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Abstract

Quantitative relationships between performance and behavioral
diversity are investigated in a multirobot foraging task. The task,
referred to as multi-foraging, requires robots to collect different
types of object and deliver them to different locations according
to type. Multi-foraging was selected for investigation because it
offers even more opportunities for agent specialization than sim-
pler foraging tasks. Three team foraging strategies are evaluated:
homogeneous, where each agent is capable of deliveringall types of
object; specialize-by-color, where each robot specializes in collect-
ing one type of object; and territorial, where most of the robots
drop objects off near the delivery area, while the remaining agent
completes the sorting and delivery. Each strategy is evaluated
for diversity and performance using quantitative metrics. Data
is gathered in thousands of simulation runs and the behaviors
are also verified on mobile robots. In contrast to the results of
a similar study in robotic soccer [12], the results of this research
indicate homogeneous behavior is the best strategy for foraging
robot teams.

1 Introduction and background

An important issue in multiagent robotics research is the
question of similarity between the agents on a team. Most
research in multirobot teams has centered on homogeneous
systems, with work in heterogeneous systems focused pri-
marily on mechanical and sensor differences (such as Parker’s
work [18]). But teams of mechanically identical robots are
also interesting because they may be homogeneous or het-
erogeneous depending only on agent behavior. Recent inves-
tigations indicate that behaviorally heterogeneous systems
offer advantages in some tasks [12, 15]. A study of robotic
soccer, for instance, shows that diversity is important and
is strongly correlated with performance [12]. Does this hold
for all multiagent tasks? To address this question we inves-
tigate the utility of behavioral diversity in foraging robot
teams.
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Foraging has a strong biological basis. Many ant species,
for instance, perform the forage task as they gather food.
Foraging is also an important subject of research in the
mobile robotics community; it relates to many real-world
problems [3, 4, 10, 16, 15]. Among other things, foraging
robots may find potential use in mining operations, explo-
sive ordnance disposal, and waste or specimen collection in
hazardous environments (the Mars Pathfinder rover for ex-
ample).

At Georgia Tech, Arkin and Balch have investigated sev-
eral behaviorally homogeneous strategies for robot foraging.
[3, 4, 11]. Their work specifically investigates the impact of
communication on performance in foraging teams. Although
communication is not used here, the research is extended
here to include a more complex foraging task and several
new team strategies (including heterogeneous approaches).

Fontan and Matari¢ have investigated a territorial het-
erogeneous foraging strategy where the search area is equally
divided between agents [15]. Robots hand off collected at-
tractors from area to area, with the last agent completing
delivery to the homebase. Their work indicates that perfor-
mance degrades if the number of robots is increased beyond
a certain maximum.

Drogoul evaluated several homogeneous foraging strate-
gies in simulation [14]. His research investigates the utility
of laying “crumbs” as path markers for other agents. The
idea was inspired by the technique of laying chemical trails
to food sources utilized by many ant species [17]. One fac-
tor impacting performance is the degree to which the robots
interfere with one another. In the most efficient “crumb-
laying” foraging strategy, performance is reduced when the
number of agents exceeds a particular mark. To address
this, a “docker” behavioral strategy is explored. The docker
robots are able to pass attractors from one to another while
remaining in a fixed position. In robot simulations using
this behavior, spontaneous chains of agents arise. Instead
of carrying attractors back to the base individually, they
hand them from one to another in the chain. Performance
in foraging is maximized in the docker strategy. The key
drawback to this approach is the mechanical challenge of
building agents able to accomplish such hand offs.

