General-Purpose Case-Based Planning: Methods and
Systems

Ralph Bergmann!, Héctor Mufioz-Avila!, and Manuela Veloso?
1Dept. of Computer Science
University of Kaiserslautern
P.O. Box 3049, D-67653 Kaiserslautern, Germany
E-mail: {bergmann|munioz}@informatik.uni-kl.de

2School of Computer Science

Carnegie Mellon University
Pittsburgh PA 15213-3891, USA, E-mail: {mmv}@cs.cmu.edu

1 Introduction

Planning consists of the construction of some course of actions to achieve a specified set of
goals, starting from an initial situation. For example, determining a plan of actions (often
called operators) for transporting a certain set of goods from a source location to some
destination provided that there are different means of transportation is a typical planning
problem in the transportation domain. Many planning problems of practical interest also
appear in engineering domains, e.g., the domain of process planning.

The classical generative planning process consists mainly of a search through the space of
possible sets of operators to solve a given problem. In pure case-based planning instead,
new problems are solved by reusing plans or portions of plans from previous cases. Since the
space of possible plans is typically vast, it is extremely unlikely that a case-base contains
a plan that can be reused without modification.

Given that classical generative planning may engage in a very large search effort and
pure case-based planning may be encounter unsurmountable modification needs, several
researchers have pursued a synergistic approach of generative and case-based planning. In
a nutshell, the generative planner is used as the source of modification, and the case-based
planner provides plans previously generated for similar situations. In this paper, we present
three systems that integrate generative and case-based planning.

Pure case-based planners in general could be domain-specific or domain-independent. For

2 CASE-BASED PLANNING 2

example, Chef [Ham86| is a well-known domain-specific case-based planner. In this ap-
proach cases encode the domain knowledge. The adaptation mechanism uses domain
knowledge for indicating, how previous plans can be transformed for solving new prob-
lems.

Our synergistic approaches can be viewed as domain-independent case-based planning.
The domain knowledge is represented through the planning operators. Operators describe
actions indicating how the state of the world can be changed. These changes are called the
effects of the operator. For applying an operator certain conditions, called preconditions
must be met. In the transportation domain for example, the action of moving a vehicle
from one place z to another place y can be modeled through an operator. The precondition
of the operator is that the truck is in the place z. The effect of applying the operator is
that the truck is in y. Using a complete set of operators, a generative planner would
theoretically be able to solve any consistently defined problem. However, in most practical
situations the search space that a generative planner must traverse to find a solution is so
vast that solutions cannot be found in reasonable time.

Domain-independent case-based planners accumulate and use planning cases to control the
search. Under this perspective, cases encode knowledge on how and which operators where
used for solving problems. In our synergistic systems, case-based and generative planning
are integrated and work tightly together. Thereby the workload imposed on the generative
planner depends on the amount of modification that is required to completely adapt a
retrieved case.

2 Case-based Planning

We now describe a general framework for case-based planning based on the CBR process
model by Aamodt and Plaza [AP94]. This will cover most work on case-based plan-
ning which is based on the integration of a generative problem solver with a case-based
component. This includes the approaches developed at the CMU and the University of
Kaiserslautern.

2.1 Retrieval and Organization of the Case-Base

Given a new problem, the goal of the retrieval phase is to select a case from the case-base
whose problem description is most similar to the description of the new problem. In case-
based planning, the similarity has a tight connection to the abilities of the reuse component,
i.e. the retrieval should select adaptable cases [SK94]. More precisely, the main goal of
similarity assessment is to predict the effort required for reusing the solution to solve the
new problem. Therefore, a case should be considered very similar to the new problem, if
only little effort is required for adapting the solution and less similiar if the adaptation is
considered computationally very expensive. In case-based planning, the reusability of a

2 CASE-BASED PLANNING 3

A
high
1 Reuse effort
2 Retrieval effort
3 Total effort (1+2)
low > Casesvisited during retrieval

afew cases many cases

Figure 1: Trade-off between retrieval effort and reuse effort (adapted from [Vel94])

case is strongly determined by the particular solution contained in the case and not only
on the problem description. The similarity assessment therefore determines the fragments
of the problem description which are relevant for successfully reusing the plan. Basically,
this can be achieved by computing a weakest precondition, based on the domain knowledge
about the available operators that ensures that the plan can be successfully applied. The
similarity will then be assessed based on the fragment of the conditions that are satisfied
in the current problem to be solved.

