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Abstract

This paper presents the complete integrated planning,
executing and learning robotic agent ROGUE. We de-
scribe ROGUE’s task planner that interleaves high-level
task planning with real world robot execution. It
supports multiple, asynchronous goals, suspends and
interrupts tasks, and monitors and compensates for
failure. We present a general approach for learning
situation-dependent rules from execution, which cor-
relates environmental features with learning opportu-
nities, thereby detecting patterns and allowing plan-
ners to predict and avoid failures. We present two
implementations of the general learning approach, in
the robot’s path planner, and in the task planner.
We present empirical data to show the effectiveness of
ROGUE’s novel learning approach.

Introduction

In complex, dynamic domains, a robot’s knowledge
about the environment will rarely be complete and cor-
rect. Since Shakey the robot [12], researchers have been
trying to build autonomous robots that are capable of
planning and executing high-level tasks, as well as learn-
ing from the analysis of execution experience.

This paper presents our work extending the high-level
reasoning capabilities of a real robot in two ways:

e by adding a high-level task planner that interleaves
planning with execution, and

e by adding the ability to learn from real execution to
improve planning.

We have developed ROGUE [5; 6; 7] which forms the
task planning and learning modules for a real mobile
robot, Xavier (see Figure 1). One of the goals of the
project is to have the robot move autonomously in an
office building reliably performing office tasks such as
picking up and delivering mail and computer printouts,
picking up and returning library books, and carrying
recycling cans to the appropriate containers.

Xavier is a mobile robot being developed at Carnegie
Mellon University [13; 18]. Tt is built on an RWI B24
base and includes bump sensors, a laser range finder,
sonars, a color camera and a speech board. The soft-
ware controlling Xavier includes both reactive and de-

Figure 1: Xavier the Robot.

liberative behaviours. Much of the software can be clas-
sified into five layers: Obstacle Avoidance, Navigation,
Path Planning, Task Planning (provided by RoGUE),
and the User Interface. The underlying architecture is
described in more detail by Simmons et al. [18].
ROGUE provides a setup where users can post tasks
for which the planner generates appropriate plans, de-
livers them to the robot, monitors their execution, and
learns from feedback about execution performance.
RoGUE’s task planner is built upon the PrRODIGY4.0
planning and learning system [6; 23]. The task planner
generates and executes plans for multiple interacting
goals which arrive asynchronously and whose task struc-
ture 1s not known a priori. The task planner interleaves
tasks and reasons about task priority and task compat-
ibility. ROGUE interleaves planning and execution to
detect successes or failures and responds to them. The
task planner controls the execution of a real robot to
accomplish tasks in the real world. ROGUE effectively
enables the communication between Xavier, PRODIGY
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Figure 2: RoGUE architecture.

and the user. The planning and execution capabilities
of ROGUE form the foundation for a complete, learning,
autonomous agent.

RoGUE’s planner-independent learning approach
processes the robot’s execution data with the goal of
improving planning [5; 7]. It applies to two planners:
Xavier’s path planner, and the task planner. ROGUE
learns situation-dependent rules that affect the plan-
ners’ decisions. Qur approach relies on direct exami-
nation of the robot’s execution traces to identify situa-
tions in which the planner’s behaviour needs to change.
ROGUE then correlates features of the domain with the
learning opportunities, and creates situation-dependent
rules for the planners. The planners then use these rules
to select between alternatives to create better plans.

ROGUE’s overall architecture is shown in Figure 2.
ROGUE exploits Xavier’s reliable lower-level behaviours,
including path planning, navigation, speech and vision.
ROGUE provides Xavier with a high-level task planning
component, as well as learning abilities that extract
information from low-level execution data to improve
higher-level planning. The task planner receives task
requests from users, and then determines good inter-
leavings of multiple tasks. The path planner creates
paths between locations which the navigation module
then executes. ROGUE processes the execution trace of
the navigation module to extract learning opportuni-
ties, and then feeds that information to the learning al-
gorithm. ROGUE then processes the resulting situation-
dependent knowledge into rules for use by the planners.