In the work most closely related to this research Gold-
berg and Matari¢ propose interference as a metric for eval-
uating a foraging robot team [16]. Interference refers to the
situation where two robots attempt to occupy the same place
at the same time; it is measured as the amount of time agents
spend avoiding one another. Since interference may reduce
the efficiency of a robot team, Goldberg suggests pack and
caste arbitration as mechanisms for generating efficient be-
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Figure 1: Multi-foraging robots in simulation (left) and in the laboratory (right). In the simulation robots are represented as
black circles; arcs indicate the visual sensing range; obstacles are drawn as gray circles; the small discs are attractors. The
robots deliver the attractors to the color-coded squares representing delivery areas.

havior and reducing interference. In the pack scheme, each
agent is arbitrarily assigned a place in the “pack hierarchy.”
Agents higher in the hierarchy deliver attractors before the
others. In the caste approach, only one agent completes
the final delivery; the other robots leave their attractors on
the boundary of a designated “home zone.” Goldberg’s re-
sults indicate that interference per unit time is maximized in
homogeneous foraging and minimized in pack foraging. In
spite of the fact that interference is minimized in the hetero-
geneous pack systems, homogeneous systems perform best
in terms of the number of attractors collected. The caste ap-
proach (referred to later as territorial foraging) is adopted
as one of the team foraging strategies investigated here.

This research is distinguished from other work in that it
is the first to investigate quantitative relationships between
behavioral diversity and performance in multirobot foraging.
To investigate these relationships three multirobot foraging
strategies are evaluated in thousands of simulation runs for
one to eight robots. Quantitative investigation of behavioral
diversity is enabled through the use of a new metric called
social entropy [7]. The entropy (diversity) of a multiagent
society is calculated based on the number and size of the
groups making it up.

This paper provides a description of the multi-foraging
task and the development of robotic behaviors for accom-
plishing it. Three foraging strategies are evaluated in thou-
sands of simulation runs. The behaviors are also verified
through implementation on mobile robots. The robots were
evaluated in the Mobile Robot Laboratory at Georgia Tech
and at the AAAI-97 Mobile Robot Competition where they
won first place.

2 The multi-foraging task

Most robotic foraging tasks investigated to date involve the
collection of attractors of a single type and their delivery to
a single destination. This basic task is referred to as simple
foraging. Simple foraging is an important robotic capabil-
ity, but many practical industrial and military tasks call for
more functionality. Consider, for example, a janitorial robot
responsible for collecting and sorting recyclable trash ob-
jects into glass, aluminum and paper bins. Similarly, many
assembly and construction tasks involve collecting parts or
materials and placing them in a specific location. These
more complex tasks are referred to as multi-foraging tasks.
Multi-foraging was selected for this investigation because

it provides more opportunities for behavioral specialization
than simple foraging.

In general, the multi-foraging task calls for several types
of object to be collected and placed in specific locations ac-
cording to type. Here multi refers to the multiple types of
object to deliver, not the number of robots engaged in the
task. Examples of simulated and real robots executing a
multi-foraging task are presented in Figure 1.

Performance in the multi-foraging task is defined as the
number of attractors collected and properly delivered in a
fixed time. In terms of the multirobot task taxonomy in-
troduced in [8] this task has the following characteristics:
TIME_LIM (time-limited), because performance is measured
over a fixed period; RESOURCE_LIM because as agents collect
objects, the availability of attractors is reduced; 0BJECT BASED
since performance is based on the location of objects, not
agents; COMP_INT (internally competitive), because robots on
the team compete for access to attractors among themselves;
SINGLE_AGENT since an individual agent can perform posi-
tively, even though multiple agents may provide improved
performance; and SENSOR_LIM since agents only have a lim-
ited view of the environment.

