
Planning, Execution and Learningin a Robotic AgentKaren Zita Haighkhaigh@cs.cmu.eduhttp://www.cs.cmu.edu/�khaigh Manuela M. Velosommv@cs.cmu.eduhttp://www.cs.cmu.edu/�mmvComputer Science DepartmentCarnegie Mellon UniversityPittsburgh PA 15213-3891AbstractThis paper presents the complete integrated planning,executing and learning robotic agent Rogue. We de-scribe Rogue's task planner that interleaves high-leveltask planning with real world robot execution. Itsupports multiple, asynchronous goals, suspends andinterrupts tasks, and monitors and compensates forfailure. We present a general approach for learningsituation-dependent rules from execution, which cor-relates environmental features with learning opportu-nities, thereby detecting patterns and allowing plan-ners to predict and avoid failures. We present twoimplementations of the general learning approach, inthe robot's path planner, and in the task planner.We present empirical data to show the e�ectiveness ofRogue's novel learning approach.IntroductionIn complex, dynamic domains, a robot's knowledgeabout the environment will rarely be complete and cor-rect. Since Shakey the robot [12], researchers have beentrying to build autonomous robots that are capable ofplanning and executing high-level tasks, as well as learn-ing from the analysis of execution experience.This paper presents our work extending the high-levelreasoning capabilities of a real robot in two ways:� by adding a high-level task planner that interleavesplanning with execution, and� by adding the ability to learn from real execution toimprove planning.We have developed Rogue [5; 6; 7] which forms thetask planning and learning modules for a real mobilerobot, Xavier (see Figure 1). One of the goals of theproject is to have the robot move autonomously in ano�ce building reliably performing o�ce tasks such aspicking up and delivering mail and computer printouts,picking up and returning library books, and carryingrecycling cans to the appropriate containers.Xavier is a mobile robot being developed at CarnegieMellon University [13; 18]. It is built on an RWI B24base and includes bump sensors, a laser range �nder,sonars, a color camera and a speech board. The soft-ware controlling Xavier includes both reactive and de-
Figure 1: Xavier the Robot.liberative behaviours. Much of the software can be clas-si�ed into �ve layers: Obstacle Avoidance, Navigation,Path Planning, Task Planning (provided by Rogue),and the User Interface. The underlying architecture isdescribed in more detail by Simmons et al. [18].Rogue provides a setup where users can post tasksfor which the planner generates appropriate plans, de-livers them to the robot, monitors their execution, andlearns from feedback about execution performance.Rogue's task planner is built upon the prodigy4.0planning and learning system [6; 23]. The task plannergenerates and executes plans for multiple interactinggoals which arrive asynchronously and whose task struc-ture is not known a priori. The task planner interleavestasks and reasons about task priority and task compat-ibility. Rogue interleaves planning and execution todetect successes or failures and responds to them. Thetask planner controls the execution of a real robot toaccomplish tasks in the real world. Rogue e�ectivelyenables the communication between Xavier, prodigy



Data

Execution Processing

Compilation Navigation

Learning

Monitoring

OGUER

User requests

Xavier

Task planning algorithm
(PRODIGY4.0)

Model of environment:
control knowledge

Model of environment:
arc costs

Path planning algorithm
(A*)

Path PlannerTask Planner Figure 2: Rogue architecture.and the user. The planning and execution capabilitiesof Rogue form the foundation for a complete, learning,autonomous agent.Rogue's planner-independent learning approachprocesses the robot's execution data with the goal ofimproving planning [5; 7]. It applies to two planners:Xavier's path planner, and the task planner. Roguelearns situation-dependent rules that a�ect the plan-ners' decisions. Our approach relies on direct exami-nation of the robot's execution traces to identify situa-tions in which the planner's behaviour needs to change.Rogue then correlates features of the domain with thelearning opportunities, and creates situation-dependentrules for the planners. The planners then use these rulesto select between alternatives to create better plans.Rogue's overall architecture is shown in Figure 2.Rogue exploits Xavier's reliable lower-level behaviours,including path planning, navigation, speech and vision.Rogue provides Xavier with a high-level task planningcomponent, as well as learning abilities that extractinformation from low-level execution data to improvehigher-level planning. The task planner receives taskrequests from users, and then determines good inter-leavings of multiple tasks. The path planner createspaths between locations which the navigation modulethen executes. Rogue processes the execution trace ofthe navigation module to extract learning opportuni-ties, and then feeds that information to the learning al-gorithm. Rogue then processes the resulting situation-dependent knowledge into rules for use by the planners.Task PlanningThe o�ce delivery domain involves multiple users andmultiple tasks. Rogue's task planner has the ability� to integrate asynchronous requests,� to prioritize goals,� to suspend and reactivate tasks,� to recognize compatible tasks and opportunisticallyachieve them,� to execute actions in the real world, integrating newknowledge which may help planning, and� to monitor and recover from failure.