Depending on the domain, computing the similarity assessment may become very expensive
which is a major problem when the case-base has reached a considerable size. In this case,
a trade-off between the goal to find the best case and the goal of minimizing the retrieval
time appears. Figure 1 shows a typical behavior. As the number of cases visited during
retrieval increases, the more time must be spent for retrieval (see curve 2) but the better
cases resulting in a shorter adaptation time will be found (see curve 1). Upto a certain
point (optimal point), the total case-based planning time (retrieval+reuse, see curve 3)
decreases when more cases are visited during retrieval. However, beyond this point the
total planning time can increases again if more cases are visited, because the possible gain
through finding better cases does not outweight the effort of finding them.

2.2 Reusing Previous Solutions

In case-based reasoning, at least two different kinds of approaches to reuse can be distin-
guished: transformation adaptation and generative adaptation |[CFS94]. Transformation
adaptation methods usually consist of a set of domain dependent heuristics which directly
modify the solution contained in the case, based on the difference between the problem de-
scriptions in the case and of the current problem. While transformation adaption was also

3 PRODIGY/ANALOGY 4

used in early case-based planning systems (e.g. in CHEF [Ham86]), most recent systems
(including our own systems) are based on generative adaptation. For this kind of adap-
tation, the integration between a case-based approach and a generative problem solver is
central. The retrieved solution is not modified directly, but is used to guide the generative
problem solver to find a solution. The kind of guideance that a case provides differs from
system to system and is particularly dependent on the type of generative problem solver
that is used. However, a basic principle is the replay of decisions that where made during
the process of solving the problem recorded in the case. When replaying the solution trace
of a previous case, some (hopefully most) decisions can be reused, while the remaining
decisions are taken by replaying another case or by using a generative planner. The result
of this reuse phase is either a correct solution (w.r.t. the domain model) or the indication
of a failure in case the problem could not be solved with allocated (time) resources.

2.3 Revision of Solutions

The goal of the revision phase is to validate the computed solution in the real world or in
a simulation of it. Due to the correctness of the reuse-phase, the resulting solutions are
known to be correct w.r.t the domain model. Consequently, the simulation of the solution
cannot contribute to an additional validation. Therefore, the solution must be validated
in the real world. However, no methodological support of this kind is provided by today’s
case-based planning systems.

2.4 Retaining new Cases

When a new case is obtained, it usually should be entered into the case base. In case-based
planning, this phase requires much more effort than case-based approaches for analytic
tasks in which the new case is simply stored ”as it is”. Case-based planning requires
determining the ”right” goals to index the cases as well as determining the set of decisions
(the solution trace) that are taken by the generative problem solver. Roughly speaking,
the goals used for indexing are those goals that are required for or affected by the taken
decisions stored in the case.

3 PRODIGY/ANALOGY

Prodigy/Analogy was the first system that achieved a complete synergy between generative
planning and case-based planning [Vel94] and using for the first time a full automation of
the complete CBR-cycle. Prodigy/Analogy is developed within the PRODIGY planning and
learning architecture [CKM91]. The generative planner is a means-ends analysis backward-
chaining nonlinear planner, performing state-space search. The integration is based on the
derivational analogy method [Car86]. This is a reconstructive method by which lines of

3 PRODIGY/ANALOGY 5

reasoning are transfered and adapted to a new problem as opposed to transformational
methods that adapt directly final solutions. Prodigy/Analogy was and continues to be
demonstrated in a variety of domains.

