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Abstract

This paper introduces our work on mixed-initiative,
rationale-supported planning. The work centers on
the principled reuse and modification of past plans by
exploiting their justification structure. The goal is to
record as much as possible of the rationale underlying
each planning decision in a mixed-initiative framework
where human and machine planners interact. This ra-
tionale is used to determine which past plans are rel-
evant to a new situation, to focus user’s modification
and replanning on different relevant steps when exter-
nal circumstances dictate, and to ensure consistency
in multi-user distributed scenarios. We build upon
our previous work in Prodigy/Analogy, which incor-
porates algorithms to capture and reuse the rationale
of an automated planner during its plan generation.
To support a mixed-initiative environment, we have
developed user interactive capabilities in the Prodigy
planning and learning system. We are also working to-
wards the integration of the rationale-supported plan
reuse in Prodigy/Analogy with the plan retrieval and
modification tools of ForMAT. Finally, we have fo-
cused on the user’s input into the process of plan reuse,
in particular when conditional planning is needed.

Introduction

Our work within the ARPA planning initiative aims
at developing a prototype system for mixed-initiative,
rationale-supported planning. We investigate methods
for capturing the machine-based and human-based ra-
tionale underlying the decision-making process during
planning. We are developing techniques to store the
derivation of the contingency plans, attaching the jus-
tifications for the successful and rejected choices dur-
ing the mixed-initiative plan generation in addition to
simply retaining the solution plan steps. This is be-
ing accomplished by extension of the Prodigy/Analogy
derivational-trace extraction mechanism and combin-
ing it with conditional planning. In essence, the plan-
ner will provide on-demand justification for its deci-
sions, and will permit reuse of past planning so long as
the rationale remains valid in the instance situation.
Our work has pursued along three different fronts:
(1) extending Prodigy/Analogy to incorporate user’s

rationale-capture and input; (2) providing visualiza-
tion for plan generation, reuse, and modification; (3)
combining analogical reasoning with conditional plan-
ning.

This paper is organized along these three directions.
It should be seen as an entry point to the technical
results we have achieved and approaches we are de-
veloping. Citations are given on the appropriate tech-
nical papers for follow up. In Section 2 we overview
briefly Prodigy/Analogy, we discuss the user rationale-
capture approach under development, and we iden-
tify the opportunities for user’s input in the modifi-
cation process during plan reuse. Section 3 presents
the user interface we have developed in the Prodigy
planning and learning system. We focus on presenting
how the user can control the planning choices and on
the visualization support for Prodigy/Analogy. Sec-
tion 4 discusses the integration of analogical reasoning
with Prodigy’s conditional planning module. Finally,
in Section 5 we draw conclusions and discuss our cur-
rent working research directions.

Prodigy/Analogy: Combining
Generative and Case-based Planning

Prodigy is an architecture for the study of the combi-
nation of planning and learning (Carbonell, Knoblock,
& Minton 1990; Veloso et al. 1995). Different learning
approaches are developed for learning planning domain
models, and control knowledge for improving search ef-
ficiency and plan quality.

Prodigy/Analogy (Veloso 1994b; 1994a) achieves the
integration of analogical reasoning into general prob-
lem solving as a method of learning at the strategy
level to solve problems more effectively. Improvement
in planning efficiency occurs by the generation, storage,
retrieval, and replay of annotated derivational traces
of problem solving episodes. Instead of investing sub-
stantial effort deriving general rules of behavior to ap-
ply to individual decisions, Prodigy/Analogy compiles
complete problem solving cases that are used to guide
future similar situations. Learned knowledge is flexi-
bly applied to new problem solving situations even if
only a partial match exists among problems.



Figure 1 illustrates the complete planning cycle
of Prodigy/Analogy. Generative planning using an
operator-based planner, Prodigy4.0 (Carbonell et al.
1992), is used if additional planning is needed when
replaying the past planning cases.
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Figure 1: Prodigy/Analogy: Retrieval, replay, genera-
tion, and storage of planning cases. An operator-based
planner is used as a generative planner when additional
planning is needed.

