OBDD-based Deterministic Planning using the UMOP Planning
Framework

Rune M. Jensen and Manuela M. Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{runej,mmv}@cs.cmu.edu

Abstract

Model checking representation and search techniques
were recently shown to be efficiently applicable to
planning. Ordered Binary Decision Diagrams (0BDDs)
encode a planning domain as a finite transition system
and fast algorithms from model checking search for a
solution plan. With proper encodings, OBDDs can ef-
fectively scale and can provide plans for complex plan-
ning domains. In this paper, we present results ob-
tained in classical deterministic domains using UMoP,*
a new universal OBDD-based planning framework ap-
plicable to non-deterministic and multi-agent domains
(Jensen & Veloso, 1999). A key difference between
UMOP and previous OBDD-based planning systems is
that the 0BDD encoding of planning problems is par-
titioned. This representation is known from model
checking to scale up the problem size that can be han-
dled (Ranjan et al., 1995). Experimental results from
the sTRIPS track of the AIPS’98 planning competition
show that this is also the case for 0BDD-based plan-
ning. The results further indicate that umMoOP is an
efficient deterministic planning system.

Introduction

Traditional planning algorithms can be classified ac-
cording to their search space representation as either
state-space, plan-space, or hierarchical task network
planners, as surveyed by Weld (1994).

A new research trend has been to develop new en-
codings of planning problems in order to adopt ef-
ficient algorithms from other research areas, lead-
ing to significant developments in planning algorithms
(Weld, 1999). This class of planning algorithms in-
cludes GRAPHPLAN (Blum & Furst, 1995), which uses
a flow-graph encoding to constrain the search and sAT-
PLAN (Kautz & Selman, 1996), which encodes the plan-
ning problem as a satisfiability problem and uses fast
model satisfaction algorithms to find a solution.

Ordered Binary Decision Diagrams (0BDDs, Bryant,
1986) have been used to encode the transition relation
of planning domains. The encoding originates in model

!Umor stands for Universal Multi-agent OBDD-based
Planner.

checking (McMillan, 1993), where efficient techniques
have been developed for search in 0BDD-based transi-
tion systems (Burch et al., 1991). Fast planning algo-
rithms based on these techniques have been developed
for domains ranging from single-agent and determin-
istic with no environment model to multi-agent and
non-deterministic with an explicit environment model

(Cimatti et al., 1998; Jensen & Veloso, 1999).

OBDD-based planning is a promising approach for
clagsical deterministic planning. In this paper we
present results obtained with our 0BDD-based planning
framework, uMoP (UMoP stands for Universal Multi-
agent OBDD-based Planner), in deterministic domains.

Compared to a previous OBDD-based planning sys-
tems for deterministic domains (Di Manzo et al., 1998;
Edelkamp & Reffel, 1999) the logical expression of the
frame relation can be split into conjunctive partitions.
This allows UMOP to use a partitioned transition re-
lation encoding of planning domains, which is known
from model checking to scale up the problem size that
can be handled (Ranjan et al., 1995). Using a simple
backward chaining algorithm we demonstrate that this
is also the case for 0BDD-based planning and show that
UMOP is an efficient deterministic planning system.

In order to explain the OBDD encoding used by
uMoP, we briefly describe its front end language
NADL.? NADL is a description language for multi-
agent planning domains allowing non-deterministic ac-
tions. In this paper, though, only classical determinis-
tic single-agent domains are modeled.

The paper is organized as follows. First, we give
a brief overview of oBDDs which may be skipped by
readers already familiar with the subject. Second, the
non-deterministic planning language, NADL , and its
0BDD encoding is described. Third, we introduce the
backward chaining algorithm used by uMopP for deter-
ministic domains, and finally we present empirical re-
sults from the AIPS’98 planning competition domains
and draw conclusion.

2NADL stands for Non-deterministic Agent Domain
Language.

Introduction to OBDDs

An Ordered Binary Decision Diagram (Bryant, 1986)
is a canonical representation of a boolean function with
n linear ordered arguments 1, za, ..., &y.

An 0BDD is a rooted, directed acyclic graph with one
or two terminal nodes labeled 1 or 0, and a set of vari-
able nodes u of out-degree two. The two outgoing edges
are given by the functions high(u) and low(u) (drawn
as solid and dotted arrows). Each variable node is as-
sociated with a propositional variable in the boolean
function the 0BDD represents. The graph is ordered
in the sense that all paths in the graph respect the
ordering of the variables.

