ICML/COLT 1997

LEARNING in PLANNING

Manuela M. Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213-3891

phone: (412) 268-8464
fax: (412) 268-5576
email: veloso@cs.cmu.edu

http://www.cs.cmu.edu/ mmv/

/

1 (© Veloso, CSD, CMU

Comments on this Document

-

e Thanks to Daniel Borrajo, Universidad Carlos I1I, Madrid, for his help
organizing this tutorial.

o A list of references (certainly not exhaustive) is included at the end of the
document.

o The author of the tutorial is available for further explanations and contacts
after the tutorial. Feel free to contact veloso@cs.cmu.edu.

~

/

3 (© Veloso, CSD, CMU

Short Tutorial Description: Learning in Planning

-

Planning is a decision making process which involves the generation of sequences
of actions that achieve a set of goals from a given state. The main issues involved
in the computational planning task are: How to acquire and represent the
planning action model? How to generate plans in a computationally tractable
way? How to create plans of good quality? and finally How to scale up to
real-world problems?

Machine learning approaches can be applied to planning to automate the
process of interpreting the planning experience into reusable task knowledge in
order to improve the overall planner’s performance. Learning in planning goes
beyond inductive data classification. It addresses the acquisition of knowledge
to efficiently guide a decision making process to reach solutions of good quality
based on its input data. Learning in planning provides ground for both applied
and theoretical research.

/

2 (© Veloso, CSD, CMU

Outline

-

e Motivation: Planning and Learning
¢ Planning
o Learning Applied to Planning

o Conclusion

/

4 (© Veloso, CSD, CMU

Planning involves: Motivation

e N

o Given knowledge about a task domain

e Given a problem specified as:
> an initial configuration of the state of the “world”
> a set of goals to be achieved
e Find a solution to the problem, ie., a way to transform the initial

configuration into a new state of the world where the goal statement is
true.

Ny)

5 © Veloso, CSD, CMU

Motivation

Reaching Planning Expertise

e N

TASK KNOWLEDGE PLANNER

ANALYZE PLANS GENERATED

o Knowledge engineering approaches:
> Handcode and refine domain knowledge.
> Specify control strategies.

> Define knowledge to produce quality plans.

o Machine learning approaches:

> Automate the interpretation of the planning experience into reusable
task knowledge: domain, control, and quality.

> Most recent trend: Combine with user’s input.

Ny)

7 (© Veloso, CSD, CMU

Many issues to resolve...

Motivation

-

A few are:

o What knowledge defines the task domain?

e How to represent the planning action model?

e What is the (sufficient) initial state of the world?

e What are the (prioritized) goals?

e How to acquire domain knowledge efficiently from expert human planners?
e Which algorithm to use to generate the solution plan?

e How to generate plans in a computationally tractable way?

e How to create plans of good quality?

e How to scale up to real-world problems?

~

/

Tutorial Goals

6 © Veloso, CSD, CMU

Motivation

-

e Overview of planning algorithms

¢ Overview of learning approaches combined with planning

Accumulate and transfer problem solving experience

~

/

8 (© Veloso, CSD, CMU

Outline

So far and next

-

e Motivation: Planning and Learning
> Knowledge engineering bottleneck
> Learning: automated improvement with experience
> Many learning opportunities in planning
e Planning
> Introduction

> Planning Algorithms
o Learning Applied to Planning

o Conclusion

~

/

Planning Domains

(© Veloso, CSD, CMU

Planning

-

Many Al planning domains with different degrees of realism:

e Process planning

o Image processing

e Logistics transportation

o Crisis management

e Generating collection procedures
o Bank risk management

o Credit card fraud detection
¢ Robot navigation

e Machine shop scheduling

¢ Blocks world

o Puzzles

o Matrix algebra

o Artificial domains

e ...

~

/

(© Veloso, CSD, CMU

Example: Process Planning Task Planning

, . N
[Pérez 95, Gil, Hayes]

The essence of Al planning: forming plans to achieve goals.

Initial Fi nal
LY

?2? ~ -

= * B

-~ ~

How can we achieve a desired final configuration given some initial given one?

o Different processes (actions).
o Different machines.

o Different tools.

o Parts have orientations.

¢ Interaction among processes.
o Efficiency, quality, accuracy.
...

/

10 © Veloso, CSD, CMU

Example: Task Definition Planning

~

Real world Representati on

Possi bl e Qperators, —— =
actions axi ons
Sequence
G ounded Pl anner |=of actions
sentences, — 7 (pl an)
axi ons,
constraints —— =
(logic)

o State-based representation of the world:

> Operators: F': states — states (generalized)

> Goal: set of sentences which must be true in the final state.

/

12 (© Veloso, CSD, CMU

Example: Problem Representation Planning

%

Objects State
;imachines (diameter-of-drill-bit twist-drill5 9/64)
(mm2 milling-machine) (material-of part17 aluminum)
(drill7 drill-press) ... (size-of part17 length 5)
“tools (size-of part17 height 3) e . Nt B
(spot-drill3 spot-drill) (size-of part17 width 3)... A igf
(twist-drill5 twist-drill) ‘
(end-mill6 end-mill) Goal ((<part> part))
(soluble-oil soluble-oil) ... (and (size-of <part> height 2)
1holding devices (has-spot <part> holel sidel 1.375 0.25)))
(visel2 vise) ...
parts Plan
(part17 part)... 1. put-tool-drill drill7 spot-drill3
2. put-holding-device-drill drill7 visel2
fTYﬁEH'ERA@,T 3. clean part17
PART] , - MACHINE] 4. put-on-machine-table drill7 part17
[ORILLBI MILLING- | [DRILL 5. hold drill7 visel2 part17 sidel side2-sideb
[SPOT-DRILL |rWIST-ORILL | \M‘ \ﬁ‘ 6. drill-in-drill-press drill7 spot-drill3 part17
13 (© Veloso, CSD, CMU
Domain Representation Planning

e N

o Operators — rules — with:
> Precondition expression must be satisfied before the operator is applied.

> Set of effects describe how the application of the operator changes the
state.

o Precondition expression: propositional, typed first-order predicate logic,
negation, conjunction, disjunction, existential and universal quantification,
and functions.

o Effects: add and delete lists.
o Universally quantified effects.

e Conditional effects ~ dependent on conditions on the state.

Ny J

15 (© Veloso, CSD, CMU

-

Example: Action Representation Planning
~
drill-in-drill-press put-tool-drill
<mach>: type drill-press <mach>: type drill-press
<drill-bit>: type spot-drill <tool>: type drill-bit
<device>: type (or vise chuck) Pre: (avail-tool-holder <mach>
<part>: t}'pO part (avail-tool <tool>
<h.OlF>: fype 1%019 Add: (holc lill" tool <mach> <tool>)
<side>: type side
Pre: (holding-tool <mach> <drill-bit> Del: (avail-tool-holder <mach>
(holding <mach> <device> <part> (avail-tool <tool>
Add: (has-spot <part> <hole> <side>)
Del: (is-clean <part>)
Many other actions (In Prodigy: more than 100)
o face-mill, remove-tool-from-drill; hold-with-vise,...
/

© Veloso, CSD, CMU

-

Generating a Solution Plan Planning
~
Several planning algorithms:
e Linear planning Planning with a stack of goals.
e Nonlinear planning Interleaving of goals
> State-space search
> Plan-space search
o Hierarchical planning
> Emphasis on action decomposition/refinement
> Very little search
A complex process:
¢ Alternative operators to achieve a goal.
e Multiple goals that interact.
¢ Efficiency, quality, and accuracy — hard.
/

© Veloso, CSD, CMU

Search Strategies Planning

-

~

Using a set of operators:

e Forward chaining progression
> From the initial state,
> Apply operators with preconditions true in the state,
> Get new states.

¢ Backward-chaining — regression
> From the goal state,
> Find operators that can add goal,
> Set its preconditions as new goals.

o Partial order network of constraints among plan steps no direct reasoning

about an explicit state.

o Total order — plan steps are ordered during search — use of a uniquely
specified state.

/

17 (© Veloso, CSD, CMU

Means-ends Analysis State-space

-

~
[Newell and Simon 60s] [Ernst and Newell 69]

GPS Algorithm (initial-state, goals)

o If goals C initial-state, then return True

o Choose a difference d between initial-state and goals
e Choose an operator o to reduce the difference d

o If no more operators, then return False

o State=GPS(initial-state, preconditions(o))

o If State, then return GPS(apply(o,State), goals)

/

19 (© Veloso, CSD, CMU

Planning Issues Planning

-

¢ Representation of plans
> P
> P
> P
> P

ans as sequence of state changes

ans as total orders of steps

ans as successive levels of refinement
ans as partial orders of steps

¢ Conditional actions/effects

o Arbitrary functions computing side-effects

o Temporal reasoning — actions take time — explicit representation of time
e Interleave of planning and execution

o Nondeterministic outcome of actions

e Probabilistic occurrence of external events

> Planning as search, i.e., a decision-making process
learn search heuristics

> Planning representation — learn efficient, complete,
correct domain specifications

~

/

18 © Veloso, CSD, CMU

Linear Planning State-space

-

STRIPS reduced Algorithm (initial-state, goals)
[Fikes and Nilsson 71]
Stack= goals
State=initial-state
Repeat until Stack=empty
Case top of Stack of
operator:
Unmet-preconditions=set of preconditions of o not true in State
If Unmet-preconditions= emply,
Then State=apply(o,State)
Else Introduce Unmet-preconditions into Stack
set of goals:
If goalsCState, Then remove goals from Stack
(*) Introduce goal g €goals| g ¢initial-state into Stack
single goal:
If goalC State, Then remove goal from Stack
Else If goal loop, Then backtrack
Else (*) Select operator o | g €effects(o)
Introduce o in Stack

~

/

20 (© Veloso, CSD, CMU

Linear Planning: Discussion State-space

e N

Advantages:

e Linear planning assumes that goals are independent.
o Reduced search space, because goals are solved one at a time.
o Clearly an advantage if goals are independent.