Generation of planning episodes

Reasoning by analogy in Prodigy/Analogy consists
of the flexible reuse of derivational traces of previ-
ously solved problems to guide the search for solutions
to similar new problems, avoiding a completely new
search effort. Transformational analogy and most CBR
systems reuse past solutions by modifying (tweaking)
the retrieved final solution as a function of the differ-
ences found between the source and the target prob-
lems. Derivational analogy instead is a reconstructive
method by which lines of reasoning are transferred and
adapted to a new problem (Carbonell 1986) as opposed
to only the final solutions.

Automatic generation of the derivational episodes
that become the planning cases occurs by extend-
ing the base-level planner with the ability to ex-
amine its internal decision cycle, recording the jus-
tifications for each decision during its search pro-
cess. Prodigy/Analogy has been re-implemented in
Prodigy4.0, a state-space nonlinear planner (Carbonell
et al. 1992; Fink & Veloso 1994).

Prodigy4.0’s planning reasoning cycle involves sev-
eral decision points, namely: the goal to select from
the set of pending goals; the operator to choose to
achieve a particular goal; the bindings to choose in or-
der to instantiate the chosen operator; apply an oper-
ator whose preconditions are satisfied or continue sub-
goaling on a still unachieved goal. Prodigy/Analogy
extends Prodigy4.0 with the capability of recording
the context in which the decisions are made. Figure 2
shows the skeleton of the decision nodes. We created
a language for the slot values to capture the reasons
that support the choices (Veloso & Carbonell 1993a).

There are mainly three different kinds of justifica-
tions: links among choices capturing the subgoaling
structure (slots precond-of and relevant-to), records

Goal Node Chosen Op Node Applied Op Node
:step :step :step
:sibling-goals :sibling-ops :sibling-goals
:sibling-appl-ops :why-this-op :sibling-appl-ops
:why-subgoal :relevant-to :why-apply
:why-this-goal :why-this-op
:precond-of :chosen-at

Figure 2: Justification record structure. Nodes are
instantiated at decision points during problem solving.
Each learned episode is a sequence of such justified
nodes.

of explored failed alternatives (the sibling-slots), and
pointers to any applied guidance (the why- slots). A
stored problem solving episode consists of the success-
ful solution trace augmented with these annotations,
i.e., the derivational trace.

Mixed-initiative rationale capture The genera-
tion of planning cases by Prodigy/Analogy captures
the rationale of the machine-based planning. We
have been addressing two different aspects of a mixed-
initiative planning framework.

In a simpler approach, we assume that the user is
familiar with the Prodigy planning cycle. We provide
user interactive capabilities to allow a user to choose
particular alternatives in the cases and plan merging
strategies (see section below). Justifications provided
by the user in general are selected from a set of avail-
able ones. If the user enters an unknown reason to
the system, its functionality needs to be specified for
validation at reuse time.

We are engaged in a technology integration experi-
ment (TIE) with MITRE to address a more realistic
user-based planning scenario. MITRE’s ForMAT sys-
tem provides a plan acquisition tool that allows users
to generate and save force deployment plans (Mulve-
hill 1996). Stored plans are long lists of actions that
are recorded without the underlying rationale struc-
ture. ForMAT incorporates mechanisms for the user
to provide some organizational structure. It can also
infer weighted functional information about different
force modules of the plans.

The TIE will combine ForMAT for its user-based
planner and for its case library with Prodigy/Analogy
for its rationale-driven reuse capabilities. Rationale-
supported reuse relies on the reasons for plan step se-
lection, the actual goals to be achieved, and the alter-
native steps that were or should be considered. We
are developing ways to extract dependency and order-
ing information from ForMAT plans. We recognized
the need to augment the stored plans with the goals
of the constituent force modules. Currently, we have
a small case library of force deployment plans which
includes a high-level definition of the user’s rationale
associated with the different force modules. This infor-
mation is converted into Prodigy/Analogy goal-based
planning case representation.



Replay of multiple guiding cases

When a new problem is proposed, PRODIGY /ANALOGY
retrieves from the case library one or more problem
solving episodes that may partially cover the new prob-
lem solving situation. The system uses a similarity
metric that weighs goal-relevant features (Veloso &
Carbonell 1993b). In a nutshell, it selects a set of past
cases that solved subsets of the new goal statement.
The initial state is partially matched in the features
that were relevant to solving these goals in the past.
Each retrieved case provides guidance to a set of inter-
acting goals from the new goal statement. At replay
time, a guiding case is always considered as a source of
guidance, until all the goals it covers are achieved.