An oBDD representing the function f(zq,z2) = 21 A
z3 is shown in Figure 1 (left). Given an assignment of
the arguments 2, and 5, the value of f is determined
by a path starting at the root node and iteratively
following the high edge, if the associated variable is
true, and the low edge, if the associated variable is
false. The value of f is True if the label of the reached
terminal node is 1; otherwise it is False.

7

\‘1

0

(@ (b)

Figure 1: An OBDD representing the function
f(z1,22) = 1 Az, True and false edges are drawn
solid and dotted, respectively. (a) and (b) Reductions
of 0BDDs.

An 0BBD graph is reduced so that no two distinct
nodes u and v have the same variable name and low
and high successors (Figure 1(a)), and no variable node
u has identical low and high successors (Figure 1(b)).

The 0BDD representation has two major advantages:
First, most commonly encountered functions have a
reasonable representation (Bryant, 1986). Second, any
operation on two OBDDs, corresponding to a boolean
operation on the functions they represent, has a low
complexity bounded by the product of their node
counts.

In oBDD-based planning OBDDs are used to repre-
sent the transition relation semantics of the planning
domain. This 0BDD representation of finite state tran-
sition systems origins from model checking (McMillan,
1993).

NADL

In this section, we first discuss the properties of
NADL based on an informal definition of the language.
We then describe its formal syntax and semantics.

An NADL domain description consists of: a defini-
tion of state variables, a description of system and en-
vironment agents, and a specification of an initial and
goal conditions.

The set of state variable assignments defines the
state space of the domain. An agent’s description is
a set of actions. The agents change the state of the
world by performing actions, which are assumed to be
executed synchronously and to have a fixed and equal
duration. At each step, all of the agents perform ex-
actly one action, and the resulting action tuple is a
joint action. The system agents model the behavior of
the agents controllable by the planner, while the en-
vironment agents model the uncontrollable world. A
valid domain description requires that the system and
environment agents constrain a disjoint set of variables.

An action has three parts: a set of state variables, a
precondition formula, and an effect formula. Intuitively
the action takes responsibility of constraining the val-
ues of the set of state variables in the next state. It
further has exclusive access to these variables during
execution.

Syntax

Formally, an NADL description is a T7-tuple D =
(SV,S E, Act,d, I,), where:

e SV finite set of propositional and numerical state
variables.

e S is a finite, nonempty set of system agents.
e F is a finite set of environment agents.

e Act is a set of action descriptions (c, p, €) where ¢ is
the state variables constrained by the action, p is a
precondition state formula in the set SForm and e is
an effect formula in the set Form. The sets SForm
and Form are defined below.

o d: Agt — 24°! is a function mapping agents (Agt =
S U E) to their actions.

e [€ SForm is the initial condition.
o G € SForm is the goal condition.

The set of formulas Form are arithmetic and boolean
expressions on state variables of the current and next
state. SForm C Form is a subset of the formulas only
referring to current state variables. These formulas are
called state formulas.

OBDD Representation of
NADL Descriptions

The formal semantics of a domain description D =
(SV,S,E, Act,d, I,) is given in terms of an NFA M:
Definition 1 (NFA)

A Non-deterministic Finite Automaton is a 3-tuple,
M = (Q,X,0), where Q is a set of states, ¥ is a set
of input values and 6 : Q x ¥ — 29 is a next state
function.

The states @@ of M equals the set of all possible variable
assignments. The input X of M is the set of joint
actions of system agents. In order to define the next
state function § we express it as a transition relation
T(s,i,s") = (s’ € 6(s,7)) and represent it by an 0BDD

T.

To construct T we must define a set of boolean vari-
ables to represent the current state s, the joint ac-
tion input 7 and the next state s’. Joint action inputs
are represented in the following way: assume action a
is identified by a number p and can be performed by
agent . a is then defined to be the action of agent «,
if the number expressed in binary by a set of boolean
variables A, used to represent the actions of «, is
equal to p. Propositional state variables of the current
state s and next state s’ are represented by a single
boolean variable, while numerical state variables are
represented in binary by a set of boolean variables.