3.1 Retain: Generation of Planning Cases

A planning case to be stored consists of the successful solution trace augmented with jus-
tifications, i.e., the derivational trace. The base-level PRODIGY4.0 reasons about multiple
goals and multiple alternative operators relevant to achieving the goals. This choice of op-
erators amounts to multiple ways of trying to achieve the same goal. PRODIGY/ANALOGY
provides a language to capture mainly three kinds of justifications for the decisions made
during problem solving: links among choices capturing the goal dependencies, records of
failed explored alternatives, and pointers to any external used guidance. We discovered in
PRODIGY/ANALOGY that the key feature of this language is that it needs to be reinter-
pretable at planning replay time.

Automatic generation of the derivational planning episodes occurs by extending the base-
level generative planner with the ability to examine its internal decision cycle, recording
the justifications for each decision during its search process.

3.2 Indexing and Retrieval of cases

From the exploration of the search space and by following the subgoaling links in the
derivational trace of the plan generated [Car86], the system identifies, for each goal, the
set, of weakest preconditions necessary to achieve that goal. We recursively create the so
called foot-print of a goal conjunct of the problem by doing goal regression, i.e. projecting
back its weakest preconditions into the literals in the initial state [Wal77]. Goal regression
acts as an explanation of the successful path. The literals in the initial state are therefore
categorized according to the goal conjunct that employed them in its solution.

The system automatically identifies the sets of interacting goals of a plan by partially
ordering the totally ordered solution found. The connected components of the partially
ordered plan determine the independent fragments of the case each corresponding to a set
of interacting goals. Each case is multiply indexed by these different sets of interacting
goals.

When a new problem is presented to the system, the retrieval procedure must match the
new initial state and goal statement against the indices of the cases in the case library.

The retrieval algorithm focuses on retrieving past cases where the planner experienced
equivalent goal interactions and has a reasonable match between initial states expecting
therefore to achieve a large reduction in the new planning search effort.

3 PRODIGY/ANALOGY 6

3.3 Reuse: Replay of Multiple Planning Episodes

PRODIGY/ANALOGY can construct a new solution from a set of guiding cases as opposed
to a single past case. Complex problems may be solved by resolving minor interactions
among simpler past cases.

Consider the logistics transportation domain. In this domain packages are to be moved
among different places, by trucks and airplanes. The example below is simple for the
sake of a clear illustration of the replay procedure. Extensive empirical results on
PRODIGY/ANALOGY have shown that the system scales well in problem complexity [Vel94].

Figure 2 shows a new problem and two past cases selected for replay. The cases are partially
instantiated to match the new situation. Further instantiations occur while replaying.

77777777777777 Pastcases New problem

(goal (inside-airplane ob3 pl5)) (goal (inside-airplane ob3 pl5)
' (relevant-state (at-obj 0b3 <ap3>) | (inside-truck ob8 tr2))
o (at-airplane pl5 al2)) (initial-state

e ST ; (inside-truck ob3 tr2)

. (goal (inside-truck ob8 tr2)) ! (at-truck tr2 p4)

! (relevant-state (at-obj ob8 p4) (at-airplane pl5 al2)
SR (at-truck tr2 <ap7>)) (at-0bj 0b8 p4))

Figure 2: Instantiated past cases cover the new goal and partially match the new initial
state. Some of the case variables are not bound by the match of the goals and state.

Figure 3 shows the replay episode to generate a solution to the new problem. The new
situation is shown at the right side of the figure and the two past guiding cases at the left.

The transfer occurs by interleaving the two guiding cases, performing any additional work
needed to accomplish remaining subgoals, and skipping past work that does not need to
be done. In particular, the case nodes cn3’ through cn5’ are not reused, as there is
a truck already at the post office in the new problem. The nodes n9-14 correspond to
unguided additional planning done in the new episode.! At node n7, PRODIGY/ANALOGY
prunes out an alternative operator, namely to load the truck at any airport, because of
the recorded past failure at the guiding node c¢n2’. The recorded reason for that failure,
namely a goal-loop with the (inside-truck ob8 tr2), is validated in the new situation,
as that goal is in the current set of open goals, at node n6. Note that the two cases are
merged using a bias to postpone additional planning needed. Different merges are possible.