The general replay mechanism involves a complete
interpretation of the justification structures annotated
in the past cases in the context of the new problem
to be solved. Equivalent choices are made when the
transformed justifications hold. When that is not the
situation, PRODIGY /ANALOGY plans for the new goals
using its domain operators adding new steps to the
solution or skipping unnecessary steps from the past
cases.

The replay functionality transforms the planner,
from a module that costly generates possible operators
to achieve the goals and searches through the space of
alternatives generated, into a module that tests the va-
lidity of the choices proposed by past experience and
follows equivalent search directions. The replay pro-
cedure provides the following benefits to the problem
solving procedure:

e Proposal and validation of choices versus generation
and search of alternatives.

e Reduction of the branching factor — past failed
alternatives are pruned by validating the failures
recorded in the past cases; if backtracking is needed
PRODIGY/ANALOGY backtracks also in the guiding
cases — through the links established during replay
— and uses information on failure to make more in-
formed backtracking decisions.

e Subgoaling links identify the subparts of the case to
replay — the steps that are not part of the active
goals are skipped.

PRODIGY/ANALOGY constructs a new solution from
a set of guiding cases as opposed to a single past case.
Complex problems may be solved by resolving minor
interactions among simpler past cases. However, fol-
lowing several cases poses an additional decision mak-
ing step of choosing which case to pursue. We explored
several strategies to merge the guidance from the set of
similar cases. We have experimented with exploratory
and informed merging strategies. In the exploratory
approach, choices are made arbitrarily when there is
no other guidance available. This strategy allows an
innovative exploration of the space of possible solu-
tions leading to opportunities to learn from new goal
interactions or operator choices.

We have applied the rationale-supported planning
framework of Prodigy/Analogy in several domains in-
cluding a realistic route planning domain using the real
map of the Pittsburgh city (Haigh, Veloso, & Shewchuk
1996; Haigh & Veloso 1995).

Mixed-initiative plan reuse and modification
There are several opportunities for user intervention
in plan reuse. Before the actual plan reuse episode,
the user may be involved in the retrieval process. In
our TIE, ForMAT provides useful tools to allow users
to query the library of planning cases until a suffi-
ciently similar past scenario is found. Retrieval in
Prodigy/Analogy is driven by goal and initial scenario
similarities. We combine the functional querying in
ForMAT with the goal information for efficient re-
trieval.

The replay procedure in Prodigy/Analogy includes
role substitutions at the plan step level. It processes
not only the substitutions returned by the retrieval
procedure, but also the ones identified during the jus-
tification interpretation during the actual plan reuse.
This avoids the user’s effort to identify the implica-
tions of the partial match between the past and new
planning scenarios.

During reuse, Prodigy /Analogy needs to modify and
adapt the new plans. In the fully automated system,
as described above, when extra planning is needed,
the generative operator-based planner is invoked to
plan for the additional goals encountered. In a re-
alistic mixed-initiative framework, it is quite possible
that the generative planner does not have the domain
knowledge for extra planning needed. In this case,
Prodigy/Analogy invokes ForMAT which accesses its
case library or supports the user for plan building
for the new goals. Within this system integration,
Prodigy/Analogy will provide informed removal and
insertion of new plan modules by following the ratio-
nale that links the different parts of the plans.

User Interface

Along the mixed-initiative paradigm, we have designed
and developed a user interface for the Prodigy planning
and learning system (Blythe, Veloso, & de Souza 1996).
The interface supports the process of both building
and running a planning domain. It was designed to be
highly modular, requiring no changes to the underly-
ing planner’s code, and extensible, so that interfaces to
modules added to the planner may could easily be inte-
grated into the interface. When desired, a human user
can step through and interrupt the planning process,
as well as provide choices for the planning decisions.
The user interface supports planning by reuse of past
planning episodes and probabilistic planning.

Since Prodigy is an on-going research project, it was
important to develop an interface that could be inte-
grated easily with any variant of the system and with
its different learning modules. This requirement led us



to seek an architecture that is modular in two ways.
First, the code for the planner should not need to be
modified for the user interface to run. Second, the
user interface itself should make very few assumptions
about the planner’s implementation. At the same time
the interface should have a tight integration with the
planner so that the planning process can be traced
graphically and the interface can be used to interrupt
and direct the planner while it is in operation. The
architecture used for the PRODIGY user interface ac-
complishes these goals and the implementation details
can be found in (Blythe, Veloso, & de Souza 1996). In
this paper, we focus on describing briefly how the user
can control the planning choices and on the visualiza-
tion support for Prodigy/Analogy.