The task planner is based on prodigy4.0 [23], adomain-independent nonlinear state-space planner thatuses means-ends analysis and backward chaining to rea-son about multiple goals and multiple alternative oper-ators to achieve the goals. It has been extended to sup-port real-world execution of its symbolic actions [20].Task requests arrive from users at any time. Rogueincorporates the information into prodigy4.0's statedescription, and then prodigy4.0 extends the currentplan to incorporate the new task.The planning cycle involves several decision points,including which goal to select from the set of pendinggoals, and which applicable action to execute. Dynamicgoal selection from the set of pending goals enables theplanner to interleave plans, exploiting common subgoalsand addressing issues of resource contention.Search control rules can reduce the number of choicesat each decision point by pruning the search space orsuggesting a course of action while expanding the plan.Rogue uses search control rules that reason about taskpriority and task compatibility. Rogue can suspendand reactivate lower-priority tasks, as well as recognizeopportunities for parallel execution. Rogue can thusinterleave the execution of multiple compatible tasks toimprove overall execution e�ciency.Rogue interleaves planning with execution. Eachtime prodigy4.0 generates an executable plan step,Rogue maps the action into a sequence of naviga-tion and other commands which are sent to the Xaviermodule designed to handle them. Rogue then moni-tors the outcome of the action to determine its successor failure. Rogue can detect execution failures, side-e�ects (including helpful ones), and opportunities. Forexample, it can prune alternative outcomes of a non-deterministic action, notice external events (e.g. doorsopening/closing), notice limited resources (e.g. batterylevel), and notice failures.For example, each time a navigation command is is-sued, the task planner monitors its outcome. Since thenavigation module may occasionally get confused andreport a success even in a failure situation, the plan-ner always veri�es the location with a secondary test(vision or human interaction). If Rogue detects thatthe robot is not at the correct goal location, it updatesprodigy4.0's state knowledge with the correct infor-mation, and forces replanning.Rogue controls the execution of a real robot to ac-complish tasks in the real world. The complete inter-leaved planning and execution cycle is shown in Ta-ble 1. The task planner is described in more detailelsewhere [6]. LearningLearning has been applied to robotics problems in a va-riety of manners. Common applications include maplearning and localization (e.g. [9; 10; 22]), or learningoperational parameters for better actuator control (e.g.[1; 2; 15]). Instead of improving low-level actuator con-