Disadvantages:

¢ Linear planning may produce unoptimal solutions.

¢ Linear planning is incomplete.

Strict Completeness: A planning algorithm is strictly complete if all the
solutions to a given problem are included in its search space.

Completeness: A planning algorithm is complete if at least one solution to
a given problem, when one exists, is included in its search space.

-

/
21 © Veloso, CSD, CMU
Incompleteness of Linear Planning State-space
~
Initial state: soal statement:
(at obj1 locA) (and
(at obj2 locA) (at obj1 locB)
(at ROCKET locA) (at obj2 locB))
(has-fuel ROCKET)
Goal Plan
(at objl locB) | (LOAD-ROCKET ohjl locA)
(MOVE-ROCKET)
(UNLOAD-ROCKET objl locB)
(at obj2 locB) failure
Goal Plan
(at obj2 IocB) | (LOAD-ROCKET obj2 locA)
(MOVE-ROCKET)
(UNLOAD-ROCKET obj2 locB)
(at objl locB) failure
/
23 © Veloso, CSD, CMU

-

Example: Irreversible

Actions State-space

(OPERATOR LOAD-ROCKET
(preconds

((<roc> ROCKET)

(<obj> OBJECT)

(<loc> LOCATION))

(and (at <obj> <loc>)

(at <roc> <loc>)))

(effects ()

(add (inside <obj> <roc>))

(del (at <obj> <loc>))))

(OPERATOR MOVE-ROCKET
(preconds
((<roc> ROCKET)
(<from-1> LOCATION)
(<to-

(and

(effects ()

(add
(del
(del

~

(OPERATOR UNLOAD-ROCKET
(preconds
((<roc> ROCKET)
(<obj> OBJECT)
(<loc> LOCATION)))
(and (inside <obj> <roc>)
(at <roc> <loc>)))
(effects ()
(add (at <obj> <loc>))
(del (inside <obj> <roc>))))

1> LOCATION))
(at <roc> <from-1>)
(has-fuel <roc>)))

(at <roc> <to-1>))
(at <roc> <from-1>))
(has-fuel <roc>))))

/

State-Space Nonlinear Planning

22 (© Veloso, CSD, CMU

State-space

-

Extend linear planning;

e From stack to set of goals.

o Include in the search space all possible interleaving of goals.

~

‘Stattﬁ—spa(‘tﬁ nonlinear planning is complete.‘

Goal

Plan

(at obj1 locB)

LOAD-ROCKET objl locA)

(at obj2 locB)

LOAD-ROCKET obj2 locA)

(at obj1 locB)

UNLOAD-ROCKET objl locB)

(at obj2 locB)

(
(
(MOVE-ROCKET)
(
(

UNLOAD-ROCKET ob;j2 locB)

/

24 © Veloso, CSD, CMU

PRODIGY4.0 Planning Algorithm

State-space

-

~

1. Terminate if the goal statement is satisfied in the current state.

2. Compute the SET of pending goals G, and the set of applicable operators A.

> A goal is pending if it is a precondition, not satisfied in the current state, of an
operator selected to be in the plan to achieve a particular goal.

> An operator is applicable when all its preconditions are satisfied in the state.
3. Choose a goal G from G or select an operator A from A.

4. If G has been chosen, then

> Expand goal G, i.e., get the set O of relevant instantiated operators that could
achieve the goal G,

> Choose an operator O from O,
> Go to step 1.

5. If an operator A has been selected as directly applicable, then

> Apply A,
> Go to step 1.

/

25 (© Veloso, CSD, CMU

Hierarchical Planning Hierarchical

-

N

~

o General-purpose search heuristics do not solve reasonably complex repre-
sentations of domains

o A well chosen simplification of the representation can improve the
performance

o Need to simplify search and representation

o Key idea: Identify levels of abstraction, details.
Example: ABSTRIPS [Sacerdoti, 74]

e Each precondition has a criticality value

¢ Planning algorithm: incremental refinement
> For cv from maximum-criticality-value down to minimum
- Plan using only preconditions of criticality+cv refining previous
abstract plan
Other examples:
e NOAH [Sacerdoti, 75] Nets of action hierarchies
¢ O-PLAN [Tate 80] — elaborated abstract levels, no search

/

27 (© Veloso, CSD, CMU

Prodigy4.0 Search Representation

State-space

-

Representation of an incomplete plan during search:

ool Bob

= -- head-plan --> = gap-= = - tail-plan ->

Modifying the current plan children of a search node:

.
=TS e

Applying an operator (moving it to the head) Adding an operator to the tail-plan

~

/

26 © Veloso, CSD, CMU

Representation in ABSTRIPS Hierarchical

-

PUSH-THRU-DOOR

Preconditions:

{6}pushable(box1)A{6}type(doorl, DOOR)A {6}type(room1,ROOM)A

{2}status(doorl, OPEN)A{1}next-to(box1,doorl)A {1}next-to(ROBOT,box)A

3 room?2 [{5}in-room(box,room2)A{5}in-room(ROBOT,room2)A
{6}connects(doorl,room1,room?2)|

Deletions:

at(ROBOT,$1,$2)Anext-to(ROBOT,$1)Aat(box1,$1,$2)A

next-to(box1,$1) Anext-to($1,box1)Ain-room(ROBOT,$1)Ain-room(box1,$1)
Additions:
in-room(box1,room2)Ain-room(ROBOT,room2)Anext-to(ROBOT box1)

~

/

28 (© Veloso, CSD, CMU

Example of Planning in NOAH

Hierarchical

-

clear(C) || Put C on <obj1>|

-

~

Put AonB

>.* PutBon C
cIear(C

[clear(C)F‘ Put C on <obj1>|

<

cIear(C

3| |putBonc|[putaons

/

29 © Veloso, CSD, CMU

Plan-Space Partial-Order Nonlinear PlanningPlan-space

-

~
SNLP Planning Algorithm [McAllester & Rosenblitt 91]
1. Terminate if the goal set is empty.

2. Select a goal g from the goal set and identify the plan step that needs
it, Sn{’({/-

3. Let Sqqq be a step (operator) that adds g. either a new step or a step that
is already in the plan. Add the cansal link S,gq % Speed. constrain Sygq to
come before S,,..q4, and enforce bindings that make S,4s add ¢

4. Update the goal set with all the preconditions of the step S,44. and delete g.

Ut

. Identify threats and resolve the conflicts by adding ordering or bindings
constraints.

o A step S, threatens a causal link S; % S when it occurs between S; and
S;, and it adds or deletes p.

o Resolve threats by using promotion, demotion, or separation.

/

31 (© Veloso, CSD, CMU

Several Other Planning Algorithms

State/Plan-space

-

~
e TWEAK [Chapman 87], SNLP [McAllester & Rosenblitt 91] , UCPOP
[Penberthy and Weld 92]
> Emphasis on plan-space search
e NONLIN [Tate 76], O-PLAN [Tate], SIPE [Wilkins 88]
> Emphasis on plan decomposition
¢ UNPOP, Planning and acting [McDermott 78]
¢ Reactive planning [Georgeff & Lansky 87]. [Firhy 87], [Hendler &
Sanborn 87]
e Action and time [Allen 84] [Dean & McDermott 87)
o Walksat [Selman et al. 92, Kautz & Selman 92, 96]
o Flecs [Veloso & Stone 95]
e Graphplan [Blum & Furst 95]
/

State-space and Plan-space

(© Veloso, CSD, CMU

Comparison

-

~
¢ Planning is NP-hard.
o Two different planning approaches: state-space and plan-space planning
State-space | Plan-space
Commitments in plan
step orderings Yes No
Therefore, suffer with
goal orderings Yes No
Therefore, handle goal
interactions Poorly Efficiently
/

© Veloso, CSD, CMU

Step Ordering Commitments Comparison

-

-

~
WHY?
‘Uso of a uniquely specified STATE of the world while planning
In PRODIGY4.0 advantages include:
o Means-ends analysis - plan for goals that reduce the differences between
current and goal states.
o Informed selection of operators - select operators that need less planning
work than others.
o State useful for learning, generation and match of conditions supporting
informed decisions.
e Helpful for generating anytime planning - provide wvalid, executable, plans
at any time.
o Probabilistic planning - may be useful to reason about states, events that
affect them, and eventual transitions.
/
33 (© Veloso, CSD, CMU
Serializability and Linkability Comparison
~
o A set of subgoals is serializable [Korf]:
o If there exists some ordering whereby they can be solved sequentially,
e without ever violating a previously solved subgoal.
o Easily serializable, laboriously serializable [Barrett and Weld].
o A set of subgoals is easily linkable:
o If, independently of the order by which the planner links these subgoals
to operators,
e it never has to undo those links.
o Otherwise it is laboriously linkable.
/
35 (© Veloso, CSD, CMU