Task Planning

The office delivery domain involves multiple users and
multiple tasks. ROGUE’s task planner has the ability

to integrate asynchronous requests,

to prioritize goals,

to suspend and reactivate tasks,

to recognize compatible tasks and opportunistically

achieve them,

e to execute actions in the real world, integrating new
knowledge which may help planning, and

e to monitor and recover from failure.

The task planner is based on PrRODIGY4.0 [23], a
domain-independent nonlinear state-space planner that
uses means-ends analysis and backward chaining to rea-
son about multiple goals and multiple alternative oper-
ators to achieve the goals. It has been extended to sup-
port real-world execution of its symbolic actions [20].

Task requests arrive from users at any time. ROGUE
incorporates the information into PRODIGY4.0’s state
description, and then PRODIGY4.0 extends the current
plan to incorporate the new task.

The planning cycle involves several decision points,
including which goal to select from the set of pending
goals, and which applicable action to execute. Dynamic
goal selection from the set of pending goals enables the
planner to interleave plans, exploiting common subgoals
and addressing issues of resource contention.

Search control rules can reduce the number of choices
at each decision point by pruning the search space or
suggesting a course of action while expanding the plan.
ROGUE uses search control rules that reason about task
priority and task compatibility. ROGUE can suspend
and reactivate lower-priority tasks, as well as recognize
opportunities for parallel execution. ROGUE can thus
interleave the execution of multiple compatible tasks to
improve overall execution efficiency.

ROGUE interleaves planning with execution. FEach
time PRODIGY4.0 generates an executable plan step,
ROGUE maps the action into a sequence of naviga-
tion and other commands which are sent to the Xavier
module designed to handle them. ROGUE then moni-
tors the outcome of the action to determine its success
or failure. ROGUE can detect execution failures, side-
effects (including helpful ones), and opportunities. For
example, it can prune alternative outcomes of a non-
deterministic action, notice external events (e.g. doors
opening/closing), notice limited resources (e.g. battery
level), and notice failures.

For example, each time a navigation command is 1s-
sued, the task planner monitors its outcome. Since the
navigation module may occasionally get confused and
report a success even in a failure situation, the plan-
ner always verifies the location with a secondary test
(vision or human interaction). If ROGUE detects that
the robot is not at the correct goal location, it updates
PRODIGY4.0’s state knowledge with the correct infor-
mation, and forces replanning.

ROGUE controls the execution of a real robot to ac-
complish tasks in the real world. The complete inter-
leaved planning and execution cycle is shown in Ta-
ble 1. The task planner is described in more detail
elsewhere [6].

Learning

Learning has been applied to robotics problems in a va-
riety of manners. Common applications include map
learning and localization (e.g. [9; 10; 22]), or learning
operational parameters for better actuator control (e.g.
[1; 2; 15]). Instead of improving low-level actuator con-



In Parallel:

1. ROGUE receives a task request from a user, and adds
the information to PRODIGY4.0’s state.

2. ROGUE requests a plan from PRODIGY4.0.

Sequential loop; terminate when all top-level goals
are satisfied:

(a) Using up-to-date state information, PRODIGY4.0
generates a plan step, considering task priority,
task compatibility and execution efficiency.

(b) ROGUE translates and sends the planning step to
Xavier.

(¢) ROGUE monitors execution and identifies goal
status; in case of failure, it modifies PRODIGY4.0’s
state information.

3. ROGUE monitors the environment for exoge-
nous events; when they occur, ROGUE updates
PRODIGY4.0’s state information.

Table 1: The complete planning and execution cycle in
RoGUE. Note that Steps 1 to 3 execute in parallel.

trol, our work focusses at the planning stages of the
system.

A few other researchers have explored this area as
well, learning and correcting action models (e.g. [8;
14]), or learning costs and applicability of actions (e.g.
[11; 17; 21]). Our work falls into the latter category.