In Parallel:1. Rogue receives a task request from a user, and addsthe information to prodigy4.0's state.2. Rogue requests a plan from prodigy4.0.Sequential loop; terminate when all top-level goalsare satis�ed:(a) Using up-to-date state information, prodigy4.0generates a plan step, considering task priority,task compatibility and execution e�ciency.(b) Rogue translates and sends the planning step toXavier.(c) Rogue monitors execution and identi�es goalstatus; in case of failure, it modi�es prodigy4.0'sstate information.3. Rogue monitors the environment for exoge-nous events; when they occur, Rogue updatesprodigy4.0's state information.Table 1: The complete planning and execution cycle inRogue. Note that Steps 1 to 3 execute in parallel.trol, our work focusses at the planning stages of thesystem.A few other researchers have explored this area aswell, learning and correcting action models (e.g. [8;14]), or learning costs and applicability of actions (e.g.[11; 17; 21]). Our work falls into the latter category.In some situations, it is enough to learn that a par-ticular action has a certain average probability or cost.However, actions may have di�erent costs under di�er-ent conditions. Instead of learning a global description,we would rather that the system learn the pattern bywhich these situations can be identi�ed. We introducean approach to learn the correlation between featuresof the environment and the situations, thereby creatingsituation-dependent rules.We would like a path planner to learn, for example,that a particular corridor gets crowded and hard to nav-igate when classes let out. We would like a task plannerto learn, for example, that a particular secretary doesn'tarrive before 10am, and tasks involving him can not becompleted before then. We would like a multi-agentplanner to learn, for example, that one of its agents hasa weaker arm and can't pick up the heaviest packages.Once these problems have been identi�ed and corre-lated to features of the environment, the planner canthen predict and avoid them when similar conditionsoccur in the future.Our approach relies on examining the executiontraces of the robot to identify situations in which theplanner's behaviour needs to change. It requires thatthe robot executor de�nes the set of available situationfeatures, F , while the planner de�nes a set of relevantevents, E , and a cost function, C, for evaluating thoseevents.Events are learning opportunities in the environment

1. Create plan.2. Execute; record the execution trace and features F .3. Identify events E in the execution trace.4. Learn mapping: F � E ! C.5. Create rules to update each planner.Table 2: General process for learning situation-dependentrules.for which additional knowledge will cause the planner'sbehaviour to change. Features discriminate betweenthose events, thereby creating the required additionalknowledge. The cost function allows the learner to eval-uate the event. The learner creates a mapping from theexecution features and the events to the costs:F � E ! C:For each event " 2 E , in a given situation describedby features F , this learned mapping calculates a costc 2 C. We call this mapping a situation-dependent rule.Once the rule has been created, Rogue gives theinformation back to the planners so that they will avoidre-encountering the problem events. These steps aresummarized in Table 2. Learning occurs incrementallyand o�-line; each time a plan is executed, new data iscollected and added to previous data, and then all datais used for creating a new set of situation-dependentrules.We demonstrate our learning approach in two plan-ners: Xavier's path planner and Rogue's task plan-ner. While the details of extracting and evaluatingevents from execution are domain-speci�c, the generalapproach is planner- and domain- independent.Learning for the Path PlannerIn this section, we present the learning algorithm as itapplies to Xavier's path planner1, where our concernis to improve the reliability and e�ciency of selectedpaths. The path planner uses a modi�ed A* algorithmon a topological map that has additional metric infor-mation [4]. The map is a graph with nodes and arcsrepresenting rooms, corridors, doors and lobbies.Rogue demonstrates the ability to learn situation-dependent costs for the path planner's arcs. Learningappropriate arc-cost functions will allow the path plan-ner to avoid troublesome areas of the environment whenappropriate. Therefore we de�ne events, E , for thisplanner as arc traversals and costs, C, as travel time.Features, F , include both robot data and high-level fea-tures. Features are hand-picked by the designers, andare extracted from the robot, the environment, and thetask.Rogue extracts arc traversal events and environmen-tal features from the massive, continuous, probabilistic1More information about learning for the path plannercan be found elsewhere [7].