Control of planning choices

PRODIGY is a completely open-controllable architec-
ture. This means that all the decision points are
open to be controlled explicitly usually through con-
trol rules which can automatically dictate particular
choices based on the planning scenario. Figure 3 illus-
trates a particular use of control rules that interrupt
the planner to ask the user for guidance.
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Figure 3: The user can control choices. In the right
window, the user is shown the operator choices avail-
able to achieve the goal Prodigy is planning for.

The user is prompted with the choices available and
can either select one of the alternatives, decide that
doesn’t know which one to select, or tell PRODIGY
not to ask for any more guidance and resume its au-
tonomous behavior.

The interface for Prodigy/Analogy

To reuse past planning experience to solve new com-
plex planning situations, it may be necessary to reuse
multiple past planning episodes. Planning becomes
therefore a merging process of multiple plans, proba-
bly simpler and complementary. An automated merg-
ing procedure compares interactions in the past with
the new scenario. In the new situation, the planner is
capable of: reordering actions, adding new needed ac-
tions and deleting old actions as a function of possibly

new or non-existing goals in the new scenario. We have
developed a series of methods to merge different plan-
ning episodes which reason about different degrees of
context information to guide their merging process. In
particular, a user-driven merging procedure has been
developed. We have created a simple language that
allows to interact with the user. This is currently un-
der further refinement to facilitate the user’s task of
combining and updating past plan rationale in new
contexts.

Prodigy/Analogy’s running mode can be selected
from the interface. The user can solve problems and
request that the planning episodes be stored. A new
problem can then be solved by replaying and and merg-
ing possibly multiple past planning cases. Figure 4
shows a snapshot of the interface where one case is
instantiated to guide two different goals.
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Figure 4: A snapshot of the setup used by the ana-
logical reasoning module. Guiding cases are displayed
as shown in the two windows at the right. The steps
reused are marked while the steps not needed in the
new situation are skipped.

The user can visualize the merging procedure, as it
interleaves the multiple cases, marks the steps that are
used after successful validation, and skips the ones that
are no longer necessary or are invalid.

Using Analogy in Conditional Planning

Given the uncertainty of planning in complex sit-
uations, we also developed a method to combine
analogical replay with conditional probabilistic plan-
ning (Blythe 1994; Blythe & Veloso 1996).

Recently, several planners have been designed that
can create conditionally branching plans to solve prob-
lems which involve uncertainty. These planners rep-
resent an important step in broadening the applica-
bility of AI planning techniques, but they typically
must search a larger space than non-branching plan-
ners, since they must produce valid plans for each
branch considered. In the worst case this can produce
an exponential increase in the complexity of planning.
If conditional planners are to become usable in real-
world domains, this complexity must be controlled by
sharing planning effort among branches. We therefore



argue that analogical plan reuse should play a funda-
mental role in this process. We have implemented a
conditional probabilistic planner that uses analogical
replay to derive the maximum benefit from previously
solved branches of the plan. This approach provides
valuable guidance for when and how to merge different
branches of the plan and exploits the high similarity
between the different branches, which have the same
goal and typically a very similar state. Our experi-
ments have been showing that analogical replay signif-
icantly reduces the complexity of conditional planning.

Through its replay functionality, Prodigy/Analogy
showed to be suitable to be combined with C-Prodigy,
the conditional planner developed by Blythe. Table 1
introduces how conditional planning controlled by the
probabilistic planner Weaver (Blythe 1994), is inte-
grated with Prodigy/Analogy. It is interesting to no-
tice the smoothness of this integration which is made
possible by the common underlying framework of the
Prodigy planning and learning system.

Procedure C-Prodigy-Analogy

1. Weaver and Analogy select which previously visited
branch should be used to guide the new planning of con-
ditional planning.

2. Based on the selected branching point, Analogy sets up
accordingly the starting guiding point of the past plan-
ning episode.