!Note that extra steps may be inserted at any point, interrupting and interleaving the past cases, and
not just at the end of the cases.

4 CAPLAN/CBC: REPLANNING IN THE SPACE OF PLANS 7

g T - -

: |n5|dea| lane ob3 pl5 : |nsdea| lane ob3 pl5
S uer S uer

» “precond-o : precon o

" cn2-op . m2-0p

¢ (load- alrplane ob3 pl5 a4) : (load- alrplane ob3 pl5 a4)

» ‘relevant-to cnl : ‘relevant-to nl

. :sibling-ops :

© ((load-airplane ob3 pl5 a12) | ———= n3- goai 5 ad

(goal-loop (inside-airplane ob3 pl 5))) ‘ (g eggr'?dacg}eng)

. cn3- goal . -

; (@-arplane plS ad) L[(fly-airplanepl5 al2 a4

; precond-of cn2 : (r evanp par n3p)

; cnd 3 n5 - APPLY

3 “g;;;p'zﬂg piS al2 ad) T (y- alrplane pl5 a12 ad)

: :why-this-op (applicable) : n6 -

: (insi de-truck ob8 tr2)

! en5 - APPLY ot

! (fly-airplane pl5 al2 ad) “preconcot user

. 7 - op

! cn6 - APPLY : n

(oavarpaneobsplsa) femancions” 2P

T . 8 - APPLY

. cnl’ -goal . —= N

 (inside-truck ob8 tr2) : (loadktruck obs tr2 p4)

+ :precond-of user ! n9 - goal

} } (at-obj ob3 ad)

‘en2 - : :precond-of n2

: (Igad truck ob8 tr2 p4) : ni0- o

' 1t-t '

3 Qbﬁ'n?c,pic" } (unl ontk- truck 0b3 tr2 a4)

" ((load-truck ob8 tr2 <ap7>) : -relevant-to n9

: (goal-loop (inside-truck 0b8r2))) n11 - goal

: : (at-truck tr2 ad)

! cn3' - goal 3 :precond-of n10

 (at-truck tr2 p4) :

: d-of cn2' : ni2- op

: -preconc-atcn : (drive-truck tr2 p4 a4)

L cnd’ - op . ‘relevant-to n11

! (drive-truck tr2 <ap7> }

: (relevant to cn3’ 7> p4) : ni3- APPLY

: : (drive-truck tr2 p4 a4)

. cnS' - APPLY .

. g . nl4 - APPLY

: (drive-truck tr2 <ap7> p4) : (unload-truck ob3 tr2 a4)

. cn6’ - APPLY :

: ; ~ ni5- APPLY

 (load-truck ob8trzpd) ; (load-airplane ob3 pl5 a4)

Figure 3: Derivational replay of multiple cases.

4 CAPLAN/CBC: Replanning in the Space of Plans

CAPLAN/CBC [MAPWO5] is a generic case-based reasoning system that supports the
integration of domain-specific reasoners in a modular way. This integration was inspired
by practical needs in the domain of process planning. The overall architecture is built on
top of CAPLAN [Web94], a plan-space nonlinear planner [MR91].

Intuitively, during the planning process, state-space planners transform states in contrast
to plan-space planners that refine partial-ordered plans. The purpose is to obtain a plan
which all goals are solved and that contains no conflicts. Conflicts may occur due to the
partial-order between the plan steps. For example, in the domain of process planning
different plan steps may require the same type of tool. A conflict takes place, when there
are not enough tools of the required type available. For solving this conflict, some of the
steps must be ordered to ensure that every tool is used one at the time. This kind of

4 CAPLAN/CBC: REPLANNING IN THE SPACE OF PLANS 8

planners are also called least-commitment planners, as no order is introduced in the plan,
unless it is necessary (i.e., for solving a conflict). Studies have been made for indicating, in
which situations is better to search in the space of plans rather than in the space of states
and vice versa.