execution traces, and then evaluates the events accord-ing to the cost function. The learning algorithm thencreates the situation-dependent arc costs.The execution traces are provided by the robot's nav-igation module. Navigation is done using Partially Ob-servable Markov Decision Process models [19]. The ex-ecution trace includes observed features of the environ-ment as well as the probability distribution over theMarkov states at each time step.Event Identi�cation. Identifying the planner's arctraversal events from this execution trace is challeng-ing because they contain a massive, continuous streamof uncertain data. At no point in the robot's execu-tion does the robot know where it actually is. It main-tains a probability distribution, making it more robustto sensor and actuator errors, but making the learningproblem more complex because the training data is notguaranteed to be correct.The execution trace in particular does not containarc traversals. We therefore need to extract the tra-versed arc sequence from the Markov state distributionsof the navigation module. The �rst step in this pro-cess is to calculate likely sequences of Markov states.We use Viterbi's algorithm [16] to calculate the mostlikely transitions from state to state. Then, from highprobability states throughout the trace, we reconstructsequences that are likely to re
ect the robot's actualtrajectory. The second step of this process is to reverse-engineer the Markov state sequences to extract the se-quence of planner's arcs.Once the arc sequences have been identi�ed, Roguecalculates cost estimates for the arcs: C(" 2 E) = vt=l,where v is the desired velocity for traversing the arc, tis the actual time taken to traverse the arc, and l is thebelieved length of the arc.The data is stored in a matrix along with the costevaluation and the environmental features observedwhen the arc traversal event occurred (Table 3). Be-yond the list of features shown, we also record sonarvalues and the highest probability Markov states.The events matrix is grown incrementally; most re-cent data is appended at the bottom. By using in-cremental learning, Rogue can notice and respond tochanges on a continuous basis.Learning. We selected regression trees [3] as our learn-ing mechanism because they can handle continuous val-ues, and form disjunctive hypotheses. A regression treeis created for each event, in which features are splits andcosts are learned values. Splits are selected to max-imize the reduction in deviance of the node, and wethen prune the tree using 10-fold random cross valida-tion. The regression trees, one for each arc, are thenformatted into situation-dependent rules.Updating the Planner. The rules are then loadedinto an update module. Each time the path plannergenerates a path, it requests the new arc costs from theupdate module. These costs are generated by matching

ArcNo Weight CT Speed PA Goal Year MM DD DoW233 0.348354 38108 34.998 234 90 1997 06 30 1192 0.777130 37870 33.461 191 90 1997 06 30 1196 3.762347 37816 34.998 195 284 1997 06 30 1175 0.336681 37715 34.998 174 405 1997 06 30 1168 1.002090 60151 34.998 167 31 1997 07 07 1134 16.549173 61208 34.998 234 262 1997 07 09 3238 0.640905 54 34.998 130 379 1997 07 10 4165 1.472222 8805 34.998 164 379 1997 07 17 4196 5.823351 3983 34.608 126 253 1997 07 18 5194 1.878457 85430 34.998 193 262 1997 07 18 5Table 3: Events Matrix; each feature-value vector (row oftable) corresponds to an arc traversal event " 2 E. Weightis arc traversal weight, C("). The remaining columns containenvironmental features, F , valid at time of the traversal: CTis CurrentTime (seconds since midnight), Speed is velocity, incm/sec, PA is the previous arc traversed, Goal is the Markovstate at the goal location, Year, MM, DD, DoW is the dateand day-of-week of the traversal.the current situation against the learned rule for eacharc. Using its A* algorithm, the planner selects thepath with the best expected travel time, according tothe updated situation-dependent costs.Path Planner Experiments (Simulation) Webuilt a simulated world for testing the system in a con-trolled environment. Figure 3 shows the ExpositionWorld: an exposition of the variety one might seeat a conference. Rooms are numbered; corridors are la-belled for discussion purposes only. Figure 3 shows thesimulated world, complete with a set of obstacles. Thepath planner does not know about the obstacles; everyarc in the topological description has the same default
Figure 3: Exposition World. Simulator: operating environ-ment. Obstacles marked with dark boxes. The path plannerdoes not know about the obstacles.



