSD, CMU

'
&

$
%

OBSERVE: Approach observe� Motivation: Acquiring planning knowledge from experts is hard.� Learn planning knowledge by observation and practice.� Observe changes in the state:{ Learn preconditions and e�ects of planning operators.{ Infer subgoaling structure from observed plan.� Generate plans from possibly over-speci�c planning knowledge.� Repair plans and task knowledge from practice.
111 c
 Veloso, CSD, CMU

'
&

$
%

Learning Planning Knowledge [Wang 95] observe

Observation
 Module

Plan Execution
 Module

Planning
 Module

Learning
 Module

operators

actions

plan failures

tentative plans
new or refined

execution traces

observations of the
 expert agent

Expert
Agent

Environment

OBSERVE converges to correct planning domain description.112 c
 Veloso, CSD, CMU

'
&

$
%

Conclusion Summary� Motivation: Planning and Learning> Knowledge engineering bottleneck> Learning: automated improvement with experience> Many learning opportunities in planning� Planning> Introduction> Planning Algorithms> State-space planning; linear and nonlinear> Plan-space planning; partial-order and hierarchical> Comparison: Prodigy4.0 and SNLP; Di�erent search heuristics inProdigy4.0.> No universally optimal planning search algorithm or representation.> Learning from experience may improve planning performance.113 c
 Veloso, CSD, CMU
'

&

$
%

Conclusion (cont.) Summary� Learning> Learning opportunities> Learning control knowledge to improve e�ciency- Macro operators- Explanation-based learning- Analogical/case-based planning> Learning control knowledge to improve plan quality- Incorporate user's evaluation metric- Incremental inductive re�nement> Learning planning domain operators- Observation and practice� Conclusion: This summary
114 c
 Veloso, CSD, CMU

References[1] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.Machine Learning, 6(1):37{66, jan 1991.[2] James F. Allen, James Hendler, and Austin Tate (eds.). Readings in Planning. MorganKaufmann, 1990.[3] John Allen and Pat Langley. Integrating memory and search in planning. In Proceedingsof the DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Control,pages 301{312, San Diego, CA, November 1990. Morgan Kaufmann.[4] John R. Anderson. The Architecture of Cognition. Harvard University Press, Cambridge,Mass, 1983.[5] Anthony Barrett and Daniel S. Weld. Characterizing subgoal interactions for planning.In Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,pages 1388{1393, 1993.[6] Anthony Barrett and Daniel S. Weld. Partial-order planning:Evaluating possible e�ciencygains. Arti�cial Intelligence, 67(1), 1994.[7] Neeraj Bhatnagar. On-line learning from search failures. PhD thesis, Rutgers University,1992.[8] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. InProceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence,1995. Extended version to appear in Arti�cial Intelligence, 1997.115 c
 Veloso, CSD, CMU
[9] Daniel Borrajo and Manuela Veloso. Incremental learning of quality-oriented controlknowledge for planning. In Working notes of the AAAI Fall Series Symposium 1994 onPlanning and Learning, New Orleans, LO, November 1994.[10] Daniel Borrajo and Manuela Veloso. Lazy incremental learning of control knowledge fore�ciently obtaining quality plans. AI Review Journal. Special Issue on Lazy Learning,10:1{34, 1996.[11] Jaime G. Carbonell. Learning by analogy: Formulating and generalizing plans from pastexperience. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, MachineLearning, An Arti�cial Intelligence Approach, pages 137{162, Palo Alto, CA, 1983. TiogaPress.[12] Jaime G. Carbonell. Derivational analogy: A theory of reconstructive problem solving andexpertise acquisition. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,Machine Learning, An Arti�cial Intelligence Approach, Volume II, pages 371{392. MorganKaufman, 1986.[13] Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn,Craig Knoblock, Steven Minton, Alicia P�erez, Scott Reilly, Manuela Veloso, and XuemeiWang. PRODIGY4.0: The manual and tutorial. Technical Report CMU-CS-92-150, SCS,Carnegie Mellon University, June 1992.[14] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The operatorre�nement method. In R. S. Michalski and Y. Kodrato�, editors, Machine Learning:An Arti�cial Intelligence Approach, Volume III, pages 191{213. Morgan Kaufmann, PaloAlto, CA, 1990.[15] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{378, 1987.116 c
 Veloso, CSD, CMU