Let A., to A€|E| and A;, to A5|s| denote sets of
boolean variables used to represent the joint action of
environment and system agents. Further, let :L"U“j and

Ilﬁj denote the k’th boolean variable used to represent
state variable v; € SV in the current and next state.
The ordering of the boolean variables, we use, puts
the input variables first followed by an interleaving of
the boolean variables of current state and next state
variables:

A€1'<""<A€|E|'<A51'<""<A5|s|

ol .“1 L1 ma
=Ty, 2T, <=y, LT,

1
<z,

My AMn
=Ty, =T,

il
=<z, <
where m; 1s the number of boolean variables used to
represent state variable v; and n is equal to |SV|. An
OBDD representing a logical expression is built in the
standard way. Arithmetic expressions are represented
as lists of OBDDs where each 0BDD express the value
of a digit in the corresponding binary number. They
collapse to single 0BDDs when related by arithmetic
relations.

T is a conjunction of three relations A, F and I. We
first build a transition relation with the joint actions
of both system and environment agents as input and
then reduces it to a transition relation with only joint
actions of system agents as input.

A defines the constraints on the current state_and
next state of joint actions. In order to build A we
need to refer to the values of the boolean variables
representing the actions. Let i(a) be the function that
maps an agent « to the value of the boolean variables
representing its action and let b(a) be the identifier
value of action a. Further let P(a) and E(a) denote
0BDD representations of the precondition and effect

formula of an action a. A is then given by:

A= A (i(a) = b(a) = P(a) A E(a))

Note that logical operators denote the corresponding
OBDD operators in the above formula . A also ensures
that actions with inconsistent effects cannot be per-
formed concurrently, as A reduces to false if any pair
of actions in a joint action have inconsistent effects.
Thus, A also states the first rule for avoiding interfer-
ence between concurrent actions.

F is a frame relation ensuring that unconstrained
variables maintain their value:

Fe A (CA (@) =ba) = v ¢ @) = 5, =),
veSV = Agt
a € d(a)

where ¢(a) is the set of constrained variables of action
a and s, = s/, expresses that all current and next state
boolean variables representing v are pairwise equal.
The expression v ¢ c(a) evaluates to True or Fualse
and is represented by the oBDD for True or False.

I ensures that concurrent actions constrain a non
overlapping set of variables and thus states the sec-
ond rule for avoiding interference between concurrent
actions:

= A
(al,ag) € SZ
(a1, a2) € c(ay, az)

A (i(ar) = b(ar) = i(az) # b(as)),
(al, 012) € E?
(a1, az2) € ¢(a,)

where ¢(ay, a2) = {(a1,a2)| (a1, a2) € d(a1) x d(az) A
c(ar) Ne(aq) # 0}.

Finally the 0BDD representing the transition relation
T is the conjunction of A, F and I with action variables
of the environment agents existentially quantified:

T=3A., - Ac, ANFAT

) e|E|

(i(al) = b(ay) = i(as) # b(aQ)) A

Partitioning the transition relation

The algorithm we use for generating plans consist of
a backward search from the states satisfying the goal
condition to the states satisfying the initial condition.
Empirical studies in model checking have shown that
the most complex operation for this kind of algorithms
normally is to find the preimage of a set of visited states
V (Ranjan et al., 1995).

Definition 2 (Preimage) Given an NFA M =
(Q,X,0) and a set of states V C Q, the preimage of V
is the set of states {s|s € Q NFi € X,s' €d(s,i).5' €
V}.

Note that states already belonging to V' can also be
a part of the preimage of V. Assume that the set of
visited states are represented by an OBDD expression V/
on next state variables and that we for iteration pur-
poses, want to generate the preimage P also expressed
in next state variables. An efficient way to calculate
the preimage is to use a partitioned representation of
the transition relation (T =Ty A A Tn) combined
with early quantification (Burch et al., 1991):

U = (3%, .T,A---ANEZ . TLAV) -)[F/T)

P = 3.0

where Z, Z; and :i"g denote input, current state and next
state variables of partition j, and [#;/&}] denotes the
substitution of current state variables with next state
variables of partition j. 7} can refer to all variables,
T, can refer to all variables except z, Ty can refer to
all variables except #} and #% and so on.

The set expressed by U consists of state input pairs
(s, 1), for which the state s belongs to the preimage of
V and the input ¢ may cause a transition from s to a
state in V.