In order to compare simulations it’s important to control
several factors which affect efficiency:

e Number of attractors: Since performance is measured
as the number of attractors collected, more attractors avail-
able for collection may tend to provide for increased per-
formance in a fixed time trial. In simulation runs there are
40 attractors, 20 of each type (red and blue).

o Obstacle coverage: Higher obstacle density can lead to
degraded performance because the robots must slow down
and/or take a longer route around hazards to deliver attrac-
tors. In simulation runs, each playing field includes five 1
m? obstacles (5% coverage). The AAAT Competition field
included approximately 10 rock piles varying from about
0.5 m? to 1 m2. In most laboratory runs, no obstacles
other than another robot and the arena boundaries were
present.

e Playing field size: Larger search areas may lead to a
decrease in performance. In simulation, the field measures
10 by 10 meters. At the AAAI Competition, the field was
a hexagon measuring approximately 8 by 8 meters. Runs
in Georgia Tech’s Mobile Robot Lab were conducted in a 5
by 10 meter area.

e Number of robots: In most cases, increasing the number
of robots on a team improves performance. There is some
concern however, that as the number of robots increases,



interference between the agents will degrade performance
[16]. In simulation experiments the number of agents is
varied from one to eight. In laboratory runs one and two
agents were used. At the AAAI Competition two robots
were employed.

The next section explains the development of multirobot
behaviors for the multi-foraging task.

3 Behaviors for foraging

A motor schema-based reactive control system is used for
robot programming [2]. In this approach, the agent is pro-
vided several pre-programmed behavioral assemblages that
correspond to steps in achieving the task (e.g. wander, ac-
quire, deliver, and so on [1]). The behavioral assemblages
are in turn composed of more primitive behaviors called mo-
tor schemas. Binary perceptual features (also referred to as
perceptual triggers) are used to sequence the robot through
steps in achieving the task. Three strategies for foraging are
implemented and evaluated for performance and diversity:

¢ Behaviorally homogeneous: all the robots collect all the
different types of attractor and deliver them to correspond-
ing color-coded delivery areas.

e Territorial: In this scheme one robot, referred to as the
sorting agent, is responsible for collecting attractors within
a three meter circle centered on the homebase. The other
agents search at a distance from the homebase. When these
robots find an attractor, they drop it off at the boundary
of the “home zone.” Final delivery is then completed by
the sorting agent. This is a behaviorally heterogeneous ap-
proach.

e Specialize-by-color: half the robots specialize in collect-
ing one type of attractor while the rest specialize in collect-
ing the second type. Specialization by color is a heteroge-
neous strategy as well.

To ensure a fair comparison between the various forag-
ing strategies a fixed repertoire of behaviors is utilized across
all implementations. A range of behaviors were developed
to support several foraging strategies and to avoid bias to-
wards any particular approach. The repertoire is suitable for
building behaviorally homogeneous foraging teams as well
as territorial and other heterogeneous strategies. Agents
utilizing distinct strategies differ in the order they activate
behaviors. The behaviors developed for foraging teams are
summarized below:

e wander: move randomly about the environment in search
of attractors. Upon encountering an attractor agents auto-
matically transition to an appropriate acquire behavior.

e stay_near_home: similar to the wander assemblage but with
an additional attractive force to keep the agent close to
the homebase. This assemblage is utilized in the territorial
strategy by a sorting agent.

e acquire_red: move towards the closest visible red attractor.
When close enough to grasp the attractor, the agent closes
its gripper and transitions to a deliver assemblage.

o acquire_blue: move towards the closest visible blue attrac-
tor.

e deliver_red: move towards the red delivery area. When
close enough to deposit the attractor in the delivery area,
the robot opens its gripper and transitions to one of the
wander assemblages. Territorial agents are programmed to
drop attractors on the boundary of the home zone.

o deliver_blue: move towards the blue delivery area.
The reader is referred to [8] for a more complete descrip-
tion of these behaviors.

Recall that behaviors are sequenced using perceptual fea-
tures. A perceptual feature is a single, abstracted bit of
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Figure 2: An FSA representing the homogeneous foraging
strategy. This kind of agent can collect both types of at-
tractor.

environmental or sensor state germane to the robot’s task
(whether or not the robot is holding an attractor in its grip-
per for example). Robots must decide on the basis of these
environmental cues which behavior to activate at each point
in time. The robots are programmed as Finite State Au-
tomata (FSAs) that sequence from one state to another.
Each state of the FSA determines which behavior is to be ac-
tivated, with transitions between behavioral states triggered
when particular perceptual features are activated. This ap-
proach is called perceptual sequencing [1].