[16] Pat W. Cheng and Jaime G. Carbonell. The FERMI system: Inducing iterative rules fromexperience. In Proceedings of AAAI-86, pages 490{495, Philadelphia, PA, 1986.[17] Ken Currie and Austin Tate. O-Plan: the open planning architecture. Arti�cialIntelligence, 1990.[18] Gerald DeJong and Raymond Mooney. Explanation-based learning: An alternative view.Machine Learning, 1(2):145{176, 1986.[19] Kenneth DeJong. Learning with genetic algorithms: An overview. Machine Learning,3(2/3):121{138, October 1988.[20] Robert B. Doorenbos and Manuela M. Veloso. Knowledge organization and the utilityproblem. In Proceedings of the Third International Workshop on Knowledge Compilationand Speedup Learning, pages 28{34, Amherst, MA, June 1993.[21] Mark Drummond and Ken Currie. Goal ordering in partially ordered plans. In Proceedingsof the Eleventh International Joint Conference on Arti�cial Intelligence, pages 960{965,Detroit, MI, 1989.[22] George W. Ernst and Allen Newell. GPS: A Case Study in Generality and Problem Solving.ACM Monograph Series. Academic Press, New York, NY, 1969.[23] Tara A. Estlin and Raymond Mooney. Hybrid learning of search control for partial orderplanning. In New Directions in AI Planning. IOS Press, 1996. Proceedings of the ThirdEuropean Workshop on Planning, 1995.[24] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD thesis, School ofComputer Science, Carnegie Mellon University, 1990. Available as technical report CMU-CS-90-185. 117 c
 Veloso, CSD, CMU
[25] Oren Etzioni. Acquiring search-control knowledge via static analysis. Arti�cial Intelligence,62(2):255{301, 1993.[26] Richard E. Fikes, P. E. Hart, and Nils J. Nilsson. Learning and executing generalized robotplans. Arti�cial Intelligence, 3:251{288, 1972.[27] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theoremproving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.[28] Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering. MachineLearning, 2(2):139{172, 1987.[29] Karen Z. Haigh, Jonathan Shewchuk, and Manuela M. Veloso. Exploring geometry inanalogical route planning. To appear in Journal of Experimental and Theoretical Arti�cialIntelligence, 1997.[30] Kristian J. Hammond. Case-based Planning: An Integrated Theory of Planning, Learningand Memory. PhD thesis, Yale University, 1986.[31] Steve Hanks and Daniel Weld. A domain-independent algorithm for plan adaptation.Journal of Arti�cial Intelligence Research, 2:319{360, 1995.[32] Laurie Ihrig and Subbarao Kambhampati. Derivational replay for partial-order planning.In Proceedings of the Twelfth National Conference on Arti�cial Intelligence, pages 992{997,1994.[33] Robert L. Joseph. Graphical knowledge acquisition. In Proceedings of the 4th KnowledgeAcquisition For Knowledge-Based Systems Workshop, Ban�, Canada, 1989.118 c
 Veloso, CSD, CMU