(a) Arc 240 (b) Arc 244Figure 4: Learned trees for two of the arcs in corridor 3. Leaves show the cost of traversing the arc.cost of 1.0.The position of the obstacles in the simulated worldchanges according to the following schedule:� corridor 2 is always clear,� corridor 3 has obstacles on:{ EITHER Monday, Wednesday, or Friday between(midnight and 3am) and between (noon and 3pm),{ OR one of the other days between (1 and 2am) and(1 and 2pm),� corridor 8 always has obstacles,� remaining corridors have random obstacles (approxi-mately 10 per map).This set of environments allowed us to test whetherRogue would successfully learn:� permanent phenomena (corridors 2 and 8),� temporary phenomena (random obstacles), and� patterns in the environment (corridor 3).Over a period of 2 weeks, 651 execution traces werecollected. Almost 306,500 arc traversals were identi-�ed, creating an events matrix of 15.3 MB. The 17arcs with fewer than 25 traversal events were discardedas insigni�cant, leaving 100 arcs for which the systemlearned trees. (There are a total of 331 arcs in this en-vironment, of which 116 are doors, and 32 are in thelobby.) Rules were generated with as few as 25 events,and as many as 15,340 events, averaging 3060.Figure 4 shows two of the learned trees. Both arcsshown are from corridor 3. Both DayOfWeek andCT are prevalent in all the trees for that corridor.(CT is CurrentTime, in seconds since midnight.) InArc 244, for example, before 02:08:57, DayOfWeek isthe dominant feature. In Arc 240, between 02:57:36and 12:10:26, there is one 
at cost for the arc. After12:10:26 and before 15:00:48, DayOfWeek again deter-mines costs.Figure 5 shows the cost, averaged over all the arcs ineach corridor, as it changes throughout the day. Roguehas correctly identi�ed that corridor 3 is di�cult to tra-verse between midnight and 3am, and also noon and3pm. During the rest of the day it is close to default

0.0

0.5

1.0

C
or

ri
do

r 
C

os
t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 2 (Wednesday) (dev=0.10)(a) Corridor 2
0.0

0.5

1.0

1.5

2.0
C

or
ri

do
r 

C
os

t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 3 (Wednesday) (dev=0.10)(b) Corridor 3 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
or

ri
do

r 
C

os
t

0 3 6 8 11 14 17 19 22 25

Current Time

Costs for Corridor 8 (Wednesday) (dev=0.10)(c) Corridor 8Figure 5: Corridor cost (average over all arcs in that corridor)for Wednesdays.cost of 1.0. This graph shows that Rogue is capableof learning patterns in the environment. Corridor 8,meanwhile, is always well above the default value, whilecorridor 2 is slightly below default, demonstrating thatRogue can learn permanent phenomena.E�ect on Planner. Figure 6 illustrates the e�ectof learning on the path planner. The goal is to haveRogue learn to avoid expensive arcs (those with manyobstacles). Figure 6a shows the default path generatedby the planner. Figure 6b shows the path generated af-ter learning; note that the expensive arcs, marked withthick segments, have been avoided.In general, paths generated using the learned costsare 20% faster than default paths evaluated with thelearned costs.The data we have illustrated here demonstratesthat Rogue successfully learns situation-dependent arccosts. It correctly processes the execution traces toidentify situation features and arc traversal events. Itthen creates an appropriate mapping between the fea-



(a) Default Path (b) New PathFigure 6: (a) Default path (when all corridor arcs have defaultvalue). (b) New path (when corridor arcs have been learned) onWednesday 01:05am; note that the expensive arcs have beenavoided (arcs with cost > 2.50 are denoted by very thick lines).tures and events to arc traversal weights. The plannerthen correctly predicts the expensive arcs and createsplans that avoid di�cult areas of the environment.Path Planner Experiments (Robot) The sec-ond set of data was collected from real Xavierruns. Goal locations and tasks were selectedby the general public through Xavier's web page,http://www.cs.cmu.edu/~Xavier. These data haveallowed us to validate the need for the algorithm in areal environment, as well as to test the predictive abilitygiven substantial amounts of noise.Over a period of �ve months, we collected 59 robotexecution traces. These traces were run between 9:30and 19:00 and varied from 10 minutes to 82 minutesin length. The majority of the traces were collectedbetween noon and 4pm.Rogue recorded 72,516 arc traversal events. Treeswere learned for 115 arcs from an average of 631 traver-sal events per arc (min 38, max 1229). Data fromnine arcs was discarded because they had fewer than25 traversal events.Figure 7 shows the average learned costs for all thearcs in the lobby on Wednesdays. Values di�erentiatedby other features were averaged2. Below the averagecost graph, a histogram shows how much training datawas collected for each time step during the day.The lobby contains two food carts, several tables, andis often full of people. The tables and chairs are ex-tremely di�cult for the robot's sonars to detect, andthe people are (often malicious) moving obstacles. Dur-2Note that since the robot operates in a less controlledenvironment, many features may a�ect the cost of an arc.In the exposition world, other features do not appear in thetrees.