A fixed set of perceptual features are utilized across all
implementations to ensure a fair comparison between the
various foraging systems. The perceptual features for for-
aging are cataloged in Table 1. In addition to the features
advising the robot whether an attractor is visible, there are
also features indicating whether attractors are visible out-
side the home zone. The visibility cues are used to allow
territorial agents to search for attractors inside or outside
the zone while ignoring the others. The close_to homezone
feature is used by territorial robots as a signal to drop an at-
tractor on the boundary of the zone so that a sorting robot
can complete the final delivery.

4 Behavioral sequencing strategies

An obvious approach to the design of a multirobot multi-
foraging team is to program each agent to complete the en-
tire task on its own. This strategy is referred to as homoge-
neous because all the agents are programmed with the same
behavior. This approach was used by Georgia Tech’s robots
in the AAAI-94 and AAAI-97 competitions and in research
concerning multiagent communication [11, 10]. The homo-
geneous approach provides fault-tolerance because when one
or more agents fail, the remaining robots can still accomplish
the task.!

An FSA representing the homogeneous strategy is shown
in Figure 2. FEach agent begins with the wander behav-
ior activated, roaming about the environment in search of
attractors. When a robot encounters an attractor, either
the red_visible or blue_visible perceptual feature is trig-
gered, causing the agent to transition to the corresponding
acquire_red or acquire_blue behavior. Upon capturing an at-
tractor, a robot returns back to homebase using one of the

n fact, in both competitions one of the robots failed. Fortunately,
the remaining robots were able to complete the task.



perceptual feature |

meaning |

red_visible

blue visible

red_visible outside homezone
blue_visible outside homezone
red_in_gripper

blue_in gripper
close_to_homezone

close_to_red bin

close_to_blue_bin

a red attractor is visible.

a blue attractor is visible.

a red attractor is visible outside the
three meter radius home zone.

a blue attractor is visible outside

the home zone.

a red attractor is in the gripper.

a blue attractor is in the gripper.

the agent is within

3 meters of the homebase.

close enough to the red

delivery area to drop an attractor in it.
close enough to the blue

delivery area to drop an attractor in it.

Table 1: Perceptual features available to the foraging robots. Each feature is one bit of environmental state; the entire

perceptual state is a nine-bit value.

deliver behaviors. Finally, upon reaching the corresponding
delivery area, the agent drops the attractor and transitions
back to wander.

When several robots simultaneously attempt to deliver
attractors to the same delivery area, they may interfere with
one another and degrade performance (see Figure 6 for an
example). One way to reduce interference and potentially
improve performance is to partition the task so that re-
sponsibility for collecting red and blue attractors is divided
among the robots. Half of the agents are responsible for
collecting the red objects and the other half for blue. This
way, the chance of a “traffic jam” at either delivery area is
reduced.

FSAs for these specialized agents are illustrated in Fig-
ure 3. All agents start with the wander behavior activated.
They begin to search the environment for attractors. What
follows depends on whether the agent is a red specialist or
a blue specialist. Red specialists ignore blue attractors, but
when they encounter a red attractor while in the wander
phase, they immediately transition to the acquire_red behav-
ior. Similarly, blue specialists ignore red attractors. After
acquiring an attractor, the agents deliver it to the appro-
priate delivery area using one of the deliver behaviors, then
they switch back to wander to search for new items. An ad-
ditional transition is provided for situations where an agent
loses sight of the attractor. In that event it transitions back
to wander.