[34] Subbarao Kambhampati. Flexible Reuse and Modi�cation in Hierarchical Planning: AValidation Structure Based Approach. PhD thesis, Computer Vision Laboratory, Centerfor Automation Research, University of Maryland, College Park, MD, 1989.[35] Subbarao Kambhampati and Jengchin Chen. Relative utility of EBG based plan reusein partial ordering vs. total ordering planning. In Proceedings of the Eleventh NationalConference on Arti�cial Intelligence, pages 514{519, 1993.[36] Subbarao Kambhampati and James A. Hendler. A validation based theory of planmodi�cation and reuse. Arti�cial Intelligence, 55(2-3):193{258, 1992.[37] Subbarao Kambhampati and Smadar Kedar. Explanation based generalization of partiallyordered plans. In Proceedings of the Ninth National Conference on Arti�cial Intelligence,pages 679{685, 1991.[38] Suresh Katukam and Subbarao Kambhampati. Learning explanation-based search controlrules for partial order planning. In Proceedings of the AAAI-94. AAAI, 1994.[39] H. Kautz and B. Selman. Planning as satis�ability. In Proceedings of ECAI-92, EuropeanConference on Arti�cial Intelligence, Vienna, Austria, 1992.[40] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, andstochastic search. In Proceedings of the Thirteenth National Conference on Arti�cialIntelligence, pages 1194{1201, 1996.[41] Craig A. Knoblock. Automatically generating abstractions for planning. Arti�cialIntelligence, 68, 1994.[42] Richard E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelligence,26:35{77, 1985. 119 c
 Veloso, CSD, CMU
[43] Richard E. Korf. Planning as search: A quantitative approach. Arti�cial Intelligence,33:65{88, 1987.[44] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An architecture for generalintelligence. Arti�cial Intelligence, 33(1):1{64, 1987.[45] Pat Langley. Learning e�ective search heuristics. In Proceedings of the Ninth InternationalJoint Conference on Arti�cial Intelligence, pages 419{421, 1983.[46] C. Leckie and I. Zukerman. Learning search control rules for planning: An inductiveapproach. In Proceedings of Machine Learning Workshop, pages 422{426, 1991.[47] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of theNinth National Conference on Arti�cial Intelligence, pages 634{639, 1991.[48] Drew V. McDermott. Planning and acting. Cognitive Science, 2-2:71{109, 1978.[49] R. S. Michalski, J. G. Carbonell, and T. Mitchell, editors. Machine Learning: An Arti�cialIntelligence Approach, volume I. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1983.[50] R. S. Michalski, J. G. Carbonell, and T. Mitchell, editors. Machine Learning: An Arti�cialIntelligence Approach, volume II. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.[51] R. S. Michalski and Y. Kodrato�, editors. Machine Learning, An Arti�cial IntelligenceApproach, volume III. Morgan Kaufmann, Palo Alto, CA, 1990.[52] R. S. Michalski and G. Tecucci, editors. Machine Learning, A Multistrategy Approach,volume IV. Morgan Kaufmann, Palo Alto, CA, 1994.[53] Ryszard S. Michalski. A theory and methodology of inductive learning. Arti�cialIntelligence, 20, 1983. 120 c
 Veloso, CSD, CMU