In some situations, it is enough to learn that a par-
ticular action has a certain average probability or cost.
However, actions may have different costs under differ-
ent conditions. Instead of learning a global description,
we would rather that the system learn the pattern by
which these situations can be identified. We introduce
an approach to learn the correlation between features
of the environment and the situations, thereby creating
situation-dependent rules.

We would like a path planner to learn, for example,
that a particular corridor gets crowded and hard to nav-
igate when classes let out. We would like a task planner
to learn, for example, that a particular secretary doesn’t
arrive before 10am, and tasks involving him can not be
completed before then. We would like a multi-agent
planner to learn, for example, that one of its agents has
a weaker arm and can’t pick up the heaviest packages.
Once these problems have been identified and corre-
lated to features of the environment, the planner can
then predict and avoid them when similar conditions
occur in the future.

Our approach relies on examining the execution
traces of the robot to identify situations in which the
planner’s behaviour needs to change. It requires that
the robot executor defines the set of available situation
features, F, while the planner defines a set of relevant
events, £, and a cost function, C, for evaluating those
events.

Events are learning opportunities in the environment

Create plan.

Execute; record the execution trace and features F.
Identify events & in the execution trace.

Learn mapping: F x £ = C.

Create rules to update each planner.

G o=

Table 2:

rules.

General process for learning situation-dependent

for which additional knowledge will cause the planner’s
behaviour to change. Features discriminate between
those events, thereby creating the required additional
knowledge. The cost function allows the learner to eval-
uate the event. The learner creates a mapping from the
execution features and the events to the costs:

Fx&—=C.

For each event ¢ € &£, in a given situation described
by features F, this learned mapping calculates a cost
¢ € C. We call this mapping a situation-dependent rule.

Once the rule has been created, ROGUE gives the
information back to the planners so that they will avoid
re-encountering the problem events. These steps are
summarized in Table 2. Learning occurs incrementally
and off-line; each time a plan is executed, new data is
collected and added to previous data, and then all data
is used for creating a new set of situation-dependent
rules.

We demonstrate our learning approach in two plan-
ners: Xavier’s path planner and ROGUE’s task plan-
ner. While the details of extracting and evaluating
events from execution are domain-specific, the general
approach is planner- and domain- independent.

Learning for the Path Planner

In this section, we present the learning algorithm as it
applies to Xavier’s path planner!, where our concern
is to improve the reliability and efficiency of selected
paths. The path planner uses a modified A* algorithm
on a topological map that has additional metric infor-
mation [4]. The map is a graph with nodes and arcs
representing rooms, corridors, doors and lobbies.

ROGUE demonstrates the ability to learn situation-
dependent costs for the path planner’s arcs. Learning
appropriate arc-cost functions will allow the path plan-
ner to avoid troublesome areas of the environment when
appropriate. Therefore we define events;, &, for this
planner as arc traversals and costs, C, as travel time.
Features, F | include both robot data and high-level fea-
tures. Features are hand-picked by the designers, and
are extracted from the robot, the environment, and the
task.

ROGUE extracts arc traversal events and environmen-
tal features from the massive, continuous, probabilistic

'More information about learning for the path planner
can be found elsewhere [7].



execution traces, and then evaluates the events accord-
ing to the cost function. The learning algorithm then
creates the situation-dependent arc costs.

The execution traces are provided by the robot’s nav-
igation module. Navigation is done using Partially Ob-
servable Markov Decision Process models [19]. The ex-
ecution trace includes observed features of the environ-
ment as well as the probability distribution over the
Markov states at each time step.

Event Identification. Identifying the planner’s arc
traversal events from this execution trace is challeng-
ing because they contain a massive, continuous stream
of uncertain data. At no point in the robot’s execu-
tion does the robot know where it actually is. It main-
tains a probability distribution, making it more robust
to sensor and actuator errors, but making the learning
problem more complex because the training data 1s not
guaranteed to be correct.

