Vision-Servoed Localization and Behavior-Based Planning for an
Autonomous Quadruped Legged Robot

Manuela Veloso, Elly Winner, Scott Lenser, James Bruce, and Tucker Balch
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

mmv@cs.cmu.edu

Abstract

Planning actions for real robots in dynamic and un-
certain environments is a challenging problem. Us-
ing a complete model of the world is not viable and
an integration of deliberation and behavior-based re-
active planning is most appropriate for goal achieve-
ment and uncertainty handling. This paper reports
on our successful development of a system integrat-
ing perception, planning, and action for the Sony
quadruped legged robots. We consider the robotic
soccer task, as Sony provided the robots to us specif-
ically for the RoboCup robotic soccer competitions.
The quadruped legged robots are fully autonomous
and thus must have onboard vision, localization and
agent behavior. We briefly present our perception al-
gorithm that does automated color classification and
tracks colored blobs in real time. We then briefly in-
troduce our Sensor Resetting Localization (SRL) al-
gorithm which is an extension of Monte Carlo Local-
ization. Vision and localization provide the state in-
put for action selection. In addressing this planning
challenge, we created a robust and sensible behavior
scheme for the robot that effectively handles dynamic
changes in the accuracy of the perceived information.
We developed a utility-based system for using local-
ization information. Finally, we have devised several
special built-in plans to deal with times when urgent
action is needed and the robot cannot afford collect-
ing accurate perception information. We present re-
sults using the real robots demonstrating the success
of the algorithms. Our team of Sony quadruped legged
robots, CMTrio-99, won all but one of its games in
RoboCup-99, and was awarded third place in the com-
petition.

Introduction

The robots used in this research were generously pro-
vided by Sony (Fujita et al. 1999) to be applied to
the specific domain of robotic soccer. The robots are
the same as the commercial AIBO robots, but they are
made available to us with slightly different hardware
and programmable. The robot consists of a quadraped
designed to look like a small dog. The robot is approx-
imately 30cm long and 30cm tall including the head.

The neck and four legs each have 3 degrees of freedom.
The neck can pan almost 90° to each side, allowing the
robot to scan around the field for markers. Figure 1
shows a picture of the dog pushing a ball.

Figure 1: The Sony quadruped robot dog with a ball.

All teams in the RoboCup-99 legged robot league
used this same hardware platform. The robots are au-
tonomous, and have onboard cameras. The onboard
processor provides image processing, localization and
control. The robots are not remotely controlled in any
way, and as of now, no communication is possible in
this multi-robot system. The only state information
available for decision making comes from the robot’s
onboard colored vision camera and from sensors which
report on the state of the robot’s body.

The soccer game consists of two ten-minute halves,
each begun with a kickoff. At each kickoff, the ball
is placed in the center of the field, and each team
may position its robots on its own side of the field.
Each team consists of three robots. Like our team last
year, CMTrio-98 (Veloso & Uther 1999), and most of
the other eight RoboCup-99 teams, we addressed the
multi-robot aspect of this domain by assigning differ-
ent behaviors to the robots, namely two attackers and
one goaltender. No communication is available and
the robots can only see each other through the color of
their uniforms. No robot identity can be extracted. As

of now, our robot behaviors capture the team aspect
of the domain through the different roles.

The acting world for these robots is a playing field
of 280cm in length and 180cm in width. The goals are
centered on either end of the field, and are each 60cm
wide and 30cm tall. Six unique colored landmarks are
placed around the edges of the field (one at each corner,
and one on each side of the halfway line) to help the
robots localize themselves on the field. Figure 2 shows
a sketch of the playing field.

1

jvel ‘kOW Robot A team: Blue
IglPin Fi el d(G een) Robot B team: Red
Bal | . Qrange

Goal (Yel | ow)

Pi nk oy "~ Light Blue
g
Yel | ow L ip\ nk

Goal (Li ght Bl ue)

Figure 2: The playing field for the RoboCup-99 Sony
legged robot league.