[54] Steven Minton. Selectively generalizing plans for problem solving. In Proceedings of AAAI-85, pages 596{599, 1985.[55] Steven Minton. Learning E�ective Search Control Knowledge: An Explanation-BasedApproach. Kluwer Academic Publishers, Boston, MA, 1988.[56] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Dan R. Kuokka, Oren Etzioni,and Yolanda Gil. Explanation-based learning: Optimizing problem solving performancethrough experience. Arti�cial Intelligence, 1989.[57] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based generalization:A unifying view. Machine Learning, 1(1):47{80, 1986.[58] Tom M. Mitchell and Sebastian B. Thrun. Explanation based learning: A comparisonof symbolic and neural network approaches. In Proceedings of the Tenth InternationalConference on Machine Learning, pages 197{204, University of Massachusetts, Amherts,MA, USA, 1993. Morgan Kaufmann.[59] Tom M. Mitchell, Paul E. Utgo�, and R. B. Banerji. Learning by experimentation:Acquiring and re�ning problem-solving heuristics. In Machine Learning, An Arti�cialIntelligence Approach, volume I, pages 163{190. Tioga Press, Palo Alto, CA, 1983.[60] Jack Mostow. Machine transformation of advice into a heuristic search procedure. InR. S. Michalski, J. G. Carbonell, and T. Mitchell, editors, Machine Learning, An Arti�cialIntelligence Approach, Volume I, volume I, pages 367{403. Morgan Kaufman, Los Altos,CA, 1983.[61] H�ector Mu~noz-Avila, Juergen Paulokat, and Stefan Wess. Controlling a nonlinearhierarchical planner using case-based reasoning. In Proceedings of the 1994 EuropeanWorkshop on Case-Based Reasoning, November 1994.121 c
 Veloso, CSD, CMU
[62] Allen Newell, J. C. Shaw, and Herbert A. Simon. Empirical explorations with the logictheory machine: A case study in heuristics. In E. Feigenbaum and J. Feldman, editors,Computers and Thought. McGraw-Hill, New York, NY, 1963.[63] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-Hall, EnglewoodCli�s, NJ, 1972.[64] D. Ourston and R.J. Mooney. Theory re�nement combining analytical and empiricalmethods. Arti�cial Intelligence, 66, 1994.[65] J. S. Penberthy and D. S. Weld. UCPOP:A sound, complete, partial order planner forADL. In Proceedings of KR-92, pages 103{114, 1992.[66] M. Alicia P�erez. Learning Search Control Knowledge to Improve Plan Quality. PhDthesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1995.Available as technical report CMU-CS-95-175.[67] M. Alicia P�erez and Jaime G. Carbonell. Control knowledge to improve plan quality. InProceedings of the Second International Conference on AI Planning Systems, Chicago, IL,1994.[68] M. Alicia P�erez and Oren Etzioni. DYNAMIC: A new role for training problems in EBL.In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Conferenceon Machine Learning, pages 367{372. Morgan Kaufmann, San Mateo, CA, 1992.[69] Yong Qu and Subbarao Kambhampati. Learning search control rules for plan-spaceplanners: Factors a�ecting the performance. Technical report, Arizona State University,February 1995.[70] J. R. Quinlan. Learning logical de�nitions from relations. Machine Learning, 5(3):239{266,August 1990. 122 c
 Veloso, CSD, CMU