The execution trace in particular does not contain
arc traversals. We therefore need to extract the tra-
versed arc sequence from the Markov state distributions
of the navigation module. The first step in this pro-
cess 1s to calculate likely sequences of Markov states.
We use Viterbi’s algorithm [16] to calculate the most
likely transitions from state to state. Then, from high
probability states throughout the trace, we reconstruct
sequences that are likely to reflect the robot’s actual
trajectory. The second step of this process is to reverse-
engineer the Markov state sequences to extract the se-
quence of planner’s arcs.

Once the arc sequences have been identified, ROGUE
calculates cost estimates for the arcs: C(e € &) = vt/l,
where v is the desired velocity for traversing the arc, ¢
is the actual time taken to traverse the arc, and [ is the
believed length of the arc.

The data is stored in a matrix along with the cost
evaluation and the environmental features observed
when the arc traversal event occurred (Table 3). Be-
yond the list of features shown, we also record sonar
values and the highest probability Markov states.

The events matrix 1s grown incrementally; most re-
cent data is appended at the bottom. By using in-
cremental learning, ROGUE can notice and respond to
changes on a continuous basis.

Learning. We selected regression trees [3] as our learn-
ing mechanism because they can handle continuous val-
ues, and form disjunctive hypotheses. A regression tree
1s created for each event, in which features are splits and
costs are learned values. Splits are selected to max-
imize the reduction in deviance of the node, and we
then prune the tree using 10-fold random cross valida-
tion. The regression trees, one for each arc, are then
formatted into situation-dependent rules.

Updating the Planner. The rules are then loaded
into an update module. Each time the path planner
generates a path, it requests the new arc costs from the
update module. These costs are generated by matching

ArclNo Weight CT Speed PA Goal Year MM DD DoW
233 0.348354 38108 34.998 234 90 1997 06 30 1
192 0.777130 37870 33.461 191 90 1997 06 30 1
196 3.762347 37816 34.998 195 284 1997 06 30 1
175 0.336681 37715 34.998 174 405 1997 06 30 1
168 1.002090 60151 34.998 167 31 1997 07 07 1
134 16.549173 61208 34.998 234 262 1997 07 09 3
238 0.640905 54 34.998 130 379 1997 07 10 4
165 1.472222 8805 34.998 164 379 1997 07 17 4
196 5.823351 3983 34.608 126 253 1997 07 18 5
194 1.878457 85430 34.998 193 262 1997 07 18 65

Table 3: Events Matrix; each feature-value vector (row of
table) corresponds to an arc traversal event ¢ € £. Weight
is arc traversal weight, C(). The remaining columns contain
environmental features, F, valid at time of the traversal: CT
is CurrentTime (seconds since midnight), Speed is velocity, in
cm/sec, PA is the previous arc traversed, Goalis the Markov
state at the goal location, Year, MM, DD, DoW is the date
and day-of-week of the traversal.

the current situation against the learned rule for each
arc. Using its A* algorithm, the planner selects the
path with the best expected travel time, according to
the updated situation-dependent costs.

Path Planner Experiments (Simulation) We
built a simulated world for testing the system in a con-
trolled environment. Figure 3 shows the FEzposition
World:  an exposition of the variety one might see
at a conference. Rooms are numbered; corridors are la-
belled for discussion purposes only. Figure 3 shows the
simulated world, complete with a set of obstacles. The
path planner does not know about the obstacles; every
arc in the topological description has the same default
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Figure 3: Exposition World. Simulator: operating environ-
ment. Obstacles marked with dark boxes. The path planner
does not know about the obstacles.
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Figure 4: Learned trees for two of the arcs in corridor 3. Leaves show the cost of traversing the arc.

cost of 1.0.
The position of the obstacles in the simulated world
changes according to the following schedule:

e corridor 2 is always clear,
e corridor 3 has obstacles on:

— EITHER Monday, Wednesday, or Friday between
(midnight and 3am) and between (noon and 3pm),

— OR one of the other days between (1 and 2am) and
(1 and 2pm),

e corridor 8 always has obstacles,
e remaining corridors have random obstacles (approxi-
mately 10 per map).