In this work, we address the challenges of build-
ing complete autonomous robots that can perform ac-
tive perception and sensor-based planning. The robots
perceive the world through vision, make decisions to
achieve goals, and act by moving in the world.

We report in this paper on the three main com-
ponents of our system integrating sensing, perception
processing, and action selection, namely localization,
vision, and behavior-based planning. We provide re-
sults within the particular RoboCup-99 domain and
application.!

The vision algorithm is of crucial importance as it
provides the perception information as the observable
state. Our vision system robustly computes the dis-
tance and angle of the robot to the objects and assigns
confidence values to its state identifications.

The preconditions of several behaviors require the
knowledge of the position of the robot on the field. The
localization algorithm is responsible for processing the
visual information of the fixed colored landmarks of the
field and outputting an (,y) location of the robot.

Finally, our behavior-based planning approach in-
terestingly provides the robot the ability to control its
knowledge of the world. Behaviors range from being
based almost solely on the visual information to de-
pending on accurate localization information.

! Our extensive videos provide additional invaluable il-
lustrative support to the contributions of this paper.

Vision
The vision system processes images captured by the
robot’s camera to report the locations of various ob-
jects of interest relative to the robot’s current location.
These include the ball, 6 unique location markers, two
goals, teammates, and opponents. The features of the
approach, as presented below, are:

1. Image capture/classification: images are cap-
tured in YUV color space, and each pixel is classi-
fied in hardware by predetermined color thresholds
for up to 8 colors.

2. Region segmenting: pixels of each color are
grouped together into connected regions.

3. Region merging: colored regions are merged to-
gether based on satisfaction of a minimum density
for the merged region set for each color.

4. Object filtering: false positives are filtered out via
specific geometric filters, and a confidence value is
calculated for each object.

5. Distance and transformation: the angle and dis-
tance to detected objects are calculated relative to
the image plane, and then mapped into ego-centric
coordinates relative to the robot.

The onboard camera provides 88x60 images in the
YUYV space at about 15Hz. These are passed through a
hardware color classifier to perform color classification
in real-time based on learned thresholds.

When captured by the camera, each pixel’s color is
described as a 3-tuple of 8 bit values in YUV space.
The color classifier then determines which color classes
the pixel is a member of, based on a rectangular thresh-
old for each class in the two chrominance dimensions
(U,V). These thresholds can be set independently for
every 8 values of intensity (Y). An example of the re-
sults of this classification is provided in Figure 3.

The final result of the color classification is a new
image indicating color class membership rather than
the raw captured camera colors. The 88x60 image has
bits set for which classes, if any, a particular pixel is a
member of. This is the input for the next step in the
system, in which the connected regions of a particular
color are determined.

The next stage is to compute a run length encoded
(RLE) version for the classified image. This compres-
sion results in a substantial decrease in storage and
processing requirements for subsequent steps. This is
because the processing routines can operate on entire
runs at a time, rather than individual pixels.

Figure 3: An example of our image classification on the
right. The image on the left is a composite of objects:
a position marker (top), a goal area (middle) and three
soccer balls (bottom).

The region merging method employs a tree-based
union find with path compression. This offers perfor-
mance that is not only good in practice but also pro-
vides a hard algorithmic bound that is for all practical
purposes linear. Initially, each run labels itself as its
parent, resulting in a completely disjoint forest. The
merging procedure produces a disjoint forest and a fi-
nal pass compresses all of the paths in the forest so
that each run’s parent field is pointing directly to the
global parent. Now each set of runs pointing to a sin-
gle parent uniquely identifying a connected region, so
the parent field can be thought of as a label which is
unique to each region (Bruce, Balch, & Veloso).

We next extract region information from the merged
RLE map. The bounding box, centroid, and size of
each region is calculated incrementally in a single pass
over the forest data structure. This process could eas-
ily be extended to extract additional statistics, such as
a convex hull or edge points list. The information cur-
rently extracted provides enough information for the
higher level manipulations.