The input of an NFA representing a planning domain
is actions. Thus, for a planning domain the elements
in U are state-action pairs. The deterministic plan-
ning algorithm presented in the next section generates
a plan from these state-action pairs.

NADL has been carefully designed to allow a par-
titioned transition relation representation. Thus, the
relations A, F' and [all consist of a conjunction of
subexpressions that for most planning problems only
refer to a small subset of next state variables.

The Deterministic Planning Algorithm

To translate a classical deterministic STRIPS domain
(Fikes & Nilsson, 1971) to an NADL description all the
actions in the STRIPS domain are defined to be the ac-
tions of a single system agent. Since only one system
agent is defined no concurrent actions exist. Further,
since no environment agents exist and the actions of
the system agent are deterministic the transition sys-
tem describing the planning domain is deterministic.

The deterministic planning algorithm is derived from
an OBDD-based universal planning algorithm devel-
oped by Cimattiet al. (1998). The algorithm first gen-
erates a set of state-action pairs relevant for reaching
a goal state. This set is produced by an iteration of
preimage calculations starting at the set of goal states
and ending when the initial state is covered. This back-
ward search is illustrated in Figure 2. Next, a sequen-
tial plan is generated from the set of state-action pairs
by starting at the initial state and iteratively adding
an action from the state-action set until a goal state is
reached. The plan steps of the plan extracted for the
example illustrated in Figure 2 is indicated by thick
arrows.

Figure 2: Generation of state-action pairs by a back-
ward iteration of preimage calculations starting at the
set of goal states. Arrows denote state-action pairs.
Thick arrows are plan steps in the final plan. Solid
ellipses denote preimages.

All operations in the planning algorithm are carried
out on 0BDDs. Thus large sets of states and state-
action pairs can be represented and efficiently manip-
ulated. The planning algorithm is shown below:

procedure DeterministicPlanning(nit, Goal)
VisitedStates := Goal
StateActions := 0
while (Init ¢ VisitedStates)
Preimage := Preimage(VisitedStates)
PrunedPreimage := Prune(State Actions, VisitedStates)
if PrunedPreimage # (0 then
StateActions := StateActions U PrunedStateActions
VisitedStates := VisitedStates
U StatesOf(PrunedPreimage)
else
return “No plan exists”
return ExtractPlan(StateActions)

Figure 3: The deterministic planning algorithm. The
Prune function removes states from the preimage that
are already visited. The EztractPlan function finds the
sequence of plan steps in the final plan by starting in
the initial state and adding state-action pairs until a
goal state is reached.

Empirical Results

In the following three subsections we present results
obtained in three of the AIPS’98 planning competi-
tion domains.? NADL descriptions of the domains are
posted at http://www.cs.cmu.edu/ runej.

Five planning systems BLACKBOX, IPP, STAN, HSP and
SGP participated in the competition. Only the first four of
these planners competed in the three examined domains.
BLACKBOX is based on SATPLAN, while 1PP and STAN are

SAll experiments were carried out on a 450 MHz Pen-

tium PC with 1 GB RAM running Red Hat Linux 4.2.

graphplan-based planners. HSP uses a heuristic search
approach based on a preprocessing of the domain. The
AIPS’98 planners were run on 233/400 MHz* Pentium PCs
with 128 MB RAM equipped with Linux.

The Gripper Domain

The gripper domain consists of two rooms A and B, a robot
with a left and right gripper and a number of balls that can
be moved by the robot. The task is to move all the balls
from room A to room B, with the robot initially in room
A. The state variables of the NADL encoding of the do-
main are the position of the robot and the position of the
balls. The position of the robot is either 0 (room A) or 1
(room B), while the position of a ball can be 0 (room A),
1 (room B), 2 (in left gripper) or 3 (in right gripper). For
the AIPS’98 gripper problems the number of plan steps in
an optimal plan grows linearly with the problem number.
Problem 1 contains 4 balls, and the number of balls grows
by two for each problem. The result of the experiment is
shown in Figure 4 together with the results of the planners
in the AIPS’98 competition. UMOP generates minimum-

10000 f T T T T T T T T T
| ol
1000 F ;
100 |
0
o ;
[h
0 I e e
; 10 | « //
IS L T .
[= L&
i UMOP Part, —<—
1F @/ 7 UMOP Mono. -+-+
! STAN -8--
HSP -
I IPP &
0.1 BLACKBOX -%--J
0.01 L 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Problem Number