This set of environments allowed us to test whether
ROGUE would successfully learn:

e permanent phenomena (corridors 2 and 8),
e temporary phenomena (random obstacles), and
e patterns in the environment (corridor 3).

Over a period of 2 weeks, 651 execution traces were
collected. Almost 306,500 arc traversals were identi-
fied, creating an events matrix of 15.3 MB. The 17
arcs with fewer than 25 traversal events were discarded
as insignificant, leaving 100 arcs for which the system
learned trees. (There are a total of 331 arcs in this en-
vironment, of which 116 are doors, and 32 are in the
lobby.) Rules were generated with as few as 25 events,
and as many as 15,340 events, averaging 3060.

Figure 4 shows two of the learned trees. Both arcs
shown are from corridor 3. Both DayOfWeek and
CT are prevalent in all the trees for that corridor.
(CT is CurrentTime, in seconds since midnight.) In
Arc 244, for example, before 02:08:57, DayOfWeek is
the dominant feature. In Arc 240, between 02:57:36
and 12:10:26, there is one flat cost for the arc. After
12:10:26 and before 15:00:48, DayOfWeek again deter-
mines costs.

Figure 5 shows the cost, averaged over all the arcs in
each corridor, as it changes throughout the day. ROGUE
has correctly identified that corridor 3 1s difficult to tra-
verse between midnight and 3am, and also noon and
3pm. During the rest of the day it is close to default
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Figure 5: Corridor cost (average over all arcs in that corridor)
for Wednesdays.

cost of 1.0. This graph shows that ROGUE is capable
of learning patterns in the environment. Corridor 8,
meanwhile, is always well above the default value, while
corridor 2 is slightly below default, demonstrating that
ROGUE can learn permanent phenomena.

Effect on Planner. Figure 6 illustrates the effect
of learning on the path planner. The goal is to have
ROGUE learn to avoid expensive arcs (those with many
obstacles). Figure 6a shows the default path generated
by the planner. Figure 6b shows the path generated af-
ter learning; note that the expensive arcs, marked with
thick segments, have been avoided.

In general, paths generated using the learned costs
are 20% faster than default paths evaluated with the
learned costs.

The data we have illustrated here demonstrates
that ROGUE successfully learns situation-dependent arc
costs. It correctly processes the execution traces to
identify situation features and arc traversal events. It
then creates an appropriate mapping between the fea-
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value). (b) New path (when corridor arcs have been learned) on
Wednesday 01:05am; note that the expensive arcs have been
avoided (arcs with cost > 2.50 are denoted by very thick lines).

tures and events to arc traversal weights. The planner
then correctly predicts the expensive arcs and creates
plans that avoid difficult areas of the environment.

Path Planner Experiments (Robot) The sec-
ond set of data was collected from real Xavier
runs. Goal locations and tasks were selected
by the general public through Xavier’s web page,
http://www.cs.cmu.edu/"Xavier. These data have
allowed us to validate the need for the algorithm in a
real environment, as well as to test the predictive ability
given substantial amounts of noise.

Over a period of five months, we collected 59 robot
execution traces. These traces were run between 9:30
and 19:00 and varied from 10 minutes to 82 minutes
in length. The majority of the traces were collected
between noon and 4pm.

ROGUE recorded 72,516 arc traversal events. Trees
were learned for 115 arcs from an average of 631 traver-
sal events per arc (min 38, max 1229). Data from
nine arcs was discarded because they had fewer than
25 traversal events.

Figure 7 shows the average learned costs for all the
arcs in the lobby on Wednesdays. Values differentiated
by other features were averaged?. Below the average
cost graph, a histogram shows how much training data
was collected for each time step during the day.