After the statistics have been calculated, the regions
are separated by color into separate threaded linked
lists in the region table. Finally, they are sorted by
size so that later processing steps can deal with the
larger (and presumably more important) blobs, and
ignore relatively smaller ones which are most often the
result of noise.

The next step attempts to deal with one of the short-
comings of object detection via connected color re-
gions. Due to partial occlusion, specular highlights,
or shadows, it is often the case that a single object
is broken into a few separate but nearby regions. A
single row of pixels not in the same color class as the
rest of the object is enough to break connectivity, even
though the object may occupy many rows. In order to
correct for cases when nearby regions are not connected
but should be considered so, a density based merging
scheme was employed. Density is represented here as
the ratio of the number of pixels of the color class in
the connected region to the overall area of its bound-
ing box. By this measurement heuristic, two regions
that have a small separation relative to their sizes will
likely be merged, since they would tend to have rela-
tively high density.

The next step is to finally calculate the location of
the various objects given the colored regions. Various
top down and geometric object filters are applied in
each case to limit the occurrence of false positives, as
well as serving the basis for confidence values.

For the ball, it is determined as the largest orange
blob below the horizon. The confidence value is calcu-
lated as the error ratio of the density of the detected
region and the actual density of a perfect circle. The
distance is estimated as the distance required for a cir-
cular object to occupy the same area as the observed
region. The field markers are detected as pink regions
with green, cyan, or yellow regions nearby. The confi-
dence is set as the error ratio of the difference between
the squared distance between the centers of the regions
and the area of each region (since they are ideally ad-
jacent square patches, these two should be equal).

The colored blob on the marker indicates position
along the length of the field. The relative elevation of
the pink and colored regions disambiguates which side
of the field the marker is on given the assumption that
the robot’s head is not upside-down. Thus the marker
represented by a pair of regions can be uniquely deter-
mined. In case of multiple pairs which are determined
to be the same marker, the one of maximal confidence
is chosen. The distance to the marker is estimated
from the distance between the centers of the two re-
gions, since they are of known size.

The goals are detected similarly. They are the
largest yellow or cyan regions with centers below the
horizon. The distance measure is a very coarse ap-
proximation based on the angular height of the goal
in the camera image, and the merging density is set
to a very low value since many occlusions are possi-
ble for this large, low lying object. The confidence is
estimated based on the difference in comparing the rel-

ative width and height in the image to the known ratio
of the actual dimensions.

The final objects detected are opponents and team-
mates. Due to the multiple complicated markers
present on each robot, no distance or confidence was
estimated, but regions were presented in raw form as
a list of patches. These simply indicate the possible
presence of an opponent or teammate.

The final step in the vision system that needs to
be mentioned is the transformation from image co-
ordinates to an ego-centric coordinates. The vision
system was found to perform well in practice, with
a good detection rate and reasonably robust tolerance
of the unmodeled noise experienced in a competition
due to competitors and crowds. The distance metrics
and confidence values also proved to be an advantage
for localization and rational behavior in a highly noisy
environment.

Localization

Our localization algorithm is based upon a classical
Bayesian approach which updates the location of the
robot in two stages, one for incorporating robot move-
ments and one for incorporating sensor readings. This
approach represents the location of the robot as a prob-
ability density over possible positions of the robot.
In the CMTrio-98 localization algorithm, the proba-
bility density is represented using a grid based divi-
sion of the pose space (Veloso & Uther 1999). Our
localization algorithm, called Sensor Resetting Local-
ization (SRL) (Lenser & Veloso), is based upon a pop-
ular approach called Monte Carlo Localization (MCL)
which represents the probability density using a sam-
pling approach.