4.1 Case-based problem-solving in CAPLAN/CBC

For solving a problem CAPLAN/CBC analyzes its description by using a domain-specific
reasoner. In the domain of process planning it corresponds to a feature-based CAD rea-
soner. This reasoner is used for detecting geometrical interactions in rotatory symmetrical
workpieces. The retrieval procedure uses this information to improve its accuracy without
reducing the performance of the overall case-based solution process [MAH95]. The cases
retrieved are then replayed in the actual situation. If the obtained plan is incomplete (i.e.,
there are unsolved goals), the generic planner is used to complete the plan. For the rest of
this section we will concentrate on the replay mechanism of CAPLAN/CBC.

4.2 The replay phase in CAPLAN/CBC.

For solving a new problem CAPLAN/CBC reuses selected cases by following their deriva-
tion paths [Vel94] and replaying their decisions in the new situation. Decisions taken when
replaying a case may need to be revised when completing the solution. Revising decisions
implies backtracking which can be very expensive. For avoiding unnecessary backtrack-
ing steps, CAPLAN/CBC stores in the cases not only the valid decisions but also the
justifications of decisions? that were redrawn later during the problem solving episode.

Process planning is concerned with the manufacturing of mechanical workpieces. Initialy
a piece of raw material and the description of a workpiece are given. Descriptions of the
cutting tools and clamping material available are also given. The problem is to remove
layers of raw material in order to obtain the workpiece. Figure 4 shows an intermediate
stage during this process. The grid area corresponds to the portion of raw material that still
needs to be removed. The parts presented there correspond to the two sides of a workpiece,
two ascending outlines and a so-called undercut. Undercuts always can be decomposed in
two parts (labeled u-cut! and u-cut2). In this figure a left and a right cutting tools are
also shown , labeled A and B respectively. For manufacturing the undercut the workpiece
needs to be clamped from an ascending outline, for example Ascend-1. The left tool is used
for removing the left part (i.e., u-cutl). For removing the right part (1.e., u-cut2) there are
three possibilities: (1) to use the right tool, (2) to clamp the workpiece from the outline
Ascend-2 and use the same left tool again or (3) to clamp the workpiece from Side2 and
use the left tool. The last possibility requires that there is a perforation on Side2. Since
in the example there is only a perforation on Side 1, it will be discarded if considered by
the planner.

2For handling the justifications CAPLAN is built on the generic REDUX architecture [Pet91].

5 PARIS: REUSE AT DIFFERENT LEVELS OF ABSTRACTION 9

The left side of figure 5 outlines a plan for manufacturing the workpiece shown in figure
4, under the supposition that there is a left and a right cutting-tools available. Dashed
boxes represent plan-steps and the arcs pointing downwards indicate the partial-order for
performing them. This plan states that for removing u-cut1, the workpiece must be clamp
from Ascend-1 and the left tool must be used. After that, u-cut2 is removed by using the
right tool. This plan contains also the information that clamping from Side2 failed because
it does not have any perforation (node labeled R).

Suppose now that a new problem is given consisting of the same workpiece, but this time
there is only a left tool available. For solving this problem the plan obtained with the two
tools will be reused, as illustrated in figure 5. The horizontal arrows show the decisions
of the case that are replayed in the new situation. Particularly the decisions concerning
the manufacturing of u-cut! can be replayed in the new situation. However, the decision
concerning the manufacturing of u-cut2 cannot be replayed, since in the new situation
there is no right tool available. As a result, a rejected decision is created (node labeled S).
The rejection of the operator clamping from Side-2 is replayed (node labeled R’), as in the
new situation Side-2 has still no perforation.

Once the replay of cases is finished, the remaining goals need to be solved by the gener-
ative planner. As stated before, the key issue is that even when the generative planner
(CAPLAN) needs to be used, performing unnecessary backtracking will be avoided. Par-
ticularly, for solving the goal corresponding to manufacturing u-cut2, CAPLAN will not
pursue to use the right tool, neither to clamp from Side2. Instead, it will select to clamp
the workpiece from Ascend.2 (arc labeled P), which is the right choice.