Parallel between Commi

tments - Example Comparison

-

-

~
Operator Polish Operator Drill-Hole
preconds:() preconds: ()
adds: polished adds: has-hole
deletes: () deletes: polished
Goal: polished and has-hole Goal: polished and has-hole
Initial state: empty Initial state: polished
PRODIGY4.0 SNLP
- plan for goal polished - plan for goal polished
- select Polish - select Initial state
o order Polish as first step o link Initial to polished
- plan for goal has-hole - plan for goal has-hole
- select Drill-Hole - select Drill-Hole
e order Drill-Hole > Polish e link Drill-Hole to has-hole
o polished deleted. backtrack o threat - relink polished
- Polish > Drill-Hole - select Polish
- link Polish to polished
- Polish > Drill-Hole
/
34 © Veloso, CSD, CMU
Laboriously Linkable Goals Comparison
~
operator A; operator A,
preconds g, gi_1 preconds ()
adds gi adds 'y
deletes g, deletes ()
Initial state: g,
Goal statement: g.,gs
Plan: Ay, Ay, Ay, Ay, A3, Auy Ay, Ay As
12000 LI R B B S
10000 |~ —— prodigy4.0 ,’l -
-—- snlp J
2 8000 [/A
g /
c 6000 |~ / -
QE) //
F 4000 // —
2000 |- /// 1
N B e NI
0 2 4 6 8 10 12 14 16
Highest goal
/

36 © Veloso, CSD, CMU

The Importance of the Commitment Choice Comparison

-

¢ PRODIGY4.0’s algorithm
(Subgoal Apply")*.

simplifies to

the

I'Pglllal‘ PXDI'PSSiOll

Two main choices:
- Plan for a goal OR

- Change the state, i.e. simulate execution.

e PRODIGY4.0 uses state to determine . . .
> if the goal state has been reached.
> which goals still need to be achieved.
> which operators are applicable.

> which operators to try first while planning.

/

Eagerly Subgoaling Can Be Better

Two Heuristics: SAVTA, SABA

Comparison

-

SAVTA: Eager application = Eager state changes

~

‘Subgoal After eVery Try to Appl}"

SABA: Eager subgoaling = Delayed state changes

‘Subgoal Always Before Applying‘

BERY 9

(0

~E-E{c) 9 -3
APPLYING - CHANGING THE STATE SUBGOALING - CONTINUE PLANNING

/

© Veloso, CSD, CMU

Comparison

-

Eagerly Applying Can Be Better

© Veloso, CSD, CMU

Comparison

N 4

Operator: || paint-white <obj> || paint-yellow <ohj> paint-black <obj>
preconds: | (usable white) (usable yellow) (usable black)
adds: | (white <obj>) (vellow <obj>) (black <obj>)
deletes: (usable white) (usable white)
(

usable yellow)

(usable brown)

Operator: A;
preconds: {I;}
adds: {G;}

deletes: {I;|7 < i}

T T T T
1 Eager Subgoaling —
2500 - Eager Applying ---- 7
& 2000 | 4
@
@
£ 1500 - 1
s
E
= 1000 - 1
500 Bl
0
0o 2 0 12 14

4 6 8
Number of Goals

16

%

~

Operator: || paint-with-brush1 paint-with-brush8
<parts> <color> <parts> <color>
preconds: || (unused brushl) (unused brush8)
adds: | (painted <parts> <color>) (painted <parts> <color>)
deletes: || (unused brush1) (unused brush8)

Operator: A,
preconds: {I;}

adds: {< g >}

deletes: {I;}
e
Eager Subgoaling —
5000 Eager Applying ----
© 4000 - Bl
2
g
= 3000 g
@
E
F 2000 b
1000 - 4
0 oo
0 2 0 12 14

4 6 8
Number of Goals

16

%

© Veloso, CSD, CMU

© Veloso, CSD, CMU

-

FLECS — Flexible Commitment Strategy Comparison
Operator: | designate-roller fill-roller paint-wall
<wall> <roller> <color> <roller> <color> || <wall> <roller> <color>
preconds: | (clean <roller>) (clean <roller>) (ready
(needs-painting <wall>) (chosen <wall> <roller> <color>)
<roller> <color>) | (filled-with-paint
<roller> <color>)
adds: | (ready (filled-with-paint (painted <wall> <color>)
<wall> <roller> <color>) || <roller> <color>)
(chosen <roller> <color>)
deletes: (clean <roller>) (ready
<wall> <roller> <color>)
(needs-painting <wall>)

Initial State
needs-painting wallA

Goal Statement
painted wallA red)

needs-painting wallB

painted wallB red)

An Optimal Solution
<Designate-Roller wallA rollerl red>
<Designate-Roller wallB roller] red>
<Designate-Roller wallC roller] red>

~

()
()
(needs-painting wallC)
(needs-painting wallD)
(needs-painting wall)
(clean rollerl)

(clean roller2)

painted wallD green)
painted wallE green)

(
(
(painted wallC red)
(
(

time(sec) | solution
eager applying 500 no
eager subgoaling 500 no
variable strategy 4 ves

<Fill-Roller rollerl red>

<Paint-Wall wallA roller] red>
<Paint-Wall wallB roller] red>
<Paint-Wall wallC roller] red>

<Designate-Roller wallD) roller2 green>

<Designate-Roller wallE roller2
<Fill-Roller roller2 green>

green>

<Paint-Wall wallD roller2 green>
<Paint-Wall wallE roller2 green>

/

Outline

© Veloso, CSD, CMU

So far and next

-

o Motivation

o Case-Based Reasoning

o Rule-Based, Operator-Based Planning

> Planning Algorithms

> State-space planning; linear and nonlinear

> Hierarchical planning

> Plan-space planning

> Comparison:

Prodigy4.0.

> No universally optimal planning search algorithm or representation.

> Learning from experience may improve planning performance.

Prodigy4.0 and SNLP; Different search heuristics in

¢ Learning Applied to Planning

e Planning by Analogical/Case-based Reasoning

o Conclusion

~

/

(© Veloso, CSD, CMU

Summary — Planning Comparison

-

o Several different planning algorithms.

¢ There is not a planning strategy that is universally better
than the others.

e Even for a particular planning algorithm: There is no single domain-
independent search heuristic that performs more efficiently
than others for all problems or in all domains.

SABA-reactive

DO-side-effect

DmS1, D1S1*,
and DmS2*

SAVTA Dms2*
DO-side-effect

DmS1, D1S1*,
and DmS2*

SABA-memory

Learning is appropriate for ANY planner.

/

42 © Veloso, CSD, CMU

Macro-Operators Macro-Ops

-

o First idea to apply learning to planning/problem solving

¢ Learning started being applied to state-space planning (STRIPS [Fikes &
Nilsson, 72])

e Originally conceived for two-fold purpose:
> Learning sequences of actions

> Monitoring execution of plans

o ey idea: create new operators by joining the descriptions of the individual
operators that form a plan

o Creation of macro-operators through triangle tables

¢ Examples: Rubik’s cube [Korf, 83], ACT* [Anderson, 83], MORRIS [Minton,
83, ..

o Tterative macro-operators [Cheng & Carbonell 86] , [Shell & Carbonell 89

e Flexible reuse of macro-operators [Yang & Fisher 92

/

44 (© Veloso, CSD, CMU

Triangle Tables Macro-Ops

-

-

~
* on-table(A)
% clear(A)
* arm-empty | pick-up(A)
% clear(B) * holding(A)
stack(A,B)
% clear(C) clear(A)
x on(C,D) on(A,B)
* arm-empty | unstack(C,D)
clear(A) holding(C)
on(A,B) clear(D)
/
45 © Veloso, CSD, CMU
Analytical Learning EBL/EBG
~

Machine learning:
o Inductive methods
> Data-intensive

> Extract a general description of a concept from many examples

o Deductive methods
> Knowledge-intensive
> Explain and analyze single example of instance of concept

> Explanation identifies the relevant features of the example = sufficient
conditions for describing the concept.

> Generalize instantiated explanation to apply to other instances of the
concept.

Ny)

47 © Veloso, CSD, CMU

Discussion: Macro-Operators

Macro-Ops

-

o Advantages:
> Reuse of past experience
> Replanning from failures
> Less search depth
> Less matching time

> Side-effect: learning operators subsequences

e Disadvantages:
> Considered in addition to simple operators

> Increased branching factor

o Need to consider utility

~

/

Explanation-Based Generalization — EBG

© Veloso, CSD, CMU

EBL/EBG

-

Inputs:

e Target concept definition

e Training example

e Domain theory

¢ Operationality criterion
Output:

Generalization of the training example, that is

o sufficient to describe the target concept, and

e satisfies the operationality criterion.

~

/

(© Veloso, CSD, CMU

EBL: A Deductive Learning Method EBL/EBG

-

~

Why are examples needed?
e Domain theory contains all the information: simply operationalize target

concept.

e Examples help to focus on the relevant operationalizations:
characterize only examples that actually occur.

Actual purpose of EBL:
> not to “learn” more about target concept,

> but to “re-express” target concept in a more operational manner (=effi-
ciency).

/

49 © Veloso, CSD, CMU

EBL Applied to Problem Solving/Planning EBL/EBG

-

~
Output:

Generalization of the training example, that is

o Sufficient to describe the target concept,

o and satisfies the operationality criterion.