Monte Carlo Localization(MCL) (Fox et al. 1999;
Dellaert et al. 1999) represents the probability den-
sity for the location of the robot as a set of discrete
samples. The density of samples within an area is pro-
portional to the probability that the robot is in that
area. Since the points are not distributed evenly across
the entire locale space, MCL focusses computational
resources where they are most needed to increase the
resolution near the believed location of the robot. The
position of the robot is calculated from these samples
by taking their mean or some variant of mode. The
uncertainty can be estimated by calculating the stan-
dard deviation of the samples. We encountered some
problems implementing MCL for the robot dogs. MCL
took too many samples to do global localization. With
the number of samples we could actually run on the
hardware, the samples were too spread out to localize
the robot correctly. MCL also has problems dealing
with large modelling errors.

SRL is motivated by the desire to use fewer samples,
handle larger errors in modelling, and handle unmod-
elled movements. SRL adds a new step to the sensor
update phase of the MCL algorithm. If the probability
of the locale designated by the samples we have is low
given the sensor readings P(L|s), we replace some sam-
ples with samples drawn from the probability density
given by the sensors P(l|s). We call this sensor based
resampling. The logic behind this step is that the av-
erage probability of a locale sample is approximately
proportional to the probability that the locale sample
set covers the actual location of the robot, i.e. the prob-
ability that we are where we think we are. This also
mean that when tracking is working well, SRL behaves
exactly the same as MCL.

This resetting step allows SRL to adapt to large
systematic errors in movement by occasionally reset-
ting itself. SRL is also able to recover from large un-
modelled movements easily by using this same reset-
ting methodology. Unexpected movements happen fre-
quently in the robotic soccer domain we are working in
due to collisions with the walls and other robots. Col-
lisions are difficult to detect on our robots and thus
cannot be modelled. We also incur teleportation due
to application of the rules by the referee.

Movement update.

PP+ m,l7) = P(l%) convolved P(l'|m,!)

[This stage is the same as Monte Carlo Localization]

1. foreach sample s in P(l%)

(a) draw sample s’ from P(l'|m, s)

(b) replace s with s’

Sensor update.

P(i*Ys, 19y = P(l) » P(l|s)/a where a is a constant.

[Steps 1-9 of this stage are the same as MCL]

1. [optional step] replace some samples from P({/) with

random samples

2. foreach sample s in P(l7)

(a) set weight of sample equal to probability of sensor
reading, w = P(l|s)

3. foreach sample s in P (1)

(a) calculate and store the cumulative weight of all
samples below the current sample (cw(s))

4. calculate total weight of all samples (tw)

5. foreach sample s’ desired in P(l711)

(a) generate a random number(r)
between 0 and tw

(b) using a binary search, find the sample with maxi-
mum cw(s) <t

(c) add the sample found to P(l7*1)

6. calculate number of new samples, ns = (1 —

avg.sample_prob/prob_threshold) * num_samples

7. if(ns > 0) repeat ns times
(a) draw sample(s’) from P(!|s)
(b) replace sample from P(l/*1) with s’

Localization Capabilities

We tested SRL on the real robots using the parameters
we used at RoboCup '99. We used 400 samples for
all tests. In order to execute in real time, we were
forced to ignore about 50% of the sensor readings. Due
to inevitable changes in conditions between measuring
model parameters and using them, the parameter for
distance moved was off &~ 25%, for angle of movement
~ 10°, and for amount of rotation = .6°/step. The
deviations reported to the localization were 10% for
movement and 15% for vision. We had the test robot
run through a set trajectory of 156 steps while slowly
turning it neck from side to side. We ran 5 times after 7
different numbers of steps had been executed. The final
position of the robot was measured by hand for each
run. We calculated the error in the mean position over
time and the deviation the localization reported over
time. We also calculated an interval in each dimension
by taking the mean reported by the localization and
adding/subtracting 2 standard deviations as reported
by the localization. We then calculated the distance
from this interval in each dimension which we refer
to as interval error. We report both average interval
error and root mean squared interval error. We feel
that root mean squared interval is a more appropriate
measure since 1t weights larger, more misleading errors
more heavily. We also calculated the percentage of
time that the actual location of the robot fell within
the 3D box defined by the z,y, and é intervals.