[71] Elaine Rich and Kevin Knight. Arti�cial Intelligence. McGraw-Hill, Inc., 1991. Secondedition.[72] Paul S. Rosenbloom, Allen Newell, and John E. Laird. Towards the knowledge level inSOAR: The role of the architecture in the use of knowledge. In K. VanLehn, editor,Architectures for Intelligence. Erlbaum, Hillsdale, NJ, 1990.[73] David Ruby and Dennis Kibler. Learning episodes for optimization. In Proceedings ofthe Machine Learning Conference 1992, pages 379{384, San Mateo, CA, 1992. MorganKaufmann.[74] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial Intelligence,5:115{135, 1974.[75] Arthur Samuel. Some studies in machine learning using the game of checkers. InE. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New York,NY, 1963.[76] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�abilityproblems. In Proceedings of the Tenth National Conference on Arti�cial Intelligence, 1992.[77] Jude W. Shavlik and Geo�rey G. Towell. Re�ning symbolic knowledge using neuralnetworks. In Ryszard Michalski and Gheorghe Tecuci, editors, Machine Learning. AMultistrategy Approach., volume IV, pages 405{429. Morgan Kaufmann, 1994.[78] Peter Shell and Jaime G. Carbonell. Towards a general framework for composingdisjunctive and iterative macro-operators. In Proceedings of the Eleventh InternationalJoint Conference on Arti�cial Intelligence, 1989.[79] W. M. Shen. Functional transformations in AI discovery systems. Arti�cial Intelligence,41:257{272, 1990. 123 c
 Veloso, CSD, CMU
[80] Mark Ste�k. Planning and meta-planning (MOLGEN: Part 2). Arti�cial Intelligence,16:141{169, 1981.[81] Mark Ste�k. Planning with constraints (MOLGEN: Part 1). Arti�cial Intelligence, 16:111{140, 1981.[82] R.E. Step and R.S. Michalski. Conceptual clustering: inventing goal-oriented classi�cationsof structured objects. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,Machine Learning, An Arti�cial Intelligence Approach, Volume II. Morgan Kaufman, 1986.[83] Peter Stone, Manuela Veloso, and Jim Blythe. The need for di�erent domain-independentheuristics. In Proceedings of the Second International Conference on AI Planning Systems,pages 164{169, June 1994.[84] Prasad Tadepalli. Lazy explanation-based learning: A solution to the intractable theoryproblem. In Proceedings of the Eleventh International Joint Conference on Arti�cialIntelligence, pages 694{700, San Mateo, CA, 1989. Morgan Kaufmann.[85] M. Tambe, A. Newell, and P. S. Rosenbloom. The problem of expensive chunks and itssolution by restricting expressiveness. Machine Learning, 5(3):299{348, 1990.[86] Austin Tate. Generating project networks. In Proceedings of the Fifth International JointConference on Arti�cial Intelligence, pages 888{900, 1977.[87] Manuela Veloso and Jim Blythe. Linkability: Examining causal link commitments inpartial-order planning. In Proceedings of the Second International Conference on AIPlanning Systems, pages 170{175, June 1994.[88] Manuela Veloso and Daniel Borrajo. Learning strategy knowledge incrementally. InProceedings of the 6th IEEE International Conference on Tools with Arti�cial Intelligence,New Orleans, LO, November 1994. 124 c
 Veloso, CSD, CMU

[89] Manuela Veloso, Jaime Carbonell, Alicia P�erez, Daniel Borrajo, Eugene Fink, and JimBlythe. Integrating planning and learning: The prodigy architecture. Journal ofExperimental and Theoretical AI, pages 81{120, 1995.[90] Manuela M. Veloso. Planning and Learning by Analogy. Springer Verlag, 1994.[91] Manuela M. Veloso and JaimeG. Carbonell. Derivational analogy in prodigy: Automatingcase acquisition, storage, and utilization. Machine Learning, 10:249{278, 1993.[92] Manuela M. Veloso and Jaime G. Carbonell. Towards scaling up machine learning: Acase study with derivational analogy in prodigy. In S. Minton, editor, Machine LearningMethods for Planning, pages 233{272. Morgan Kaufmann, 1993.[93] Manuela M. Veloso and Jaime G. Carbonell. Case-based reasoning in prodigy. In R. S.Michalski and G. Teccuci, editors, Machine Learning: A Multistrategy Approach, VolumeIV, pages 523{548. Morgan Kaufmann, 1994.[94] Manuela M. Veloso and Peter Stone. FLECS: Planning with a
exible commitment strategy.Journal of Arti�cial Intelligence Research, 3:25{52, 1995.[95] R. Waldinger. Achieving several goals simultaneously. In N. J. Nilsson and B. Webber,editors, Readings in Arti�cial Intelligence, pages 250{271. Morgan Kaufman, Los Altos,CA, 1981.[96] Xuemei Wang and Manuela Veloso. Learning planning knowledge by observation andpractice. In Proceedings of the ARPA Planning Workshop, Tucson, AZ, February 1994.[97] David E. Wilkins. Domain-independent planning: Representation and plan generation.Arti�cial Intelligence, 22:269{301, 1984. 125 c
 Veloso, CSD, CMU
[98] Hua Yang and Douglas Fisher. Similarity-based retrieval and partial reuse of macro-operators. Technical Report CS-92-13, Department of Computer Science, VanderbiltUniversity, 1992.[99] J. Zelle and R. Mooney. Combining FOIL and EBG to speed-up logic programs. InProceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,1993.

126 c
 Veloso, CSD, CMU