1. Explain (prove) why example is instance of target
concept.

e uses domain theory
e prunes away unimportant aspects of example

¢ final explanation is operational

2. Generalize explanation

/

51 © Veloso, CSD, CMU

EBL Applied to Problem Solving/Planning EBL/EBG

-

Inputs:

e Target concept definition decision to be made

e Training example:

> The search episode with its successes and failures

e Domain theory:
> Operators used in the search
> Objects and possibly relationships in the world which may be used to
build the explanation
¢ Operationality criterion:

> Describe concept using terms that are interpretable (efficiently) by the
problem solver

> Several possible criteria

/

50 (© Veloso, CSD, CMU

EBL in PRODIGY EBL/EBG

-

~

Goal: - improve the efficiency of the planner
learn control rules.

o knowledge-intensive approach
e analyzes trace of solving a problem

e explains “why” the choices made during problem solving were, or were not,
appropriate

e acquires control knowledge better search heuristics
Control rule:
o Applies at individual decisions.
o Antecedent matches the state of the planner at decision making time.

e Antecedent is operational planner can match its state using control rule
language.

o Consequent selects, rejects or prefers particular alternatives.

/

52 (© Veloso, CSD, CMU

Examples of Control Rules in PRODIGY EBL/EBG

f (CONTROL-RULE SELECT-OP-UNSTACK-FOR-HOLDING N
(if (and (current-goal (holding <x>))
(true-in-state (on <x> <y>))))
(then select operator UNSTACK))

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-HOLDING
(if (and (current-goal (holding <x>))
(current-ops (UNSTACK))
(true-in-state (on <x> <y>))))
(then select bindings ((<ob> . <x>) (<underob> . <y>))))

(CONTROL-RULE SELECT-OP-PUTDOWN-FOR-ARMEMPTY
(if (and (current-goal (arm-empty))
(true-in-state (holding <ob>))))
(then select operator PUT-DOWN))

(CONTROL-RULE SELECT-BINDINGS-PUTDOWN
(if (and (current-ops (PUT-DOWN))
(true-in-state (holding <x>))))
(then select bindings ((<ob> . <x>))))

Ny)

53 (© Veloso, CSD, CMU

Learning in Nonlinear Plan-Space Plan-space Learning

e N

o Application of known methods for State-space planners in Plan-Space
planners

e Explanations in previous work compute the set of weakest
preconditions

o These methods cannot be applied to partially ordered plans, because they
not capture all interactions among plan operators of a partially ordered plan

o In Plan-Space planners, explanations are based on the Modal Truth
Criterion

e [Kambhampati & Kedar 91], [Kambhampati & Chen 93]

Ny)

55 (© Veloso, CSD, CMU

Discussion EBL/EBG

-

o Very successful in a variety of domains.

o Learned rules are applied as other rules, i.e. if their antecedent totally
matches planning situation.

o If EBL system is eager to learn provably correct knowledge, the explanation
effort is really large and the EBL system requires a complete domain theory
for generalization.

Utility problem: The more rules learned, the slower the deliberation

e Possible solutions:

> Perform utility analysis and discard low-utility rules
> Heuristics to learn only effective knowledge
> Incremental refinement of learned rules

e Factors influencing utility of control knowledge

> Matching cost (cost of utilization)
> Frequency of application
> Savings every time it is applied

/

54 (© Veloso, CSD, CMU

Learning Control Rules in PO planningPlan-space Learning

-

o Differences with State-Based Planning
> Different algorithm for regressing and generalizing explanations
> Different types of failures

o Examples: SNLP+EBL (Katukam and Kambhampati, 94) and
UCPOP+EBL (Qu and Kambhampati, 95)

o Types of failures
> Analytical

&> Cross of depth limits (need of domain axioms)

~

/

56 (© Veloso, CSD, CMU

SNLP Decision Points Plan-space Learning

-

~

1. Selection of open condition
2. Establishment of open conditions
> Existing step (which one?)
o> Initial state (particular case of above)
> New step (which one?)
3. Selection of a threat (which one?)
4. Resolution of a threat
> Promotion (where?)
> Demotion (where?)
> Separation (addition of non-codesignation constraints) (SNLP)

> Confrontation (conditional effects) (UCPOP)

/

Analytical Failures

57 (© Veloso, CSD, CMU

Plan-space Learning

-

~

e Can be explained in terms of:

> Inconsistencies in the ordering constraints
(e.g. (s1 < 82) A(s2 < 51))

> Inconsistencies in the binding constraints (e.g. z = y A x % y)
> Unestablishable open conditions
(e.g. goal: p(z) and Fs € S | p(z) Eeffects(s))
o Generalization
> Standard EBL: constants for variables
> Bindings forced by initial and goal states are removed
> Only binding constraints from the initial explanation are kept
B> Step names are also generalized (except for the start step)
o Discussion
> Good results on some synthetic domains

o> Ineffective in recursive domains

/

59 (© Veloso, CSD, CMU

Learning Process Plan-space Learning

-

o Backtracking applied to situations 2 and 4

o Intra-trial learning vs. after-trial learning

o Learning of selection and rejection search control rules
> Construction of initial explanation
> Regression of explanation over the decisions
> Propagation of explanation up the failure branch
> Generation of control rules

> Simple utility analysis (do not learn when level of failure falls below
constant [)

> Rules storage (bounded isomorphism checks are done)

~

/

Depth Limit Failures

58 (© Veloso, CSD, CMU

Plan-space Learning

-

¢ No domain independent explanation can be given to these failures
o Possible to use strong consistency checks based on domain axioms
o Restricted representation of domain axioms [Drummond & Curry, 8§]

Operation:

o Necessarily preservable conditions (np-conditions) of a step s':
np-conditions(s') = {c | s1 = s € L A\s; < 8’ < 82}

o preconds(s')Unp-conditions(s') must be consistent with respect to domain
axioms

~

/

60 (© Veloso, CSD, CMU

Discussion Plan-space Learning Learning To Achieve Plan Quality Learning Quality
e N a N

e Experimental data confirms the utility of learning search control rules for ¢ Beyond learning to improve problem solving efficiency.
partial-order nonlinear planners (SNLP and UCPOP)

o Real-world applications begin to require good quality solutions.
e The regression and propagation phases can be used as a form of dependency-))))
directed backtracking o Interactions among goals and scenarios affect the quality of solutions

. . . > Explicit goal interactions efficiency
¢ In SNLP experiments, no control rule was generated from analytical failures)))
> Quality goal interactions (harder to learn)
o In UCPOP experiments, the richer the representation, the easier to learn)

from analvtical failures ¢ Plan length might not be the only cost measure

e Depth Limit Failures require domain axioms o Two approaches:
G ted trol rul difficult t 1 11 > QUALITY learns from the difference between a good solution and a worse
enerated control rules are difficult to understand by an expert solution [Pérez 95)

> HAMLET learns to select alternatives that lead to optimal solutions
[Borrajo & Veloso 94, 96]

Ny J Ny J

61 © Veloso, CSD, CMU 62 (© Veloso, CSD, CMU
Learning to Generate Quality Plans QUALITY QUALITY: The Architecture [Pérez 95] QUALITY
e D e
. search -[_] | leaned search
e Learn control knowledge to guide future search towards better plans trace control knowledge
(instead of “post-facto” plan modification) o I
Domain Plan quality
knowledge Problems Expert metric N
Interactive
Plan Checker [«
PRODIGY QUALITY Quality
Metric I
7 ¢ plan | o—o—o—o—o—o—o Learner
Search control knowledge Search control knowledge -
for faster planning for better plans Interactive
USER —» plan
. . checker
e Learning = change of representation:
From quality metric into search control knowledge available at problem improved plan
solving decision time, since plan and search tree are only partially available.
partial order Quality
plan P Metric

Ny J Ny J

63 (© Veloso, CSD, CMU 64 (© Veloso, CSD, CMU

Discussion

QUALITY
/

~

e Learn control rules to prefer operators, bindings, and goals in domain-
independent fashion.

e Learning is driven by failure, when current control strategy must be
overridden.

o If the quality metric changes, the learned knowledge is invalidated and
re-learned.

e Limited class of quality metrics.

Tradeoffs in the quality factors lead to conflicts between rules.
— Non-local tradeoffs are hard to capture with local control rules.

Solution: algorithms to learn and use control-knowledge trees.