The table below shows the localization is accurate
within about 10cm in # and y and 15° in # despite the
erroneous parameter values. The actual location of the
robot is within the box most of the time and when it
is outside the box, it is close to the box. The fact that
the localization seldom gives misleading information is
very important for making effective behaviors. The
error in position and the deviation reported quickly
converges to a steady level. The deviation tends to
go up at the same time the error goes up which keeps
the interval error low and avoids misleading output.
In competition, we observed that the localization algo-
rithm quickly resets itself when unmodelled errors such
as being picked up occur. The actual performance of
the localization during play tends to be worse than
during testing since the robot spends much less time
looking at the markers.

| || x (mm) | y (mm) | theta (°) |
average error 99.94 95.14 14.29
avg. interval error 15.18 491 2.07
rms interval error 34.92 13.94 3.82
in box percentage || 74.29% | 80.00% | 57.14%

Behavior-Based Planning

The behavior of the robot is an especially difficult prob-
lem in this domain, in which the robot acts under un-
certainty and must be able to quickly and gracefully
improve and degrade its performance as the availabil-
ity of localization information changes.

Because the localization system is reliant on visual
identification of landmarks, in order to keep its local-
ization information up-to-date, the robot must scan for
landmarks. As the robot walks, the camera experiences
pitch and roll, which causes the images it collects to
change significantly from one frame to the next. Be-
cause of this, the vision system’s estimate of angles
degrades. Walking also creates lag between the time
at which the vision frame was cpatured and the instant
in the motion that the localization assumes the frame
was captured at. Combined with processing time con-
straints, this makes the localization system produces
more accurate estimates when the robot is stopped, so
our algorithm has the robot stop moving while looking
for landmarks. The process of stopping and scanning
for landmarks usually takes the robot between 15 and
20 seconds.

Our approach provides the robot with the ability to
control its knowledge of the world: in order to learn
more about where it is, it can spend more time look-
ing for landmarks. Although having more information
helps the robot tremendously, soccer, like other dy-
namic domains, is time-critical, so every moment spent
looking around is lost time. Opponents can use the
robot’s hesitation to their advantage.

We assumed that the vision system is correct and re-
liable in designing our behavior algorithms. Our strat-
egy includes: 1) a two-constraint system for utility-
based thresholded localization, ii) an architecture that
allows the robot to upgrade and degrade its perfor-
mance quickly and gracefully, iii) behaviors that are
reasonable even when the robot does not know where
it is, and iv) several special localization-dependent be-
haviors which dramatically increase the robots’ effi-
ciency.

Control over State Knowledge

The robot must balance time spent localizing with
time spent acting. One possible localization strat-
egy, used by this year’s team from LRP University in
France (Bouchefra et al. 1999), involves localizing the

robot very infrequently, if at all. However, the benefits
of accurate localization are significant.

We present a scheme that balances the time required
to get accurate localization information with the ben-
efits this information provides.

Utility-Based Thresholded Localization We
found that if we defined what a “useful” amount of
localization information was and allowed the robot to
stop and look around every time its localization infor-
mation fell below that level, the robot spent most of
its time looking for landmarks. However, if we changed
the definition of “useful” information to the point that
the robot was able to act for a reasonable amount of
time before stopping to look for landmarks, then its lo-
calization information was almost never good enough
to use; in our tests, the robot frequently scored own-
goals, or tried to push the ball into the walls of the
field.

We use a system of two constraints to force the robot
to act for long enough to avoid disrupting its behavior
while also requiring that its localization information is
accurate enough to use.

M nut es

15 - - -
14
13
12
11
10

©
]

PN WA N®

Franes

50 100 150 200 250 300 350

Figure 4: Time taken to score a goal versus how long we
require the robot to act before looking for landmarks.

Constraint 1-—Enforcing Action: Our first con-
straint is that the robot spend a certain amount of
time acting before it stops to look for landmarks. This
ensures that the robot does not spend all of its time
localizing but still ha the opportuinity to benefit from
localization.