0.0

2.0

A
rc

 C
os

t

10 11 12 13 14 15 16 17 18 19 20

Current Time, 24 hour clock

15

10

5

0Figure 7: Costs for Wean Hall Lobby on Wednesdays. Graphgenerated 31 October 1997. The histogram below the graphindicates volume of training data, in terms of number of exe-cution traces; most data was collected between 1pm and 6pm.ing peak hours (co�ee and lunch breaks), it is virtuallyimpossible for the robot to e�ciently navigate throughthe lobby.Rogue correctly identi�ed lunch-time as a more ex-pensive time to go through the lobby. The minimalmorning data was not signi�cant enough to a�ect costs,and so the system generalized, assuming that morningcosts were re
ected in the earliest lunch-time costs. Toour surprise, the graph shows a slightly higher cost dur-ing the late afternoon; investigation reveals that it re-
ects a period when afternoon classes have let out, andstudents come to the area to study and have a snack.These data show that Rogue learns useful and e�ec-tive information, even in an environment where many ofthe default costs were tediously hand tuned by the pro-grammers. The added 
exibility of situation-dependentrules to determine arc costs increases the overall relia-bility and e�ciency of the robot.Learning for the Task PlannerIn addition to improving routes, situation-dependentlearning can also apply to task planning. In the taskplanner, Rogue creates situation-dependent searchcontrol rules that guide the planner towards better de-cisions. It collects execution data to record the successor failure of events for which it needs more informa-tion. The learner then correlates situational features toevents to create prodigy4.0 search control rules.Learning rules that govern the applicability of actionsand tasks will allow the task planner to select, rejector delay tasks in the appropriate situation. Events, E ,useful for learning include missed deadlines and time-outs (e.g. waiting at doors), while costs, C, can bede�ned by task importance, e�ort expended (travel pluswait time), and how much a deadline was missed by.Features, F , remain the same as for the path planner.Event Identi�cation. The goal of learning controlknowledge for the planner is to have the system learnwhen tasks can and cannot be easily achieved. Events,E , for this planner are successes and failures related totask achievement. For example, missing or meeting a



deadline, or acquiring or not acquiring an object. Care-ful analysis of the domain model yields these learningopportunities.Although we could use a complex cost function C toevaluate task events, we instead simplify the learningtask by assigning successes a cost of zero and failures acost of one.The event is stored in an events matrix along with thecost evaluation and the environmental features observedwhen the event occurred. We include task-speci�c in-formation, sonar values, high probability Markov statesalong with the features listed in Table 3.Learning. Rogue uses the same regression tree anal-ysis for the task planning data as it does for the pathplanning data. The common learning framework sharedfor di�erent planners is one of the contributions of thisresearch.Updating the Planner. Once the set of regressiontrees have been created (one for each type of event),they to be translated into prodigy4.0 search controlrules. Rogue assigns select rules to situations with acost near zero, and reject rules to situations with a costnear one. Prefer rules are used for more ambiguous sit-uations. prodigy4.0 will then use these rules to guideits decisions, selecting, rejecting and preferring goalsand actions as required.Task Planner Experiments This experiment wasdesigned to test Rogue's ability to identify and usehigh-level features to create situation-dependent controlrules. The goal was to have the system identify timesfor which tasks could not be completed, and then creategoal selection rules of the form \reject task until: : :"For training data, we generated two maps for thesimulator. Between 10:00 and 19:59, all doors in themap were open. At other times, all doors were closed.(When a door is closed the task is not completable be-cause the human is not available.) We used a singleroute: from the starting location of 5310, go to room5312 then to room 5316. The user remained constantand tasks were selected randomly from a uniform dis-tribution.Table 4 shows a sample tree learned for this domain.The tree indicates that between 10:00 and 20:00, tasksare more likely to succeed than at night (recall that CTnode), split, number of examples, deviance, value1) root 856 186.70 0.67872) CT<35889.5 264 0.00 1.00003) CT>35889.5 592 147.30 0.53556) CT<71749 418 94.08 0.342112) CurrLoc<5314 211 0.00 0.000013) CurrLoc>5314 207 44.21 0.69087) CT>71749 174 0.00 1.0000Table 4: A sample tree.