/

© Veloso, CSD, CMU

Example - The Logistics Domain HAMLET

-

o Packages are moved between cities. Trucks carry packages between locations
within a city and airplanes carry packages across cities.

o There is no knowledge about

> not moving carriers if they need to be loaded

> unload a truck if an object is in the same city

> load two objects “at the same time” if they need to go to the same place,
and they are in the same place

e Changing representation is an open research option that we are also
exploring
(operator FLY-AIRPLANE
(preconds ((<plane> AIRPLANE)
(<loc-from> ATRPORT)
(<loc-to> AIRPORT))
(at-airplane <plane> <loc-from>))
(effects ((add (at-airplane <plane> <loc-to>))
(del (at-airplane <plane> <loc-from>)))))

/

(© Veloso, CSD, CMU

Learning in Planning Search Trees HAMLET

Labeling procedure:

o Find failure and successes to learn from

e Traverse trace (in post-order) labeling each node (failure, success, unknown).
Generation of control rules:

o Identify relevant features by goal regression

o Generalize instances in rules

o Left hand side (antecedent): conjunction of relevant features

e Right hand side (consequent): the decision learned
Outcome:

o Learned rules may be overspecific, i.e.

may have a superset of the real
relevant features.

o Learned rules may be overgeneral, i.e. may have a subset of the real relevant
features (when applied to nonlinear planning)

/

© Veloso, CSD, CMU

Other Logistics Domain Operators HAMLET
/

~

(OPERATOR UNLOAD-AIRPLANE
(params <obj> <airplane> <loc>)
(preconds ((<obj> object) (<airplane> airplane) (<loc> airport))
(and (at-airplane <airplane> <loc>)
(inside-airplane <obj> <airplane>)))
(effects ((del (inside-airplane <obj> <airplane>))
(add (at-object <obj> <loc>)))))

(OPERATOR LOAD-TRUCK
(params <obj> <truck> <loc>)
(preconds ((<obj> object) (<truck> truck) (<loc> location))
(and (at-truck <truck> <loc>)
(at-object <obj> <loc>)))
(effects ((del (at-object <obj> <loc>))
(add (inside-truck <obj> <truck>)))))

(OPERATOR DRIVE-TRUCK
(params <truck> <loc-from> <loc-to>)

(preconds ((<truck> truck) (<loc-from> location) (<loc-to> location))
(and (same-city <loc-from> <loc-to>)
(at-truck <truck> <loc-from>)))
(effects ((del (at-truck <truck> <loc-from>))
(add (at-truck <truck> <loc-to>)))))

/

© Veloso, CSD, CMU

Basic EBL is Over-General HAMLET

~
Problem: ‘
Post COfficel aud Post OFfice2 City2
& package1| AT POI'Ikl : -P
S ;
FI ks Initial State
Post Officel Gtyl aty2
p

- Post Office2
] -gel
< pl anel

Goal Statement

If only caring for efficiency, EBL learns the following rule:

(control-rule select-bind-fly-airplane-2
(if (current-operator fly-airplane)
(current-goal (at-airplane <planel> <airport3>))
(true-in-state (at-airplane <planel> <airport2>)))
(then select bindings ((<plane> . <planel>)
(<loc-from> . <airport2>)
(<loc-to> . <airport3>))))

Ny)

69 (© Veloso, CSD, CMU

HAMLET’s Architecture HAMLET

e N

. Lear ned
%allty | Control
asure Knowl edge

HAMLET Y

Bounded L .
Expl anati on > I'nductive
Modul e ~| Mdule
Training , L
pr obl ens ST ST L
lProDiGy || Refinenent
Donai n - ST’B nodul e

Ny)

71 © Veloso, CSD, CMU

-

-

HAMLET: Deduction and Induction HAMLET
~
e Extend the basic EBL approach developed for linear problem solving
> Define new learning opportunities
> Consider solution quality
o Reduce the explanation effort
> No need to acquire extra domain knowledge
o Incrementally refine control knowledge
> Converges towards an experience-supported correct set of rules
Rule learned by HAMLET (previous example):
(control-rule select-bind-fly-airplane-1
(if (current-operator fly-airplane)
(current-goal (at-airplane <planel> <airport3>))
(true-in-state (at-airplane <planel> <airport2>))
(true-in-state (at-object <package4> <airportl>))
(other-goals ((at-object <packaged> <airport3>))))
(then select bindings ((<plane> . <planel>)
(<loc-from> . <airport1>)
(<loc-to> . <airport3>))))
/
70 (© Veloso, CSD, CMU
HAMLET’s Algorithm HAMLET
~
Let L refer to the set of learned control rules.
Let ST, ST refer to search trees.
Let P be a problem to be solved.
Let Q be a quality measure.
Initially L is empty.
For all P in training problems
ST = Result of solving P without any rules.
ST" = Result of solving P with current set of rules L.
If positive-examples-p(ST, ST",Q)
Then L' = Bounded-Explanation(ST, ST",Q)
L”= Induce(L,L")
If negative-examples-p(ST, ST",Q)
Then L=Refine(ST, ST'.L")
/
72 © Veloso, CSD, CMU

Bounded Explanation Module

HAMLET

-

® HAMLET's characteristics
> no need for extra domain knowledge
> reduced explanation effort

> convergence towards correctness

¢ Bounded explanation steps
> Labeling the decision tree. Eagerness
> Credit Assignment. Optimal learning
> Generation of control rule. Goal Regression

> Parametrization. Variable differentiation

~

/

A Typical Search Tree

(© Veloso, CSD, CMU

HAMLET

-

70_0 0
XJOX
<

O
X X

xO
xO—C
<0

What are the learning opportunities?

~

/

© Veloso, CSD, CMU

-

Generalized decision tree - Prodigy HAMLET
/.\
@® oo ®
goal
1 goaxlg
@ e ®
operator 1 operator °
@ eoe K)
bindings 1 bindings b
® :
apply i o
operator i
bi’?‘ldings }_ : subgoal
® o @ co0 @ @ 000 O
| :
oggpa)!lor subgoal goalll goallg 1goal 2 goalg
74 © Veloso, CSD, CMU
Induction Module HAMLET

-

o Why induction?

> Bounded explanation generates possibly over-specific rules

® HAMLET does induction over
> State
> Subgoaling structure
> Interacting goals
> Type hierarchy
o Inductive operators
> Deletion of rules that subsume others
> Intersection of preconditions. state
> Refinement of subgoaling dependencies. prior goal
> Relaxing the subgoaling dependencies. prior goal
> Refinement of the set of interacting goals. other goals

> Find common superclass. type of object

~

/

76 (© Veloso, CSD, CMU

Inducing Over Two Rules

HAMLET

-

o Old rule:
(control-rule select-unload-airplane-1
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-airplane <planed> <airport3>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))

o New rule:
(control-rule select-unload-airplane-2
(if (current-goal (at-object <objectl> <airport2>))
(true-in-state (at-airplane <plane4> <airport5>))
(true-in-state (at-object <objectl> <airport3>)))
(then select operators unload-airplane))

o Induced rule:
(control-rule induced-select-unload-airplane-3
(if (current-goal (at-object <objectl> <airport2>))
(true-in-state (at-object <objectl> <airport3>)))
(then select operators unload-airplane))

~

/

Negative Cases

(© Veloso, CSD, CMU

HAMLET

-

\
without rules with rules
Q O
SN e,
O O O @)
X N X J
O O
/ \\ rule; ——»
O O @)
5 3 5 3
/

© Veloso, CSD, CMU

Refining HAMLET

-

o Why refinement?
> HAMLET may produce over-general rules
o Negative examples: occasions in which control rules have been applied and
should have not
o A negative example for HAMLET is
> Situation in which a control rule was applied, and
> the resulting decision led to a failure, or

> the resulting decision led to a worse solution than the best one for that
decision

/

78 © Veloso, CSD, CMU

Overgeneralization HAMLET

-

~

¢ Induced rule
(control-rule induced-select-unload-airplane-3
(if (current-goal (at-object <objectl> <airport2>))
(true-in-state (at-object <objectl> <airport3>)))
(then select operators unload-airplane))

o New rule
(control-rule induced-select-unload-airplane-4
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (inside-airplane <object1> <airplane4>)))
(then select operators unload-airplane))

o Overgeneral rule
(control-rule induced-select-unload-airplane-5
(if (current-goal (at-object <objectl> <airport2>)))
(then select operators unload-airplane))

/

0 © Veloso, CSD, CMU

Empirical Results - Quality and Incremental

HAMLET

-

Test sets Unsolved Solved by both (279 problems, 53.14%)
problems Better solutions | Solution length || Nodes explored
Goals | Problems | without | with | without | with | without | with | without | with
rules rules rules rules rules | rules rules | rules
1 100 5 0 0 11 327 307 2097 1569
2 100 15 6 0 25 528 479 3401 2308
5 100 44 18 1 33 865 T 5170 | 3463
10 100 68 32 1 24 770 668 3482 2941
20 75 62 36 0 10 505 455 2216 1924
50 50 49 40 0 0 34 34 143 141
Totals 525 243 132 2 103 3029 | 2720 || 16509 | 12346
% 46.3% | 25.1% || 0.7% | 36.9% Ratio 1.3
Unsolved Solved by both
Training problems Better solutions Ratio Ratio Ratio
problems Solution Length Time Nodes
without | with || without | with without/ without/ || without/
rules rules rules rules with rules with rules | with rules
75 46.29 % | 36.38 % || 0.35 % | 25.89 % 1.11 0.49 1
150 46.29 % | 34.29 % || 0.72 % | 31.9 % 1.06 0.33 1.25
400 46.29 % | 2514 % || 0.72 % | 36.92 % 1.08 0.32 1.34

~

%

Why Analogical Reasoning

&1 © Veloso, CSD, CMU

Analogy

-

Derivational analogy/case-based reasoning in planning:

o Learns from local and global decisions chains — accumulates successful
plans with justified local choices.

e Reuses partially matched learned experience
need only to be similar for reuse.

past and new problems

o Performs lazy generalization, as learned episodes are not explained for
correctness. (Therefore it does not require a complete domain theory.)

Tradeoffs EBL — Analogical reasoning:

e Hard to beat if provably correct learned knowledge.

o Learning at local decisions may increase the transfer of learned knowledge
(but increases also the matching cost).

o Need to define a similarity metric between planning situations.

~

/

83 (© Veloso, CSD, CMU

Summary — Analytical Learning

HAMLET

-

o Long-term goal of automating planning efficiency.

o Knowledge in domain theory is not usually effective.

o Explain examples to produce operational control knowledge for decisions.

o Provably correct explanations that generalize to new situations are hard to

learn.

o Difficult goal and operator choice interactions can be learned through a
combined deductive and inductive approach.

o User’s quality metrics can be cast in the learned knowledge.