Figure 4: Execution time for UMoP and the AIPS’98
competition planners for the gripper domain problems.
Umor Part. and uMoOP Mono. show the execution
time for UMOP using a partitioned and a monolithic
transition relation respectively. 1 to 5 partitions were
used.

length plans due to its parallel breadth first search algo-
rithm. As depicted in Figure 4, it avoids the exponential
growth of the execution time that characterizes all of the
competition planners except HSP. When using a partitioned
transition relation UMOP is the only planner capable of gen-
erating minimum-length plans for all the problems. For
this domain the transition relation of an NADL description

*Unfortunately no exact record has been kept on the
machines and there is some disagreement about their clock
frequency. According to Drew McDermott, who chaired the
competition, they were 233 MHz Pentiums, but Derek Long
(STAN) believes, they were at least 400 MHz Pentiums, as
STAN performed worse on a 300 MHz Pentium than in the
competition.

can be divided into n + 1 basic partitions, where n is the
number of balls. The optimal number of partitions is not
necessarily the largest number of partitions. For the re-
sults in Figure 4 each partition equaled a conjunction of
10 basic partitions. Compared to the monolithic transition
relation representation the results obtained with the par-
titioned transition relation was significantly better on the
larger problems. The memory usage for problem 20 with
a partitioned transition relation was 87 MB, while it, for
the monolithic transition relation, exceeded the limit of 128
MB at problem 17.

The Movie Domain

In the movie domain the task is to get chips, dip, pop,
cheese and crackers, rewind a movie and set the counter to
zero. The only interference between the subgoals is that
the movie must be rewound, before the counter can be set
to zero. The problems in the movie domain only differs by
the number of objects of each type of food. The number
of objects increases linearly from 5 for problem 1 to 34 for
problem 30.

Problem umop stan hsp ipp blackbox
1 14 19 | 2121 10 11
2 12 18 | 2104 10 12
3 14 19 | 2144 10 14
4 4 20 | 2188 10 16
5 14 21 | 2208 10 18
6 16 22 | 2617 10 20
7 14 22 | 2316 20 22
8 12 23 | 2315 20 24
9 14 25 | 2357 - 26
10 14 26 | 2511 10 29
11 14 27 | 2427 30 30
12 4 28 | 2456 30 32
13 16 29 | 3070 20 36
14 14 31 | 2573 30 35
15 16 32 | 2577 30 38
16 14 34 | 2699 10 39
17 16 35 | 2645 30 41
18 14 37 | 2686 10 43
19 16 39 | 2727 30 45
20 12 40 | 2787 20 47
21 16 42 | 2834 20 49
22 14 45 | 2834 20 51
23 16 48 | 2866 20 53
24 14 50 | 3341 20 55
25 16 52 | 2997 30 57
26 16 54 | 3013 40 58
27 16 57 | 3253 50 60
28 4 62 | 3049 40 63
29 18 64 | 3384 50 64
30 16 67 | 3127 40 66

Table 1: Movie domain results. For each planner the
run time in milliseconds is shown. All planners found
a plan with minimal length. “” indicates the plan-
ner failed. UMoP used far less than 128 MB for any
problem in this domain.

The NADL description of the movie domain represents
each type of food as a numerical state variable with a range
equal to the number of objects of that type of food. Table 1
shows the execution time for UMOP and the competition
planners for the movie domain problems. In this experi-
ment UMOP used its default partitioning of the transition
relation. For every problem all the planners find the opti-
mal plan. Like the competition planners UMOP has a low
computation time, but it is the only planner not showing

any increase in computation time even though, the size of
the state space of its encoding increases from 22* to 2%°.

The Logistics Domain

The logistics domain consists of cities, trucks, airplanes and
packages. The task is to move packages to specific loca-
tions. Problems differ by the number of packages, cities,
airplanes and trucks. The logistics domain is hard and
only problem 1,2,5,7 and 11 of the 30 problems were solved
by any planner in the AIPS’98 competition (see Table 2).
The NADL description of the logistics domain uses numeri-
cal state variables to represent locations of packages, where
trucks and airplanes are treated as special locations. Even
though, the state space for the small problems is moderate,
UMOP fails to solve any of the problems in the domain. It
succeeds to generate the transition relation but fails to fin-
ish the preimage calculations. The reason for this might be
a bad representation or variable ordering. It might also be
that no compact OBDD representation exists for this domain
in the same way, that no compact OBDD representation ex-
ists for the integer multiplier (Bryant, 1986). More research
is needed to decide this.