Our scheme uses a counter to require the robot to act
for a specified amount of time before looking for land-
marks. The amount of time the robot must act before
looking could depend on the confidence the robot has
in its current localization information and on its cur-
rent goals. In our scheme, however, it is invariant.

We require that the robot act for the time it takes
the image module to process 350 frames of data, or
about 40 seconds. Recall that stopping to look for
landmarks takes the robot between 15 and 20 seconds,
not counting the time it takes it to recover the ball
afterwards. So we demand that it spend about 2/3 of
its time acting. The results of our experiments, shown
in Figure 4 show that this value is good (Winner &
Veloso).

M nut es

R
O RPN W A~ O
|
|

[

P N WA 00O N 0O

A B

Figure 5: Time taken to score a goal versus how low we
require the standard deviations of the localization values
for § (the robot’s orientation) and = and y (its location on
the field) to be before using them.

Constraint 2—Limited Localization: The sec-
ond constraint is how accurate we demand the local-
ization information to be. We measure accuracy with
the standard deviations returned by the localization
module. If the information is accurate enough, the
robot should not stop to look for landmarks. But if
it is not accurate enough, the robot should not use it.
It is not immediately obvious how to balance allowing
the robot to use localization information of question-
able accuracy with the cost of having the robot ignore
accurate localization information.

Our results, displayed in Figure 5 show that a
“good” localization estimate of 8, or the angle of the
robot on the field, have a standard deviation of 30° or
less. A “good” localization estimate of and y, the
coordinates of the robot’s location on the field, must
have a standard deviation of less than 600mm, or just
under one quarter of the field length.

Behaviors with No Need for Localization One
of the best ways of finding a balance between localiza-
tion information and time spent to acquire it is simply
to avoid localizing when it is not necessary. We have

identified two times when it is unnecessary: when the
robot has recently lost sight of the ball, and when it
has no information at all about the location of the ball.

Recovering a Recently Lost Ball: The robot of-
ten loses sight of the ball while it is trying to manipu-
late it. This is usually because it has walked past the
ball. It must search for the ball, but because it has
just lost sight of the ball, more information is available
for it to use.

Instead of incorporating a full-scale world view into
the robot architecture, we implemented a very sim-
ple but extremely effective algorithm. When the robot
loses sight of the ball, it first walks backwards for a
while. If it has walked past the ball, this usually allows
it to spot it. However, sometimes walking backwards
makes the robot turn its body away from the ball. So,
like our team last year, CMTrio-98 (Veloso & Uther
1999), this year’s robots turn in the direction in which
the ball was last seen. After this, the robot considers
the ball lost and begins a random search for it.

Random Search: When the robot does not know
where the ball is, it must wander the field to search
for it. One way of searching for the ball is to build an
“oriented” search, in which the robot uses localization
information to systematically search each area of the
field. This relies on accurate localization information
and on a complete search of the field, both of which
take a lot of time. Instead, we use a very simple algo-
rithm that is much faster. We wrote a random search
algorithm that, until it sees the ball, alternates be-
tween walking forward a random amount and turning
a random amount. The random search avoids the cost
and necessity of localizing.

Acting with Little Information

Frequently during games, the standard deviations of
the robot’s localization information are so high that
the information should not be used. As explained pre-
viously, the robot should not stop and look every time
its localization information is inaccurate. Therefore,
we must make sure that it can act reasonably even
when its localization information is not good enough
to use.

We wrote an algorithm which allows the robot to
score goals without information about the robot’s angle

and z and y location on the field. The algorithm is as
follows:

Until see the goal,

walk sideways to the right around the ball;
When see the goal,

line up with goal and ball;
Walk forward into the ball.

This allows the robot to consistently score goals with

no information from the landmark-based localization
module at all. However, this takes the robot much
longer than it does when the robot has such informa-
tion.