;;;Deviance is 0.0000 on value of 1.0000(CONTROL-RULE auto-timeout-0(if (and (real-candidate-goal <G>)(current-time LT 35889)))(then reject goal <G>));;;Deviance is 0.0000 on value of 0.0000(CONTROL-RULE auto-timeout-1(if (and (real-candidate-goal <G>)(current-time GT 35889)(current-time LT 71749)(location <G> LT 5314.0000)))(then select goal <G>));;;Deviance is 0.0000 on value of 1.0000(CONTROL-RULE auto-timeout-3(if (and (real-candidate-goal <G>)(current-time GT 35889)(current-time GT 71749)))(then reject goal <G>));;;Deviance is 44.2099 on value of 0.6908(CONTROL-RULE auto-timeout-2(if (and (real-candidate-goal <G>)(current-time GT 35889)(current-time LT 71749)(location <G> GT 5314.0000)(real-candidate-goal <G2>)(diff <G> <G2>)))(then prefer goal <G2> <G>))Table 5: Learned prodigy4.0 control rules for the tree inTable 4.is CurrentTime, in seconds since midnight). A controlrule is created at each leaf node; it corresponds to thepath from the root node to the leaf. Table 5 shows thefour control rules created for it.prodigy4.0 uses the reject control rules (0 and 3) toreject tasks before 09:58:09 and after 19:55:59. Rule 1 isused to select tasks between those times involving rooms\less than" 5314: : :namely room 5312. The prefer-reject control rule (rule 2) is used to prefer tasks otherthan those involving room 5316.Additional experiments are presented elsewhere [5].They demonstrate that, by learning search control rulesfrom execution experience, Rogue helps the task plan-ner predict and avoid failures when executing. In thisway, the overall system becomes more e�cient and ef-fective at accomplishing tasks.The primary purpose of these experiments was tovalidate the hypothesis that our general approachfor learning situation-dependent rules was planner-independent. We have successfully demonstrated thatthe basic mechanisms can be transferred, and are bothapplicable and e�ective for two planners with very dif-ferent data representations and task requirements.



SummaryIn this paper, we have brie
y outlined Rogue, an inte-grated planning, executing and learning robot agent.We described the task planner, which can handle mul-tiple, asynchronous requests from users, and createsplans that require reasoning about task priority andtask compatibility.We presented a robot with the ability to learn fromits own execution experience. We outlined our learningapproach, which extracts events, E , from the robot'sexecution traces, and evaluates them with a cost func-tion, C. It uses regression trees to correlate the eventsto environmental features, F , in a mapping F �E ! C.We demonstrated our planner-independent learningframework in two planners, a path planner and a taskplanner. Rogue demonstrates the ability to learnsituation-dependent rules that allow the planners to pre-dict and avoid failures at execution time. Rogue pro-vides the path planner information about which areasof the world to avoid (or exploit), and the planner canthen �nd the most e�cient path for each particularsituation. Rogue provides the task planner informa-tion about when tasks can or cannot be successfullyachieved, and the planner can then create plans withgreater likelihood of success.Through our extensive experiments (simulated andon the real robot), brie
y outlined here, we have demon-strated the e�ectiveness and utility of our learning ap-proach. References[1] Baroglio, C., Giordana, A., Kaiser, M., Nuttin, M.,and Piola, R. Learning controllers for industrial robots.Machine Learning, 23:221{249, 1996.[2] Bennett, S. W. and DeJong, G. F. Real-world robotics:Learning to plan for robust execution. Machine Learn-ing, 23:121{161, 1996.[3] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,C. J. Classi�cation and Regression Trees. (Paci�cGrove, CA: Wadsworth & Brooks/Cole), 1984.[4] Goodwin, R. Meta-Level Control for Decision-Theoretic Planners. PhD thesis, School of ComputerScience, Carnegie Mellon University, Pittsburgh, PA,1996.[5] Haigh, K. Z. Learning Situation-Dependent PlanningKnowledge from Uncertain Robot Execution Data. PhDthesis, Computer Science Department, Carnegie MellonUniversity, Pittsburgh, PA, 1998.[6] Haigh, K. Z. and Veloso, M. M. Interleaving planningand robot execution for asynchronous user requests.Autonomous Robots, 1997. In press.[7] Haigh, K. Z. and Veloso, M. M. Learning situation-dependent costs: Improving planning from probabilis-tic robot execution. In Proceedings of the Second In-ternational Conference on Autonomous Agents, 1998.(Menlo Park, CA: AAAI Press). In Press.[8] Klingspor, V., Morik, K. J., and Rieger, A. D. Learningconcepts from sensor data of a mobile robot. MachineLearning, 23:305{332, 1996.