Prob. stan hsp ipp blackbox
1 767 27 79682 43 900 26 | 2062 27
2 4319 32 97114 44 - - | 6436 32
5 364932 29 | 144413 26 | 2400 24 - -
7 - - | 788914 112 - - - -
11 12806 34 86195 30 | 6940 33 | 6544 32

Table 2: Logistics domain results. For each planner
column one and two show the run time in milliseconds
and the plan length. (- -) means the planner was un-
able to find a solution.

Conclusion

In this paper we have presented results obtained with uMoP
in classical deterministic domains. The results show that
UMOP is an efficient deterministic planning system and that
the partitioned transition relation used by uMOP also can
be exploited in deterministic domains.

We believe a more efficient OBDD-based deterministic
planning system may be designed by using a compact, par-
titioned encoding of the domain based on type and domain
knowledge analysis (Long & Fox, 1998; Etzioni, 1990) and
using the GRAPHPLAN relaxation when searching for a so-
lution. We are currently developing such a system.

Acknowledgments

This research was sponsored in part by Grants Nos.
F30602-98-2-0135 and F30602-97-2-0250, and by McKin-
sey & Company, Selmer & Trane’s Fond. The content of
this publication does not necessarily reflect the position of
the funding agencies and no official endorsement should be
inferred.

References

Blum, A., & Furst, M. L. (1995). TFast planning
through planning graph analysis. In Proceedings
of IJCAI-95, pp. 1636-1642. Morgan Kaufmann.

Bryant, R. E. (1986). Graph-based algorithms for
boolean function manipulation. IEFE Transac-
tions on Computers, 8, 677-691.

Burch, J., Clarke, E., & Long, D. (1991). Symbolic
model checking with partitioned transition rela-
tions. In International Conference on Very Large
Scale Integration, pp. 49-58. North-Holland.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Auto-
matic OBDD-based generation of universal plans
in non-deterministic domains. In Proceedings of
AAAD98, pp. 875-881. AAAI Press/The MIT

Press.

Di Manzo, M., Giunchiglia, E., & Ruffino, S. (1998).
Planning via model checking in deterministic do-
mains: Preliminary report. In Proceedings of the
8’th International Conference on Artificial Intel-
ligence: Methodology, Systems and Applications
(AIMSA’98), pp. 221-229. Springer-Verlag.

Edelkamp, S., & Reffel, F. (1999). Deterministic state
space planning with BDDs. In Proceedings of
ECP-99, pp. 381-382. Springer.

Etzioni, O. (1990). A structural theory of explanation-
based learning. Ph.D. thesis, Computer Science
Department, Carnegie Mellon University.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new
approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2, 189—
208.

Jensen, R. M., & Veloso, M. M. (1999). OBDD-
based universal planning: Specifying and solv-
ing planning problems for synchronized agents in
non-determinitic domains. In Wooldrige, M. J.,
& Veloso, M. (Eds.), Artificial Intelligence To-
day, Recent Trends and Developments. Springer-
Verlag.

Kautz, H., & Selman, B. (1996). Pushing the enve-
lope: Planning, propositional logic and stochas-
tic search. In Proceedings of the 13°th National
Conference on Artificial Intelligence (AAAI’96),
Vol. 2, pp. 1194-1201. AAAI Press/MIT Press.

Long, D., & Fox, M. (1998). The automatic inference
of state invariants in TIM. Journal of Artificial
Intelligence Research, 9, 367-421.

McMillan, K. L. (1993). Symbolic Model Checking.
Kluwer Academic Publ.

Ranjan, R. K., Aziz, A., Brayton, R. K., Plessier,
B., & Pixley, C. (1995). Efficient BDD algo-
rithms for FSM synthesis and verification. In
IEEE/ACM Proceedings International Workshop
on Logic Synthesis.

Weld, D. (1994). An introduction to least-commitment
planning. Al Magazine, 27-61.

Weld, D. (1999). Recent advances in Al planning. Al
Magazine, 93-123.