The lobby contains two food carts, several tables, and
is often full of people. The tables and chairs are ex-
tremely difficult for the robot’s sonars to detect, and
the people are (often malicious) moving obstacles. Dur-

?Note that since the robot operates in a less controlled
environment, many features may affect the cost of an arc.
In the exposition world, other features do not appear in the
trees.
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Figure 7: Costs for Wean Hall Lobby on Wednesdays. Graph
generated 31 October 1997. The histogram below the graph
indicates volume of training data, in terms of number of exe-
cution traces; most data was collected between 1pm and 6pm.

ing peak hours (coffee and lunch breaks), it is virtually
impossible for the robot to efficiently navigate through
the lobby.

ROGUE correctly identified lunch-time as a more ex-
pensive time to go through the lobby. The minimal
morning data was not significant enough to affect costs,
and so the system generalized, assuming that morning
costs were reflected in the earliest lunch-time costs. To
our surprise, the graph shows a slightly higher cost dur-
ing the late afternoon; investigation reveals that it re-
flects a period when afternoon classes have let out, and
students come to the area to study and have a snack.

These data show that ROGUE learns useful and effec-
tive information, even in an environment where many of
the default costs were tediously hand tuned by the pro-
grammers. The added flexibility of situation-dependent
rules to determine arc costs increases the overall relia-
bility and efficiency of the robot.

Learning for the Task Planner

In addition to improving routes, situation-dependent
learning can also apply to task planning. In the task
planner, ROGUE creates situation-dependent search
control rules that guide the planner towards better de-
cisions. It collects execution data to record the success
or failure of events for which it needs more informa-
tion. The learner then correlates situational features to
events to create PRODIGY4.0 search control rules.
Learning rules that govern the applicability of actions
and tasks will allow the task planner to select, reject
or delay tasks in the appropriate situation. Events, &,
useful for learning include missed deadlines and time-
outs (e.g. waiting at doors), while costs, C, can be
defined by task importance, effort expended (travel plus
wait time), and how much a deadline was missed by.
Features, F, remain the same as for the path planner.

Event Identification. The goal of learning control
knowledge for the planner is to have the system learn
when tasks can and cannot be easily achieved. Events,
&, for this planner are successes and failures related to
task achievement. For example, missing or meeting a



deadline, or acquiring or not acquiring an object. Care-
ful analysis of the domain model yields these learning
opportunities.

Although we could use a complex cost function C to
evaluate task events, we instead simplify the learning
task by assigning successes a cost of zero and failures a
cost of one.

The event is stored in an events matrix along with the
cost evaluation and the environmental features observed
when the event occurred. We include task-specific in-
formation, sonar values, high probability Markov states
along with the features listed in Table 3.

Learning. ROGUE uses the same regression tree anal-
ysis for the task planning data as it does for the path
planning data. The common learning framework shared
for different planners is one of the contributions of this
research.

Updating the Planner. Once the set of regression
trees have been created (one for each type of event),
they to be translated into PRODIGY4.0 search control
rules. ROGUE assigns select rules to situations with a
cost near zero, and reject rules to situations with a cost
near one. Prefer rules are used for more ambiguous sit-
uations. PRODIGY4.0 will then use these rules to guide
its decisions, selecting, rejecting and preferring goals
and actions as required.

Task Planner Experiments This experiment was
designed to test ROGUE’s ability to identify and use
high-level features to create situation-dependent control
rules. The goal was to have the system identify times
for which tasks could not be completed, and then create
goal selection rules of the form “reject task until...”

For training data, we generated two maps for the
simulator. Between 10:00 and 19:59, all doors in the
map were open. At other times, all doors were closed.
(When a door is closed the task is not completable be-
cause the human is not available.) We used a single
route: from the starting location of 5310, go to room
5312 then to room 5316. The user remained constant
and tasks were selected randomly from a uniform dis-
tribution.