Upgrading Performance

Not only must the robot be able to progress towards
its goals when it does not have useful localization in-
formation, it must be able to improve its performance
as soon as it gets such information. We used several
different strategies to make sure that the robot’s per-
formance would be able to improve quickly as well as
degrade gracefully as the availability of good informa-
tion changed.

Localization-Dependent Performance Enhance-
ments We have developed three performance en-
hancements that rely on localization information and
that are robust and reliable even with noisy informa-
tion (Winner & Veloso). The first helps the robot
decide in which direction to circle around the ball, or
whether to circle at all. The second allows the robot
to skew its approach to the ball so that it doesn’t have
to spend time circling. The third allows the robot to
score goals even if it is unable to see the goal itself.

Mode-Based Architecture We built a control ar-
chitecture based on basic modes of behavior we identi-
fied as important. To switch between modes, the robot
uses knowledge about basic features of its state, such
as: 1) whether it is paused, ii) into which goal it is try-
ing to push the ball, iii) whether it is in possession of
the ball, i.e. close to the ball, and iv) whether it knows
where the goal is. Localization enhancements improve
swtiching between modes and performance within a
mode. The modes we have defined for the attacker
are:

1. Head Searching: the robot is searching for the ball by
turning its head;

2. Searching: the robot is searching for the ball by turning
its head and its body;

3. Approaching: the robot is approaching the ball;
4. Circling: the robot is circling the ball;

5. Scoring: the robot is pushing the ball towards the goal;

The algorithm we use to switch among these modes
is approximately as follows:

If robot sees ball and is not close to it,
mode = Approaching;

If robot does not see ball and did recently,
mode = Head Searching;

If robot does not see ball and has not recently,
mode = Searching;

If robot does not know where goal is and
is close to ball
mode = Circling;
If robot knows where goal is and is close to ball,
mode = Scoring.

We are able to optimize the performance of the low-
level implementation of the modes by using localization
information. By separating the high-level behavior
from the low-level implementation, we ensure that the
robot’s high-level behaviors do not change frequently
as the available information changes.

Special Cases—Urgent Action

In some cases, the balance between localization and ac-
tion does not apply because immediate action is needed
and localization takes too long. We have found short-
cuts and compromises that allow the robot to perform
as well as possible in these special cases without local-
ization information.

Approaching the Ball Possession of the ball is a
critical part of a soccer game. The team that pos-
sesses the ball more has an incredible advantage over
its opponents. Therefore, in our strategy, when the
robot sees the ball, it rushes towards it, not waiting to
localize.

This strategy has negatives, clearly. If the robot does
not know where it is on the field, it will not know what
to do with the ball when it gets to it. Nevertheless,
it is better for a robot to look around when it is in
possession of the ball than when it is farther from the
ball. When the robot is standing near the ball, it is
blocking one side of the ball from visibility and attacks.

Kickoff We were surprised to discover, in the initial
games of RoboCup-99, how much of an advantage is
gained by winning the kickoff. When the ball moves to
one side of the field, it is very difficult for the robots to
move it to the other side of the field. In the RoboCup-
99 games, the team that won the kickoff usually scored
a goal, simply because the ball never emerged from the
side of the field to which it was initially pushed.
Because of this, we developed and extremely ag-
gressve kickoff that uses the fact that the robots start
each kickoff facing the ball and the opponent goal. We
allowed the robots to run with the ball without local-
izing at all for almost half the length of the field. Even
when the error-prone motion of the robots causes them
to stray far off course, the ball is usually driven into the
opponents half before our robots are forced to localize.
This was a very important advantage in almost all
of our games, since we were able to win most of the
kickoffs. In the one game we lost, we had accidentally
turned this feature off during the first half of the game,
and our robots were no longer able to win the majority

of the kickoffs. When we turned it back on in the
second half, our robots again dominated the kickoffs,
and were therefore able to score a goal and prevent the
other team’s robots from scoring any.