3. C-Prodigy plans for the new branch guided by Analogy.

4. The integrated C-Prodigy/Analogy new planning
episode proceeds in the same way as the usual
Prodigy/Analogy: in this new context, previous deci-
sions are followed if valid, unnecessary steps are not used,
and new steps are added when needed. This process is
equivalent in either of the two situations described above
identified by Weaver. Whether C-Prodigy is trying to
protect a potentially unsuccessful step, or replanning for
a new branch, Analogy guides the new planning process
based on the high similarity between the global current
and past situations. This is particularly well suited for
the analogical replay guidance and leads in general to
minor interactions and a major sharing of the past plan-
ning effort.

Table 1: Top-level view of the integration of analogy
in conditional probabilistic planning.

In general, Prodigy/Analogy allows for the replay of
any number of past cases that are found to be jointly
similar to a new planning situation. The planning
cases are retrieved from a library of cases, similari-
ties are evaluated, and appropriate substitutions are
performed.

In this integration of conditional planning and anal-
ogy, the analogical replay within the context of differ-
ent branches of the same problem can be better framed
as an instance of internal analogy (Hickman, Shell, &
Carbonell 1990). In fact, the accumulation of a library
of cases is not required, and there is no need for an

elaborated analysis of similarity between a new prob-
lem and a potentially large number of different cases.
The branches of the problem need only to be cached
in working memory and most of the objects do not
need to be mapped into new objects, as the context
remains the same. In our implementation, we set up
Prodigy/Analogy with the ability to follow this same
internal-analogy philosophy. However the full analogi-
cal reasoning paradigm leaves us with the freedom to
reuse branches across different problems in the same
domain. We could also find the need to merge different
branches in a new situation. Our current implementa-
tion leaves these possibilities well open, as they are part
of the functionality of the general Prodigy/Analogy.

Table 2 presents the analogical reasoning procedure
combined with conditional planning. We follow a single
case corresponding to the planning for the last branch
visited according to the replanning order selected by
Weaver.

procedure c-prodigy-analogical-replay
1. Let C be the guiding case;
and Cj; is the guiding step in the case.
The initial case step Cp is set at the branching point.
Let ¢+ = 0.
Terminate if the goal state is reached.
Check which type of decision is C;:
If C; adds a step Oy to the head plan,
If Oy can be added to the current head plan
and no tail planning is needed before,
8. then Replay C;; Link new step to C;; goto 14.
9. else B-planning plans for the new goals; goto 5.
10.1f C; adds a step Oy to the tail plan,
11. If the step Oy is valid,
12. then Replay C;; Link new step to C;; goto 15.
13. else Hold the case (if other planning needed), or
Mark unusable all steps dependent of C;; goto 14.
14. Advance the case to the next usable step Cj;
15.1 + j; goto 5.

NOo otk Wi

Table 2: Sketch of the analogical replay procedure
combined with conditional planning.

The adaptation in the replay procedure involves a
validation of the steps proposed by the case. There
may be a need to diverge from the proposed case step,
because new goals exist in the current branch (step 9).
There may be also the case that some steps in the old
branch can be skipped, as they may be already true in
the new branching situation (step 13). Steps 8 and 12
account for the sharing between different branches.
These steps also account for the most part of the new
planning, as the state is only slightly different and most
of the goals are the same across branches. This selec-
tive use of replay controls the combinatorics of condi-
tional planning.



Conclusion

We presented methods to extend Prodigy/Analogy to
capture the user’s rationale in a mixed-initiative frame-
work. We have briefly described our technology inte-
gration experiment with MITRE’s ForMAT case-based
planning system. We have identified several oppor-
tunities where the retrieval and modification mecha-
nisms of ForMAT can be merged with the rationale-
supported reuse of Prodigy/Analogy. Our work has
been based on ForMAT’s force deployment plans and
ACP analogs created at MITRE.

We presented a few of the user interactive ca-
pabilities that we developed in a user interface for
the Prodigy system, including for Prodigy/Analogy.
To address issues of efficient conditional planning
to handle wuncertainty, we have also integrated
Prodigy/Analogy with C-Prodigy, Prodigy’s condi-
tional planner developed by Blythe.

The paper summarized our directions of research
within the ARPI planning initiative. The paper re-
ports on our on-going work towards efficient mixed-
initiative rationale-supported planning.
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