Another way to reduce interference near the delivery bins
is to assign one robot to the sorting task while other robots
collect the attractors and drop them nearby. This approach,
initially investigated by Goldberg and Matari¢ is adopted for
this investigation as well [16]. In this scheme, referred to as
territorial foraging, one robot remains close to the homebase
in the “home zone,” delivering attractors that other agents
deposit on the zone’s boundary. Figure 4 shows the FSAs
for robots in this system. The sequencing strategies for the
agents are similar to the approach for homogeneous foragers
(Figure 2). One significant difference is that the sorting
agent utilizes a stay_near_home behavior rather than wan-
der while searching for attractors. This results in the agent
staying close to the delivery areas for sorting. The roaming
agents are also similar to the homogeneous strategy, except
they are triggered to drop attractors at the boundary of the
home zone instead of depositing them in the delivery areas.

5 Performance in simulation

Now the performance of the foraging systems are examined
experimentally. The JavaBots system was utilized for sim-
ulation and mobile robot experimentation [9, 5]. Behaviors
coded in JavaBots may be run in simulation, and without
modification, on Nomadic Technologies’ Nomad 150 mobile
robots. Statistical results are gathered by running the robot
behaviors in thousands of simulation trials.

In simulation, each robot is a kinematically holonomic
vehicle (a simulated Nomad 150) which is controlled by one
of the behavioral systems described above. Simulated mo-
tor and sensor capabilities are based on performance of the
physical robots. The robots can detect hazards with sonar
out to a range of nine meters. Attractors can be detected
visually out to three meters across a 90 degree field of view.

Each type of control system under investigation was eval-
uated using one to eight simulated robots in five different
randomly generated environments. The environments differ
in the arrangement of hazards and attractors. The arena
is 10 by 10 meters and includes five randomly placed 1 m?
obstacles for 5% obstacle coverage. There are 20 each of red
and blue attractors distributed about the environment for
collection. 100 trials were run in each environment, or 4,000
runs for each control strategy, and 12,000 total.

Time is measured in seconds. Since reactive control sys-
tems are very fast, several thousand control cycles are com-
pleted each second. The simulation is allowed to proceed
faster than real time with each control cycle fixed at 200
milliseconds (simulation time). Each trial runs for 10 simu-
lated minutes or 30,000 control cycles.

Average performance for each of the three systems is
plotted versus the number of robots per team in Figure 5.
Performance is measured as the total number of attractors
properly delivered by the team in 10 minutes; larger num-
bers are better, with 40 being the best possible. The plot-
ted values are determined by computing the average perfor-
mance of the teams in each of the five randomly generated
environments over 100 trials.

In all cases, performance increases monotonically with
the number of agents. The data also show that regardless of
team size, the homogeneous strategy performs best, followed
by the territorial method and finally the specialize-by-color
approach. In the case of territorial systems with one robot,
the single agent is programmed as a sorting robot. It is
able to collect only the attractors placed nearby. Of the
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Figure 3: FSAs representing specialized behaviors for foraging. The FSA on the left shows the sequence behaviors are activated
in for an agent specializing in collecting red attractors. The FSA on the right shows the sequence for blue specialists.
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Figure 4: Territorial behavioral sequences for foraging. The FSA on the left shows the sequence of behaviors for an agent
that remains close to the homebase, completing the delivery of the attractors. Agents using the strategy on the right search
for attractors away from the home zone and deliver them to the home zone boundary. Differences from the homogeneous

strategy are highlighted.

foraging strategies evaluated homogeneous systems perform
best in this foraging task. These results confirm those of
other researchers in simple foraging [15, 16].

As previously mentioned, inter-robot interference is a
concern for homogeneous systems, while the heterogeneous
strategies were specifically designed to reduce interference.
Interference does occur during the delivery phase in both
homogeneous and specialize-by-color strategies (Figure 6,
left). This study does not include a quantitative measure
of interference, but qualitative observations are consistent
with results reported in [16]; namely that there is more fre-
quent interference between agents in the homogeneous strat-
egy than in other systems. Still, overall performance is best
in homogeneous systems.