Sidel

Do
R R
R R R R

s
i
it

i i

u-cutl

Figure 4: Half display of a workpiece and two cutting tools.

5 PARIS: Reuse at Different Levels of Abstraction

PARis (Plan Abstraction and Refinement in an Integrated System) [BW95] is a domain
independent case-based planning system which allows the flexible reuse of planning cases

5 PARIS: REUSE AT DIFFERENT LEVELS OF ABSTRACTION 10

Retrieved Case Replay Current Situation

,,,

=

D e PO . userighttool S
P <rejected: constraint failed>
. No right tool available
,,,,,,,,,,,,,,,,,,, " clamp-from Side-2 R’
i | clamp-from Side-2 R ' : - "
‘ cut u-cut2 : <rejecte%: premise failed> ! cut u-cut2 1 <rejected: premise failed>
[| Sidezhasnoperforation B R R E Sde'ZhasnOPerforanon

Figure 5: Example of replay in CAPLAN/CBC.

by abstraction and refinement. This approach is mainly inspired by the observation that
reuse of plans must not be restricted to a single description level. In domains with a high
variation in the problems, the reuse of past solutions must be achieved at various levels of
abstraction.

In PARIS, planning cases given at the concrete level are abstracted to several levels of
abstraction which leads to a set of abstract cases that are stored in the case-base. Case
abstraction is done automatically in the retain phase of the CBR-process model. When
a new problem must be solved, an abstract case is retrieved whose problem description
matches the current problem exactly at an abstract level. In the subsequent reuse phase,
the abstract solution is refined, i.e., the details that are not contained in the abstract case
are added to achieve a full solution of the problem. This refinement is done by a generative
planner that performs a forward directed state space search. We now explain how abstract
cases are constructed and reused in this case-based reasoning process.

5.1 Case Abstraction

Case abstraction means reducing the level of detail contained in the problem description
and in the solution of a case, i.e., an abstract case contains less operators and less states
than the concrete case. Furthermore, abstract operators and states are described using

5 PARIS: REUSE AT DIFFERENT LEVELS OF ABSTRACTION 11

Available Concrete Case Abstract Case Adapted Case
Case Abstraction Case Refinement
@ ® @0
@ @) raw & fine i
€00
€ :

i Useright tool
{userignttool - S ETTT cutl i
owl R | uselefttool

cut 2 : i processraw A | : cut 2

Figure 6: Example of generating and refining abstract cases.

more abstract terms which typically requires also a reduced number of predicates. In
general, a change of the complete representation language between abstraction levels may
be required to achieve meaningful und useful abstractions in a domain. Therefore, PARIS
assumes that in addition to the concrete planning domain, an abstract planning domain is
contained as part of the general knowledge. It contains a set of abstract operators together
with a set of rules that describe different ways of abstracting concrete states. For example in
the domain of planning rotary symmetric workpieces the concrete domain contains opertors
and predicates to describe the detailed contour of workpieces and individual cut operations
that must be performed. The abstract domain abstracts from the detailed contour and
represents larger units, called complex processing areas, together with the status of their
processing.

Figure 6 presents an example of the relationship between a concrete case and an abstract
case. The left side shows a section of a concrete case, depicting how a step-like contour
with two grooves is manufactured by a sub-plan consisting of 6 steps. The abstract case,

6 RELATED WORK 12

shown in the middle of this figure, abstracts from the detailed contour and just represents a
complex processing area named A that includes raw and fine elements. The corresponding
abstract plan contains 2 abstract steps: processing in a raw manner and processing in a fine
manner. The arrows between the concrete and the abstract case show how concrete and
abstract states correspond. Each abstract state is derived from one of the existing concrete
states (state abstraction). However, not all concrete states are abstracted. Some concrete
states are skipped because they are considered a detail. As a byproduct of this state
abstraction, a sequence of concrete operators is abstracted to a single abstract operator.
Note that the above explained kind of case abstraction is performed by an automatic
procedure in PARIS as part of the retain-phase of the CBR-cycle.