/

©

Veloso, CSD, CMU

~

Prodigy/Analogy Analogy
Baselevel Identify relevant features:
PROBLEM SOLVER \ FOOT-PRINT initial state
NEW RETRIEVE /:\ ANNOTATED A INDEXED
problem ™ ! v : J

i similar cases

v

-

Analogical REPLAY
of guiding cases

v

/ ! derivational trace

case
Identify independent subparts:

PARTIALLY ORDER case

P

CASE

LIBRARY

%

© Veloso, CSD, CMU

Challenges of Analogy — CBR in Planning Analogy

-

~

e How to accumulate episodic problem solving experience?

‘What to preserve from the search tree?‘

o How to organize a large case library?

‘What are the appropriate indices?‘

e How to retrieve past experience efficiently?

‘What are similar problem situations?‘

e How to reuse a set of previously solved analogous problems?

‘What to transfer from partial matches?‘

/

&5 © Veloso, CSD, CMU

Automatic Case Generation Analogy

-

~

A plan to be stored, i.e., a case, corresponds to:
o the compacted search tree
e a sequence of annotated decision nodes
o captures planning rationale

Annotations are the justifications
for the decisions taken:

¢ Dependencies between goals and plan steps
o Record of failed explored alternative steps
e Pointers to eventual control guidance

Goal Node Applied Op Node Chosen Op Node
:step :step :step

:sibling-goals :sibling-relevant-ops
:sibling-applicable-ops :sibling-applicable-ops :why-this-operator
:why-subgoal cwhy-apply
swhy-this-goal ‘why-this-operator
:precond-of

:sibling-goals

:relevant-to

/

&7 (© Veloso, CSD, CMU

-

-

Retaining Episodic Experience Analogy
~
What to preserve from a planning search experience?
— What is needed at replay time: guidance for choices.
— What is naturally known at search time.
o Identify decision points in the search procedure.
e Create language to capture justifications at search time and associate
meaning for replay time.
/
&6 © Veloso, CSD, CMU
Example — Learning a Planning Case Analogy
~
(state (and ity 3
(at-obj ob4 p3) p3 a3
(at-obj ob7 a3) 11
(at-truck tr9 a3) tr9 %/ép
(at-airplane pl1 a3)
(same-city a3 p3)) @
tr9
(goal I—I
(inside-truck ob4 tr9)) e m.
/
&8 © Veloso, CSD, CMU

Example (cont.) Analogy Storage — Indexing a Case Analogy

a N 4 N

nt Cnl(lnsdetruckob4tr9) """"" : ‘What are the appropriate indices?

:precond-of user

(inside-truck

ob4 tr9)
n8 \ nz\

cn2..

e The goal statement and the initial state define a problem.

o | \ i relevant-to cnl :))) o
(attruck ™ (at-obj . :sibling-ops : o Parameterize the instantiated situation.
tr9 p3) ob4 a3) :

no | | % i (goal-loop

(drive-truck (unload-airplane (unload-truck
tr9 g3p3) ob4 ?Il a3 ob4 tTQ ad)
n5

APPLY (inside-airplane Failure cn3

- Index through:
(drive-truck tr9 FI 1) goal-loop (at-truck tr9 p3) ‘ £
tr9a3p3) né . :precond-of cn2
n12 (load-airplane o the relevant initial state,
it éazl-jtlFLTck ob4 p‘ll a3) ! (drive-truck tr9 a3
} i relevant-to cn3 i i
ob4 tr9 p3) ggaalllluggp the set of interacting goals

N / N /

&89 © Veloso, CSD, CMU 90 © Veloso, CSD, CMU
Class Hierarchy Analogy Foot-Printing the Initial State Analogy
4 N 4 N
o Instances are defined through a class hierarchy. o The derivational trace identifies for each goal the set of weakest

preconditions necessary to achieve that goal (goal regression).

Universe Gl G2 G1 G2
Package Location I>O\fd Carrier (?{y
190 - 188 /\ el -cl5
Letter Box Truck Airplane
/\ ,\ Post-Office Airport A
Il - 115 b3 - b17 '\ '\ trl - 1r99 Initial State Initial State
pol - pols al - a25 B747B73DC1Ai1rBus300
Y <« X
fedaf airb10 fedx77 ups99 dhl}5 WITHOUT WITH

FOOT-PRINTING FOOT-PRINTING

¢ Conservative reliable approach:

> ‘Parameterize to the immediate parent

N / N /

91 © Veloso, CSD, CMU 92 © Veloso, CSD, CMU

-

Indexing Parts of a Case Analogy

~
Partially ordered solution identifies
independent subparts of a problem solving episode.
Goals in each subpart interact.

/
93 © Veloso, CSD, CMU

Search Savings Analogy

-

Let
o b — average branching factor of the search tree,
o [— solution length,
o S —search effort without analogy,

e ¢, — match value between the case retrieved and the new problem, as a
function of the retrieval time ,.

Then the complexity of S is S = O(b91),

Effect of analogical reasoning;:
decrease of the average branching factor
(directly related to the match value of the guiding case)

Sunalogy = ((1 - 61yv)b)]

Desired integration PS-CBR inequality:

t,+ (1= 8,)b) < b]

/

95 © Veloso, CSD, CMU

Retrieval Strategy Analogy

-

o Get guidance for possible interacting goals

Retrieve past cases where the problem solver

experienced equivalent goal interactions.

e Goal interactions are responsible for the majority of the search.

~

/

94 (© Veloso, CSD, CMU

Optimal Retrieval Interval Analogy

-

e+ (1 =m(1 —dC™")b' <« b

optimal
interval

anal ogi cal retrieval
and search efforts

Uretrieval

There is an optimal retrieval time interval
which is a function of the match rate increase a.

~

%

9% © Veloso, CSD, CMU

Efficient Resource-Bounded Retrieval Analogy

-

~
o Indexing hash tables reduce the set of candidate analogs in constant time.

o Matching algorithm is incremental to allow stopping retrieval if some
“reasonable” partial match is found.

e No effort to retrieve the best set of candidate analogs in the case library.

/

97 © Veloso, CSD, CMU

Generation and Replay Analogy

-

N

~

CASE

REPLAY

Generation and replay
share representational language

Generation creates case language.
The replay procedure interprets it.

Replay involves:
¢ a complete reinterpretation of the justification structures in the new context

o the development of appropriate actions to be taken when transformed
justifications are no longer valid. Y

99 (© Veloso, CSD, CMU

Example — Retrieval of Similar Problems Analogy

-

New problem

(goal (inside-airplane ob3 pI5)
(inside-truck ob8 tr2))

(initial-state (inside-truck ob3 tr2)
(at-truck tr2 p4)
(at-airplane pl5 al2)
(at-obj ob8 p4))

| (goal (inside-truck <ob32> <tr57>)) :
! (relevant-state (at-obj <0b32> <po19>)
(at-truck <tr57> <ap7>)) !

! (goal (inside-airplane <ob12> <pl18>))
! (relevant-state (at-obj <ob12> <ap29>) |
(at-airplane <pl18> <ap37>))

(goal (inside-airplane 0b3 pl5))
(relevant-state (at-obj ob3 <gp29>)
(at-airplane pl5 al2))

(goal (inside-truck ob8 tr2))
(relevant-state (at-obj ob8 p4)
(at-truck tr2 <ap7>))

~

/

98 © Veloso, CSD, CMU

Analogical Replay Of Multiple Plan Cases Analogy

-

1. Terminate if the goal is satisfied in the state.

2. Choose a guiding case. If a failure, then backtrack and reset pointers to
guiding cases.

3. If a goal is chosen, then
3.1. Validate the goal justifications. If not validated, go to step 2.
3.2. Create a new goal node; link it to the case node. Advance the case.
3.3. Select the operator chosen in the case.

3.4. Validate the operator and bindings choices. If not validated, base-level
plan for the goal. Go to step 2.

3.5. Link the new operator node to the case node. Advance the case. Go to
step 2.
4. If an applicable operator is chosen, then
4.1. Check if it can be applied in the current state. If it cannot, do extra
planning for the new goals. Go to step 2.

4.2. Link the new applied operator node to the case node. Advance the
case. Apply the operator. Go to step 1.

~

/

100 (© Veloso, CSD, CMU

-

Sketch — Replaying Multiple Cases Analogy
~
[
[— .
Iil—’=/{:|
- _/S
[R 1
1 [I
:r/ -
]
= —/E
= —/E
—— =
]
1
1
1
/
101 © Veloso, CSD, CMU
Replay of Multiple Planning Cases Analogy

-

Planning Cases New Planning Episode
Chosen step Proposed step

Goal dependencies Search direction
Operator choices Operator selections
Record of failures Pruning of alternatives
Sibling alternatives Proposed sibling steps
Additional reasons Additional control

Extend cases when extra planning is needed.
Reduce cases when past planning is not needed.

~

Planning cases are merged to maintain global rationale

Global rationale includes:
o Interdependency between plan steps choices.
o Justification-based selection of alternatives.
o Avoidance of failures encountered.
o Additional information gathered.

An intelligent incremental learning process

/

103

© Veloso, CSD, CMU

Reuse of Annotated Experience Analogy

-

Extend case when extra planning is needed
Reduce case when past planning is not needed

Advantages of replay:
o Proposal and validation of choices versus generation and search of
alternatives
e Reduction of the branching factor
> past failed alternatives are pruned by validating the record of past
failures;
> if needed, PRODIGY/ANALOGY backtracks also in the guiding cases

and uses information on failure to make more informed backtracking
decisions.

e Subgoaling links identify the subparts of the case to replay the steps that
are not part of the active goals are skipped.