Goalie Another time when swift action is crucial is
when a robot is playing the position of goaltender.
However, this position also requires very accurate lo-
calization, since it is necessary for the goalie to be in
the correct position in front of the goal. We found
that our localization information was not accurate or
fast enough to localize the goalie in front of the goal
because of its reliance on the markers around the field.
By avoiding the landmark-based localization mod-
ule altogether, we were able to find a way for the goal-
tender not only to avoid looking frequently at land-
marks, but also to position itself more accurately in
front of the goal. Our final algorithm is as follows:
Starting Position: Centered in front of the goal,
facing the other side of the field.
Scan the horizon for the ball;
If the ball is seen, run straight after it;

If lose sight of the ball for more than 2 frames,
turn until own goal is seen;

If see own goal, run towards largest area of goal seen

until it fills visual field;
If own goal fills visual field
turn until opposing goal is seen.

This final version of the goalie is extremely ag-
gressive, and extremely successful. One of the main
strengths of this algorithm is that it takes advantage
of the special situation in which the goal tender finds
itself—standing very close to one goal, and facing the
other. Because the goals are the largest visual features
on the field, it is easy to use them to localize this spe-
cial position. Because the goalie pushes the ball far
away from the goal, it usually has plenty of time to
run back to the goal and turn around before the ball
comes nearby.

Conclusion

In this paper, we reported on our work on control-
ling the soccer-playing Sony quadruped legged robots
based on visual perception and probabilistic localiza-
tion. We briefly described the vision and localization
algorithms that allow for the state information to be
gathered during execution of the game.

We then contributed a behavior-based planning ap-
proach that actively controls and balances the amount
of localization information the robot has. The robot
can score goals relying solely on the limited visual per-
ception. The behaviors also employ as much of the
localization information as is available and they up-
grade and degrade performance gracefully as availabil-
ity changes. In addition, the robots include deliber-

ative preset plans to deal with special cases in which
urgent action is necessary and therefore cannot afford
the time to gather accurate state information. We in-
clude results of tests that demonstrate the localization
capabilities and support our parameter settings to con-
trol the amount of localization information.

Results from our matches in RoboCup-99 at IJCAI-
99, Stockholm, also show our algorithms to be effective.
Our team won all but one of its games, and the one
it lost was lost by only one goal. Our team was the
only one in this year’s league to score goals against
opposing teams and never to score a goal against itself.
Our goaltender was the only one in this year’s league
to score a goal itself.

Acknowledgments: We would like to thank Sony for
providing us with this remarkable platform for our research

in the perception, planning, and action.

References

Bouchefra, K.; Hugel, V.; Blazevic, P.; Duhaut, D
and Seghrouchni, A. 1999. Situated agents with reflex-
ive behavior. In Proceedings of IJCAI-99 Workshop on
RoboCup, 46-51.

Bruce, J.; Balch, T.; and Veloso, M. Fast color image
segmentation using commodity hardware. Submitted to

ICRA-2000.
Dellaert, F.; Fox, D.; Burgard, W.; and Thrun, S. 1999.

Monte Carlo localization for mobile robots. In Proceedings

of IROS-99.
Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999.

Monte Carlo localization: Efficient position estimation for
mobile robots. In Proceedings of AAAI-99.

Fujita, M.; Veloso, M.; Uther, W.; Asada, M.; Kitano, H.;
Hugel, V.; Bonnin, P.; Bouramoue, J.-C.; and Blazevic,
P. 1999. Vision, strategy, and localization using the Sony
legged robots at RoboCup-98. Al Magazine.

Lenser, S., and Veloso, M. Sensor resetting localization
for poorly modelled mobile robots. ICRA-2000.

Veloso, M., and Uther, W. 1999. The CMTrio-98 Sony
legged robot team. In Asada, M., and Kitano, H., eds.,
RoboCup-98: Robot Soccer World Cup I1. Berlin: Springer
Verlag. 491-497.

Winner, E., and Veloso, M. Robust action under variable
uncertainty: An algorithm for robotic soccer. Submitted
to Autonomous Agents-2000.