[9] Koenig, S. and Simmons, R. G. Passive distancelearning for robot navigation. In Machine Learning:Proceedings of the Thirteenth International Conference(ICML96), pages 266{274, 1996. (San Mateo, CA: Mor-gan Kaufmann).[10] Kortenkamp, D. and Weymouth, T. Topological map-ping for mobile robots using a combination of sonar andvision sensing. In Proceedings of the Twelfth NationalConference on Arti�cial Intelligence (AAAI-94), pages979{984, 1994. (Menlo Park, CA: AAAI Press).[11] Lindner, J., Murphy, R. R., and Nitz, E. Learning theexpected utility of sensors and algorithms. In IEEE In-ternational Conference on Multisensor Fusion and In-tegration for Intelligent Systems, pages 583{590. (NewYork, NY: IEEE Press), 1994.[12] Nilsson, N. J. Shakey the robot. Technical Report 323,AI Center, SRI International, Menlo Park, CA, 1984.[13] O'Sullivan, J., Haigh, K. Z., and Armstrong, G. D.Xavier. Carnegie Mellon University, Pittsburgh, PA,April 1997. Manual, Version 0.3, unpublished inter-nal report. Available via http://www.cs.cmu.edu/-�Xavier/.[14] Pearson, D. J. Learning Procedural Planning Knowl-edge in Complex Environments. PhD thesis, Depart-ment of Electrical Engineering and Computer Science,University of Michigan, Ann Arbor, MI, 1996.[15] Pomerleau, D. A. Neural network perception for mo-bile robot guidance. (Dordrecht, Netherlands: KluwerAcademic), 1993.[16] Rabiner, L. R. and Juang, B. H. An introduction tohidden Markov models. IEEE ASSP Magazine, 6(3):4{16, January 1986.[17] Shen, W.-M. Autonomous Learning from the Environ-ment. (New York, NY: Computer Science Press), 1994.[18] Simmons, R., Goodwin, R., Haigh, K. Z., Koenig, S.,and O'Sullivan, J. A layered architecture for o�cedelivery robots. In Proceedings of the First Interna-tional Conference on Autonomous Agents, pages 245{252, 1997. (New York, NY: ACM Press).[19] Simmons, R. and Koenig, S. Probabilistic robot naviga-tion in partially observable environments. In Proceed-ings of the Fourteenth International Joint Conferenceon Arti�cial Intelligence (IJCAI-95), pages 1080{1087,1995. (San Mateo, CA: Morgan Kaufmann).[20] Stone, P. and Veloso, M. M. User-guided interleaving ofplanning and execution. In New Directions in AI Plan-ning, pages 103{112. (Amsterdam, Netherlands: IOSPress), 1996.[21] Tan, M. Cost-sensitive robot learning. PhD thesis,School of Computer Science, Carnegie Mellon Univer-sity, Pittsburgh, PA, 1991.[22] Thrun, S. A Bayesian approach to landmark discoveryin mobile robot navigation. Technical Report CMU-CS-96-122, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, PA, 1996.[23] Veloso, M. M., Carbonell, J., P�erez, M. A., Borrajo,D., Fink, E., and Blythe, J. Integrating planning andlearning: The prodigy architecture. Journal of Exper-imental and Theoretical Arti�cial Intelligence, 7(1):81{120, January 1995.