~

/

102 (© Veloso, CSD, CMU

Experiments Analogy

-

Several different domains, including logistics transportation

e Solvability horizon of generative planner is greatly increased due to the
integrated replay of planning cases.

Example application domain: Route planning
e Routes are accumulated in a case library.

e Routes are abstracted and indexed according to situational parameters, such
as: time of the day, day of the week, and driver.

o Geometric features are used by the similarity metric used at retrieval time

[Haigh,Shewchuk].
o Multiple routes are merged at planning time.
¢ Planning cases are integrated with generative planning.
o Relevant parts of the cases are validated, pursued and merged.

o Generative planner does any extra planning work needed to merge the
planning cases.

~

/

104 (© Veloso, CSD, CMU

Solvability Horizon and Complexity

Analogy

~

/

§ 250 - E 250
S o 5
O 200 O 200 H
") / [
5 Ll 5 -
5 ol 5 1504 ———T
o [l o r
a x -
« 100 « 100H 7
o o !
E E ol
g % B — @ Without Analogy £ N B — & Without Analogy
5 #——* With Analogy 5 #——% With Analogy
z z
O od— 1 1 1 1 1
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Time Bound (seconds) Time Bound (seconds)
T 250 T 250~
2 2
o o
9 200 O 200
« @
£ =
Q@ Q@
o5 150 5= — & Without Analogy 5 1S0p E— — & Without Analogy
o #——% With Analogy o #——% With Analogy
[[
< 100 « 100
o o
E 5
s0F 0 e——- 50 -
€ - £
El El
z z e —————
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Time Bound (seconds) Time Bound (seconds)
105 © Veloso, CSD, CMU

Solution Length

Analogy

-

Base-level planner

~

Analogical planner

better even better
-6 -5 -4 -3 -2 -1 0 1 2 3 4 56 789 10 11 12 13
1 2 2 7 28 39 168 72 36 37 26 16 9 7 3 2 2 0 0 1
79 168 211
17.25% 36.68% 46.07%
\ 7.9% [16.8%] 21.1% [54.2% |
\ 7.9% \ 92.1% |

%

107

© Veloso, CSD, CMU

-

Retrieval plus Replay Time Analogy
@ 40 @ 120
S <
s $—— Retrieval + Analogical Replay s
O 35L 4eeeen <+ Runtime Without Analogy o +
b3 2 100 F
hed g #—— Retrieval + Analogical Replay
2 2 4=+ Runtime Without Analogy "
F F 80 "
#
#

5 10 15 20 25 30 35 40 45 50
Simple Problems

Simple problems

+#F

e

5 10 15 20 25 30 35 40 45 50
Harder Problems

Harder problems

[Resource-Bounded Retrieval|

/

-

~

%

106 © Veloso, CSD, CMU
Route Planning by Analogy Analogy
108 (© Veloso, CSD, CMU

Discussion — PRODIGY/ANALOGY Analogy

-

~

o Integration of analogical reasoning into general problem solving as a method
of learning at the strategy level.
e Characteristics of learning by analogical reasoning in
PRODIGY /ANALOGY:
— The strategy-level learning process is cast as the automation of the
complete cycle of
* constructing,
* storing,
* retrieving,
x and replaying problem solving episodes.
— No substantial effort invested in deriving general rules of behavior to
apply to individual decisions.
— Learned knowledge is flexibly applied to new situations, i.e., even if only
a partial match exists among past and new problems.

/

109 (© Veloso, CSD, CMU

OBSERVE

OBSERVE: Approach

-

~
o Motivation: Acquiring planning knowledge from experts is hard.
o Learn planning knowledge by observation and practice.
e Observe changes in the state:
— Learn preconditions and effects of planning operators.
— Infer subgoaling structure from observed plan.
e Generate plans from possibly over-specific planning knowledge.

e Repair plans and task knowledge from practice.

/

111 (© Veloso, CSD, CMU

Learning Domain Knowledge OBSERVE

-

~
¢ Gil 92 - EXPO
> Automated refinement of planning operators
> Refinement through controlled experimentation
e Chen 92 LIFE
> Automated discovery of problem solving operators
¢ Wang 95 - OBSERVE
> Automated learning of planning operators
> Observation of planning agent

> Refinement through own practice

/

110 © Veloso, CSD, CMU

Learning Planning Knowledge [Wang 95] OBSERVE

-

~

Observation

E t
R Module

Agent)
actions observations of the

expert agent

execution traces

Learning
Module

Plan Execution
Module

plan failures

new or refined

tentative plans operators

Planning
Module

OBSERVE converges to correct planning domain description.

/

112 © Veloso, CSD, CMU

Conclusion Summary

s

e Motivation: Planning and Learning
> Knowledge engineering bottleneck
> Learning: automated improvement with experience

> Many learning opportunities in planning

e Planning
> Introduction
> Planning Algorithms
> State-space planning; linear and nonlinear
> Plan-space planning; partial-order and hierarchical
> Comparison: Prodigy4.0 and SNLP; Different search heuristics in
Prodigy4.0.
> No universally optimal planning search algorithm or representation.

> Learning from experience may improve planning performance.

/

113 (© Veloso, CSD, CMU

References

[1] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.
Machine Learning, G(l):ST 66, jan 1991.

[2] James F. Allen, James Hendler, and Austin Tate (eds.). Readings in Planning. Morgan
Kaufmann, 1990.

[3] John Allen and Pat Langley. Integrating memory and search in planning. In Proceedings
of the DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Control,
pages 301 312, San Diego, CA, November 1990. Morgan Kaufmann.

[4] John R. Anderson. The Architecture of Cognition. Harvard University Press, Cambridge,
Mass, 1983.

[5] Anthony Barrett and Daniel S. Weld. Characterizing subgoal interactions for planning.
In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 1388 1393, 1993.

[6] Anthony Barrett and Daniel S. Weld. Partial-order planning:Evaluating possible efficiency
gains. Artificial Intelligence, 67(1), 1994.

[7] Neeraj Bhatnagar. On-line learning from search failures. PhD thesis, Rutgers University,
1992.

[8] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
1995. Extended version to appear in Artificial Intelligence, 1997.

115 (© Veloso, CSD, CMU

Conclusion (cont.) Summary

/
o Learning

> Learning opportunities

> Learning control knowledge to improve efficiency
- Macro operators
- Explanation-based learning
- Analogical/case-based planning

> Learning control knowledge to improve plan quality
- Incorporate user’s evaluation metric
- Incremental inductive refinement

> Learning planning domain operators

- Observation and practice

o Conclusion: This summary

/

114 (© Veloso, CSD, CMU

[9] Daniel Borrajo and Manuela Veloso. Incremental learning of quality-oriented control
knowledge for planning. In Working notes of the AAAI Fall Series Symposium 1994 on
Planning and Learning, New Orleans, LO, November 1994.

[10] Daniel Borrajo and Manuela Veloso. Lazy incremental learning of control knowledge for
efficiently obtaining quality plans. AI Review Journal. Special Issue on Lazy Learning,
10:1-34. 1996.

[11] Jaime G. Carbonell. Learning by analogy: Formulating and generalizing plans from past
experience. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning, An Artificial Intelligence Approach, pages 137-162, Palo Alto, CA, 1983. Tioga
Press.

[12] Jaime G. Carbonell. Derivational analogy: A theory of reconstructive problem solving and
expertise acquisition. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning, An Artificial Intelligence Approach, Volume II, pages 371-392. Morgan
Kaufman, 1986.

[13] Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn,
Craig Knoblock, Steven Minton, Alicia Pérez, Scott Reilly, Manuela Veloso, and Xuemei
Wang. PRODIGY4.0: The manual and tutorial. Technical Report CMU-CS-92-150, SCS,
Carnegie Mellon University, June 1992,

[14] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The operator
refinement method. In R. S. Michalski and Y. Kodratoff, editors, Machine Learning:
An Artificial Intelligence Approach, Volume III, pages 191-213. Morgan Kaufmann, Palo
Alto, CA, 1990.

[15] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333 378, 1987.

116 (© Veloso, CSD, CMU

[16] Pat W. Cheng and Jaime G. Carbonell. The FERMI system: Inducing iterative rules from
experience. In Proceedings of AAAI-86, pages 490-495, Philadelphia, PA, 1986.

[17] Ken Currie and Austin Tate. O-Plan: the open planning architecture. Artificial
Intelligence, 1990.

[18] Gerald DeJong and Raymond Mooney. Explanation-based learning: An alternative view.
Machine Learning, 1(2):145-176, 1986.

[19] Kenneth DeJong. Learning with genetic algorithms: An overview. Machine Learning,
3(2/3):121-138. October 1988.

[20] Robert B. Doorenbos and Manuela M. Veloso. Knowledge organization and the utility
problem. In Proceedings of the Third International Workshop on Knowledge Compilation
and Speedup Learning, pages 28-34, Ambherst, MA, June 1993.

[21] Mark Drummond and Ken Currie. Goal ordering in partially ordered plans. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, pages 960 965,
Detroit, MI, 1989.

[22] George W. Ernst and Allen Newell. GPS: A Case Study in Generality and Problem Solving.
ACM Monograph Series. Academic Press, New York, NY. 1969.