Table 4 shows a sample tree learned for this domain.
The tree indicates that between 10:00 and 20:00, tasks
are more likely to succeed than at night (recall that CT

node), split, number of examples, deviance, value

1) root 856 186.70 0.6787
2) CT<35889.5 264 0.00 1.0000
3) CT>35889.5 592 147.30 0.5355
6) CT<71749 418 94.08 0.3421
12) CurrLoc<5314 211 0.00 0.0000
13) CurrLoc>5314 207 44.21 0.6908
7) CT>71749 174 0.00 1.0000

Table 4: A sample tree.

;3 ;Deviance is 0.0000 on value of 1.0000
(CONTROL-RULE auto-timeout-0
(if (and (real-candidate-goal <G>)
(current-time LT 35889)))
(then reject goal <G>))

;3 ;Deviance is 0.0000 on value of 0.0000
(CONTROL-RULE auto-timeout-1
(if (and (real-candidate-goal <G>)
(current-time GT 35889)
(current-time LT 71749)
(location <G> LT 5314.0000)))
(then select goal <G>))

;3 ;Deviance is 0.0000 on value of 1.0000
(CONTROL-RULE auto-timeout-3
(if (and (real-candidate-goal <G>)
(current-time GT 35889)
(current-time GT 71749)))
(then reject goal <G>))

;3 ;Deviance is 44.2099 on value of 0.6908
(CONTROL-RULE auto-timeout-2
(if (and (real-candidate-goal <G>)
(current-time GT 35889)
(current-time LT 71749)
(location <G> GT 5314.0000)
(real-candidate-goal <G2>)
(diff <G> <G2>)))
(then prefer goal <G2> <G>))

Table 5: Learned PRODIGY4.0 control rules for the tree in
Table 4.

is CurrentTime, in seconds since midnight). A control
rule is created at each leaf node; it corresponds to the
path from the root node to the leaf. Table 5 shows the
four control rules created for it.

PRODIGY4.0 uses the reject control rules (0 and 3) to
reject tasks before 09:58:09 and after 19:55:59. Rule 1 is
used to select tasks between those times involving rooms
“less than” 5314...namely room 5312. The prefer-
reject control rule (rule 2) is used to prefer tasks other
than those involving room 5316.

Additional experiments are presented elsewhere [5].
They demonstrate that, by learning search control rules
from execution experience, ROGUE helps the task plan-
ner predict and avoid failures when executing. In this
way, the overall system becomes more efficient and ef-
fective at accomplishing tasks.

The primary purpose of these experiments was to
validate the hypothesis that our general approach
for learning situation-dependent rules was planner-
independent. We have successfully demonstrated that
the basic mechanisms can be transferred, and are both
applicable and effective for two planners with very dif-
ferent data representations and task requirements.



Summary

In this paper, we have briefly outlined ROGUE, an inte-
grated planning, executing and learning robot agent.

We described the task planner, which can handle mul-
tiple, asynchronous requests from users, and creates
plans that require reasoning about task priority and
task compatibility.

We presented a robot with the ability to learn from
its own execution experience. We outlined our learning
approach, which extracts events, £, from the robot’s
execution traces, and evaluates them with a cost func-
tion, C. It uses regression trees to correlate the events
to environmental features, F, in a mapping F x &€ — C.

We demonstrated our planner-independent learning
framework in two planners, a path planner and a task
planner. ROGUE demonstrates the ability to learn
situation-dependent rules that allow the planners to pre-
dict and avoid failures at execution time. ROGUE pro-
vides the path planner information about which areas
of the world to avoid (or exploit), and the planner can
then find the most efficient path for each particular
situation. ROGUE provides the task planner informa-
tion about when tasks can or cannot be successfully
achieved, and the planner can then create plans with
greater likelihood of success.

Through our extensive experiments (simulated and
on the real robot), briefly outlined here, we have demon-
strated the effectiveness and utility of our learning ap-
proach.
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