In the case of territorial foraging, robot-robot interfer-
ence occurs much less frequently, but another factor limits
performance. In most trials, the roaming agents quickly de-
liver a large number of the attractors to the boundary of the
home zone, but the single sorting robot cannot always keep
up. In simulations with seven and eight agents it is not
uncommon for undelivered attractors to remain in a ring
around the home zone at the end of the trial (Figure 6, cen-
ter). Even though the number of sorters is constant (one),
the territorial foraging experiments illustrate how the ratio
of sorters to roamers impacts performance. The ratio varies
from 1:0 to 1:7 as the number of agents goes from 1 to 8. In

the 1:0 case, the sorting agent “starves” because it quickly
finds all the nearby attractors. Conversely, in the 1:7 case,
the sorter is overworked; there are many more attractors for
it to deliver than it is able to. Note that regardless of the
ratio, territorial foragers never perform better than homo-
geneous strategy.

A different sort of problem crops up for the specialize-by-
color teams. Towards the end of trials for these agents there
are often uncollected red attractors on the right side of the
field and uncollected blue attractors on the left (Figure 6,
right). This occurs because the agents inadvertently segre-
gate themselves geographically to the left or right depending
on whether they collect red or blue attractors. After deliv-
ering a blue attractor, for instance, a blue-collecting agent
is more likely to remain on the same (right) side of the field
as the blue bin. Because of this there are no red-collecting
agents on the right side of the field and vice-versa. In large
robot teams the robot-robot repulsion employed as part of
the wander behavior serves as an additional force preventing
the agents from diffusing from one side to the other. In addi-
tion to segregation, the specialize-by-color agents occasion-
ally interfere with one another when delivering attractors to
the same delivery area simultaneously. These factors com-
bine to drive performance down in the specialize-by-color
teams.
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Figure 5: Performance of the foraging teams versus size of
the team. Higher numbers indicate better performance; er-
ror bars indicate 95% confidence intervals. The homoge-
neous teams perform best in all cases.

6 Diversity

Previously, diversity in multirobot teams was evaluated on a
bipolar scale with systems classified as either heterogeneous
or homogeneous, depending on whether any of the agents
differ [15, 16, 18]. Unfortunately, this labeling doesn’t tell us
much about the extent of diversity in heterogeneous teams.

Heterogeneity is better viewed on a sliding scale provid-
ing for quantitative comparisons. Such a metric enables the
investigation of issues like the impact of diversity on per-
formance, and conversely, the impact of other task factors
on diversity. Soctial entropy, inspired by Shannon’s informa-
tion entropy [20], is introduced as a measure of diversity in
robot teams. The metric captures important components of
the meaning of diversity, including the number and size of
groups 1n a society. Social entropy is briefly reviewed here.
For more details, readers are referred to [13].

To evaluate the diversity of a multirobot system, the
agents are first grouped according to behavior (e.g. all red-
collecting agents are placed in one group). Next, the overall
system diversity is computed based on the number and size
of the groups. Social entropy for a multirobot system com-
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Figure 7: Diversity, as measured by social entropy, versus
size of the team for foraging teams. Larger numbers indicate
greater diversity.

posed of M groups is defined as:

H(X) = —Z pi log,(pi) (1)

where p; represents the proportion of agents in group :. We
will use this metric in the evaluation of the experimental
foraging strategies.

The diversity of the three experimental systems is plotted
versus the size of the team in Figure 7. Diversity is mea-
sured using the social entropy metric introduced in [7]. The
entropy of a system is determined by grouping the agents
according to behavior, then evaluating for diversity based
on the number and size of the groups (a Java-based social
entropy calculator is available online [6]). The entropy mea-
sure is analogous to the randomness of the system; greater
entropy indicates greater diversity. The homogeneous teams
always exhibit zero diversity, while the heterogeneous teams
vary in entropy from 0.54 to 1.0.