[23] Tara A. Estlin and Raymond Mooney. Hybrid learning of search control for partial order
planning. In New Directions in AI Planning. 10S Press, 1996. Proceedings of the Third
European Workshop on Planning, 1995.

[24] Oren Etzioni. A Structural Theory of Ezplanation-Based Learning. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1990. Available as technical report CMU-

CS-90-185.

17 (© Veloso, CSD, CMU

[34] Subbarao Kambhampati. Flezible Reuse and Modification in Hierarchical Planning: A
Validation Structure Based Approach. PhD thesis, Computer Vision Laboratory, Center
for Automation Research, University of Maryland, College Park, MD, 1989.

[35] Subbarao Kambhampati and Jengchin Chen. Relative utility of EBG based plan reuse
in partial ordering vs. total ordering planning. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 514-519, 1993.

[36] Subbarao Kambhampati and James A. Hendler. A validation based theory of plan
modification and reuse. Artificial Intelligence, 55(2-3):193 258, 1992.

[37] Subbarao Kambhampati and Smadar Kedar. Explanation based generalization of partially
ordered plans. In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 679 685. 1991.

[38] Suresh Katukam and Subbarao Kambhampati. Learning explanation-based search control
rules for partial order planning. In Proceedings of the AAAI-94. AAAT, 1994.

[39] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of ECAI-92. European
Conference on Artificial Intelligence, Vienna, Austria, 1992.

[40] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and
stochastic search. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, pages 1194-1201, 1996.

[41] Craig A. Knoblock. Automatically generating abstractions for planning. — Artificial
Intelligence, 68, 1994.

[42] Richard E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,
26:35 77, 1985.

119 (© Veloso, CSD, CMU

[25] Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial Intelligence,
62(2):255-301, 1993.

[26] Richard E. Fikes, P. E. Hart, and Nils J. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3:251 288, 1972.

[27] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[28] Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2(2):139-172, 1987.

[29] Karen Z. Haigh, Jonathan Shewchuk, and Manuela M. Veloso. Exploring geometry in
analogical route planning. To appear in Journal of Experimental and Theoretical Artificial
Intelligence, 1997.

[30] Kristian J. Hammond. Case-based Planning: An Integrated Theory of Planning, Learning
and Memory. PhD thesis, Yale University, 1986.

[31] Steve Hanks and Daniel Weld. A domain-independent algorithm for plan adaptation.
Journal of Artificial Intelligence Research, 2:319-360, 1995.

[32] Laurie Ihrig and Subbarao Kambhampati. Derivational replay for partial-order planning.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 992-997,
1994.

[33] Robert L. Joseph. Graphical knowledge acquisition. In Proceedings of the 4" Knowledge
Acquisition For Knowledge-Based Systems Workshop, Banff, Canada, 1989.

118 (© Veloso, CSD, CMU

[43] Richard E. Korf. Planning as search: A quantitative approach. Artificial Intelligence,
33:65-88, 1987.

[44] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An architecture for general
intelligence. Artificial Intelligence, 33(1):1 64, 1987.

[45] Pat Langley. Learning effective search heuristics. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 419-421, 1983.

[46] C. Leckie and I. Zukerman. Learning search control rules for planning: An inductive
approach. In Proceedings of Machine Learning Workshop, pages 422-426, 1991.

[47] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pages 634 639, 1991.

[48] Drew V. McDermott. Planning and acting. Cognitive Science, 2-2:71 109, 1978.

[49] R. S. Michalski, J. G. Carbonell, and T. Mitchell, editors. Machine Learning: An Artificial
Intelligence Approach, volume I. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1983.

[50] R. S. Michalski, J. G. Carbonell, and T. Mitchell, editors. Machine Learning: An Artificial
Intelligence Approach, volume IT. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

[51] R. S. Michalski and Y. Kodratoff, editors. Machine Learning. An Artificial Intelligence
Approach, volume III. Morgan Kaufmann, Palo Alto, CA, 1990.

[52] R. S. Michalski and G. Tecucci, editors. Machine Learning, A Multistrategy Approach,
volume IV. Morgan Kaufmann, Palo Alto, CA, 1994.

[53] Ryszard S. Michalski. A theory and methodology of inductive learning. Artificial
Intelligence, 20, 1983.

120 (© Veloso, CSD, CMU

[54] Steven Minton. Selectively generalizing plans for problem solving. In Proceedings of AAAI-
85, pages 596-599, 1985.

[55] Steven Minton. Learning Effective Search Control Knowledge: An Explanation-Based
Approach. Kluwer Academic Publishers, Boston, MA, 1988.

[56] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Dan R. Kuokka, Oren Etzioni,
and Yolanda Gil. Explanation-based learning: Optimizing problem solving performance
through experience. Artificial Intelligence, 1989.

[57] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based generalization:
A unifying view. Machine Learning, 1(1):47 80, 1986.

[58] Tom M. Mitchell and Sebastian B. Thrun. Explanation based learning: A comparison
of symbolic and neural network approaches. In Proceedings of the Tenth International
Conference on Machine Learning, pages 197 204, University of Massachusetts, Amherts,
MA, USA, 1993. Morgan Kaufmann.

[59] Tom M. Mitchell, Paul E. Utgoff. and R. B. Banerji. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In Machine Learning, An Artificial
Intelligence Approach, volume I, pages 163 190. Tioga Press, Palo Alto, CA, 1983.

[60] Jack Mostow. Machine transformation of advice into a heuristic search procedure. In
R. S. Michalski, J. G. Carbonell, and T. Mitchell, editors, Machine Learning, An Artificial
Intelligence Approach, Volume I, volume I, pages 367-403. Morgan Kaufman, Los Altos,
CA, 1983.

[61] Héctor Mufioz-Avila, Juergen Paulokat, and Stefan Wess. Controlling a nonlinear
hierarchical planner using case-based reasoning. In Proceedings of the 1994 FEuropean
Workshop on Case-Based Reasoning, November 1994.

121 (© Veloso, CSD, CMU

[71] Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, Inc., 1991. Second
edition.

[72] Paul S. Rosenbloom, Allen Newell, and John E. Laird. Towards the knowledge level in
SOAR: The role of the architecture in the use of knowledge. In K. VanLehn, editor,
Architectures for Intelligence. Erlbaum, Hillsdale, N.J, 1990.

[73] David Ruby and Dennis Kibler. Learning episodes for optimization. In Proceedings of
the Machine Learning Conference 1992, pages 379 384, San Mateo, CA, 1992. Morgan
Kaufmann.

[74] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974,

[75] Arthur Samuel. Some studies in machine learning using the game of checkers. In
E. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New York,
NY, 1963.

[76] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence, 1992.

[77] Jude W. Shavlik and Geoffrey G. Towell. Refining symbolic knowledge using neural
networks. In Ryszard Michalski and Gheorghe Tecuci, editors, Machine Learning. A
Multistrategy Approach., volume IV, pages 405-429. Morgan Kaufmann, 1994,

[78] Peter Shell and Jaime G. Carbonell. Towards a general framework for composing
disjunctive and iterative macro-operators. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989.

[79] W. M. Shen. Functional transformations in Al discovery systems. Artificial Intelligence,
41:257-272, 1990.

123 (© Veloso, CSD, CMU

[62] Allen Newell, J. C. Shaw, and Herbert A. Simon. Empirical explorations with the logic
theory machine: A case study in heuristics. In E. Feigenbaum and J. Feldman, editors,
Computers and Thought. McGraw-Hill, New York, NY, 1963.

[63] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-Hall, Englewood
Cliffs, NJ, 1972.

[64] D. Ourston and R.J. Mooney. Theory refinement combining analytical and empirical
methods. Artificial Intelligence, 66, 1994.

[65] J. S. Penberthy and D. S. Weld. UCPOP:A sound, complete, partial order planner for
ADL. In Proceedings of KR-92, pages 103 114, 1992.

[66] M. Alicia Pérez. Learning Search Control Knowledge to Improve Plan Quality. PhD
thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1995.
Available as technical report CMU-CS-95-175.

[67] M. Alicia Pérez and Jaime G. Carbonell. Control knowledge to improve plan quality. In
Proceedings of the Second International Conference on AI Planning Systems, Chicago, IL,
1994.

[68] M. Alicia Pérez and Oren Etzioni. DYNAMIC: A new role for training problems in EBL.
In D. Sleeman and P. Edwards, editors, Proceedings of the Ninth International Conference
on Machine Learning, pages 367-372. Morgan Kaufmann, San Mateo, CA, 1992.

[69] Yong Qu and Subbarao Kambhampati. Learning search control rules for plan-space
planners: Factors affecting the performance. Technical report, Arizona State University,
February 1995.

[70] J. R. Quinlan. Learning logical definitions from relations. Machine Learning. 5(3):239-266.
August 1990.

122 (© Veloso, CSD, CMU

[80] Mark Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intelligence,
16:141-169, 1981.

[81] Mark Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelligence, 16:111
140, 1981.

[82] R.E. Step and R.S. Michalski. Conceptual clustering: inventing goal-oriented classifications
of structured objects. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning, An Artificial Intelligence Approach, Volume II. Morgan Kaufman, 1986.

[83] Peter Stone, Manuela Veloso, and Jim Blythe. The need for different domain-independent
heuristics. In Proceedings of the Second International Conference on AT Planning Systems,
pages 164-169. June 1994.

[84] Prasad Tadepalli. Lazy e