The territorial system always contains one unique robot
(the sorting agent that stays near homebase), while the rest
are identical. In this system, entropy is 1.0 for two agents,
then gradually declines as the number of agents increases.
The value drops to 0.54 for eight robots.

For even numbers of robots the specialize-by-color team
consists of half red-collecting robots and half blue-collecting



robots; this equates to an entropy of 1.0. For odd numbers of
robots the entropy is slightly less than 1.0, but as the number
of agents grows it approaches unity. This is illustrated in the
graph (Figure 7).

One goal of this research is to determine the relationship
between diversity and performance in multiagent tasks; is
the relative diversity of two multiagent teams a predictor
of their relative performance? This question is addressed
using Spearman’s Rank-Order Correlation Test [19]. Spear-
man’s test measures correlation between pairs of data points,
where each pair reflects the ranking of each item according
to separate metrics. In this case, we compare ranking in per-
formance with ranking in diversity. The correlation value, r
ranges from —1 (negatively correlated), to 0 (uncorrelated)
to 1 (positively correlated). Statistical significance of the
correlation is indicated by the probability that the same
correlation could have occurred by chance.

Consider the plots of robot system performance and di-
versity in Figures 5 and 7. For each robot team size (> 1
the systems can be ranked by diversity and performance.
Spearman’s test indicates that diversity and performance
are strongly negatively correlated in this foraging
task, with r = —0.92. Greater diversity is associated with
lower performance. The probability of the null hypothesis,
that the rankings occur by chance, is 0.000043 .

7 Implementation on mobile robots

To verify the simulation results, the foraging behaviors were
ported to Nomad 150 mobile robots. Because the control
systems are implemented in JavaBots, they can run in sim-
ulation and on hardware; the same behaviors and features
can be utilized on mobile robots as in simulation. The ho-
mogeneous strategy was run on one and two mobile robots
in the Mobile Robot Laboratory. The homogeneous and
specialize-by-color strategies were also employed by Georgia
Tech at the AAAI-97 competition.

Two robots executing the homogeneous foraging strategy
are illustrated in Figure 1 In this set of experiments the
robots utilize a passive gripper to collect attractors. The
gripper is designed so that a captured object remains under
the robot’s control until the robot drops it by backing up.

The Mobile Robot Laboratory provides an arena mea-
suring approximately 5 meters by 10 meters for the robot
experiments. A total of 20 attractor objects, 10 of each type
(red and blue), were distributed randomly about the lab for
each trial. Both the size of the arena and the number of
attractors available for collection are halved in comparison
with the environment used in simulation experiments.

Five trials of 10 minutes were run for one and two robots.
At the end of each trial, performance was evaluated as the
total number of attractors properly delivered. Performance
is summarized in Table 7. Qualitative behavior was essen-
tially identical to that of homogeneous teams in simulation.
As in simulation, the agents occasionally interfered with one
another when they deliver attractors to the same bin. In
these experiments with 20 attractors, each robot routinely
collected and delivered 8 objects. As expected, two robots
perform better than a single robot. Performance is slightly
worse than the same strategy in simulation experiments.
The decrease is most likely due to the reduced number of
attractors available for collection (20 versus 40).

2Since diversity has no meaning for a single agent system, only
teams of two or more agents are considered. Ties are declared in
cases where values are exactly the same or when confidence intervals
overlap.

The homogeneous and specialize-by-color strategies were
also used on Georgia Tech’s robots at the AAAI-97 Robot
Competition. Rather than a delivery area for each type
of attractor as in the task described above, in the AAAI
task robots must deposit attractors in bins with doors. The
doors of the bins are painted an identifying color to help
the agents find them. The robots were equipped with active
grippers to enable them to lift the objects and drop them in
the bins. Behaviors were modified slightly to accommodate
the differences in the task (full details are provided in [8]).

In the first round of the competition the robots had dif-
ficulty detecting rock hazards. The sonar sensors were not
effective at detecting the hazards because they are mounted
too high on the robot to detect the shorter rocks (this prob-
lem was corrected later by aiming the sensors downward).
The robots encountered the hazards on several occasions. In
one case, one of the robot’s grippers was ripped off the vehi-
cle (fortunately this occurred towards the end of the trial).
Despite this setback, the agents were able to deliver a signif-
icant number of attractors and win the first round. One of
the robots even captured a moving squiggle ball — this was
a rare event at the competition.

A change in the task for the final round presented an
additional challenge. The robots had to collect and deliver
objects of six different colors instead of two as in the first
round. This was a problem because the vision systems can
only track three colors, and at least one of those tracking
channels has to be dedicated to detection of the delivery
door. This deficiency was addressed by exploiting a het-
erogeneous foraging strategy. Each robot was programmed
to specialize in the collection of three of the six types of
attractor.

In the final round the robots picked up 10 attractors
and placed 9 of them in the correct delivery bin. Georgia
Tech’s robots won the competition. The success of a behav-
iorally heterogeneous team in this situation illustrates how
the computational limits of individual agents can necessitate
diversity in a multirobot solution. Each robot is potentially
capable of detecting all six types of attractor, but compu-
tational limits of the embedded vision computers allow only
three at one time — one robot cannot complete the entire
task alone. In terms of the taxonomy presented in [8] this
instance of the multi-foraging task is MULTI_AGENT instead of
SINGLE_AGENT. Perhaps MULTI_AGENT tasks are more likely to
require heterogeneous solutions.

8 Conclusion

This paper is the first to report a quantitative link between
diversity and performance in foraging robot teams. In these
multirobot foraging experiments diversity is negatively cor-
related with performance; homogeneous teams perform best.
The result is in contrast with similar work conducted by the
author in robot soccer where diversity is preferred [12]. In
both studies conclusions are based on statistical analysis of
thousands of simulation trials.

It 1s likely that differences in the soccer and foraging
tasks contribute to the relative advantages of diversity. A
key difference is that in soccer it is nearly impossible for a
single agent to successfully compete against another team.
Conversely, a single foraging robot using a homogeneous
strategy could feasibly collect all attractors in a given sce-
nario.

Homogeneous foragers tend to interfere with one an-
other as they deliver attractors to the delivery areas (in-
terference in homogeneous foraging was also noted by Gold-



| configuration | attractors collected per trial |

1 robot, homogeneous strategy
average

2 robots, homogeneous strategy
average

10, 8, 11, 12, 8
9.8 +/-2.2

15, 16, 17, 12, 15
15.0 +/-2.3

Table 2: Summary of performance in foraging robot trials. 95% confidence intervals are indicated.

berg in [16]). To address this, territorial and specialize-
by-color strategies were designed with the goal of reduc-
ing inter-agent interference. Even though interference is re-
duced in these heterogeneous teams, performance is worse.
In fact, diversity is negatively correlated with performance
in these foraging teams: Spearman’s r = —0.92 and prob =
0.000043.

In related work Fontan and Matari¢ investigated a sim-
ilar territorial heterogeneous foraging strategy [15]. Their
work indicates that performance degrades if the number of
robots is increased beyond a certain maximum. In contrast,
the results in this paper indicate monotonically increasing,
but leveling off of performance as the number of foraging
agents increases. This difference may be due to: 1) the
foraging strategy used by Fontan and Matari¢ was not re-
produced exactly in this work; and 2) performance in the
strategies introduced here may actually degrade as the num-
ber of agents in this work increases significantly beyond eight
robots.

Finally, the behaviors, perceptual features and behav-
ioral sequences used in simulation were also verified on mo-
bile robots. Qualitatively, mobile robot behavior matches
that predicted in simulation, including inter-agent interfer-
ence and overall performance. Robots using these strategies
won the AAAI-97 Robot Competition’s “Find Life on Mars”
event.
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