5.2 Retrieval and Reuse of Abstract Cases

When a new problem must be solved, an abstract case is retrieved which exactly matches
the current problem at the abstract level. If several matching abstract cases are contained in
the case-base, the retrieval procedure (using an abstraction hierarchy for indexing) selects
the case that is located at the lowest level of abstraction. The motivation for this is that
for more concrete cases, less work has to be done during refinement to achieve a complete
solution. This corresponds to a similarity measure that ranks two cases more similar the
lower the level of abstraction is, on which the problems are identical [BPW94].

During the reuse phase, the abstract solution contained in the retrieved case must be refined
to become a fully detailed complete solution. The right side of Figure 6 shows an example
of such a refinement. While the contour of the two workpieces differs drastically at the
concrete level, the abstract case matches exactly because the 5 atomic contour elements in
the new problem can be abstracted to a complex processing area with raw and fine elements.
The abstract opertors of the abstract case are then used to guide the state-based planner
to find a refined solution to the problem. Each abstract state is used as a sub-goal in
the planning process. In the portion of the case shown in Figure 6, the abstract operator
process raw A is refined to a sequence of four concrete steps which manufacture area 1 and
2. The next abstract operator is refined to a four-step sequence which manufactures the
grooves 3, 4, and 5.

Note that PARIS allows the reuse of problem decompositions at different levels of abstrac-
tion. Abstract plans decompose the original problem into a set of much smaller subprob-
lems. If these problems are small enough and mostly independent from each other, the
underlying planner is able to solve them without stepping into the intractability problem.

6 Related work

Besides the systems discussed so far, several other case-based planning systems have been
developed in USA and Europe.

7 ON TO REAL APPLICATIONS 13

PRIAR [KH92] reuses plans in a generative nonlinear hierarchical planner. Following the
derivational analogy philosophy, PRIAR uses the validation structure of a plan, which rep-
resents the dependencies among the plan steps, for retieval and reuse of planning cases,
but additionally employs domain independent strategies for solution adaptation. However,
PRIAR does not address the problem of how to organize a case base efficiently.

The Deja-Vu system [SK94| uses a hierarchical case-based reasoning approach which is
similar to PARIS in that abstract cases are used for problem decomposition. However,
Deja-vu does not include a generative planner but uses multiple cases and transformational
adaptation for refinement.

The MRL system [Koe94| is a domain-independent case-based planner. It reuses plans
based on a deductive planning approach. This enable to compare problem descriptions on
the semantic level instead of pure matching. In contraposition to the systems presented
here, MRL requires the domain to be represented in formal logic. Further, for indexing
the cases a formalization in terminological logic is also required.

Similar to the systems presented in this paper, the PLAKON system [GC93] is a domain-
independent configuration system that combines generic and case-based approaches [Pfi93].
The domain is represented through a concept hierarchy. Cases correspond to instances of
the concept hierarchy. The case-based component obtains a partial solution by combining
multiple parts of cases provided that they do not overlap. The generative configuration
system is then used to complete the partial solution.

7 On to real applications

Several case-based planning systems (incuding the ones reported here) already address
important problems that occur in real planning applications. Experimental investigations
have shown a drastic speedup (factor 1000 and more) of problem solving through case-based
planning compared to pure generative planning approaches in many different domains.
However, several important questions are still open such as

knowledge engineering for case-based planning,

user interaction particularly during the reuse phase,

e maintaining the quality of plans (e.g., the cost and resource usage during plan exe-
cution) during reuse, and finally

the integration into an industrial environment.

We are quite optimistic that these problems can be solved in the future and propose to
address them, by continuing the application oriented research strategy followed so far.
Then, we can expect fielded applications of case-based planning in the near future.

REFERENCES 14

References

[APY4]

[BPW94]

[BW95]

[Car86]

[CFS94]

[CKMO91]

[GCY3]

[Ham86)]

[KH92]

[Koe94]

[MAH95]

[MAPW95]

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundation issues, method-
ological variations and system approaches. AI-Communications, 7(1):pp 39-59,
March 1994.

R. Bergmann, G. Pews, and W. Wilke. Explanation-based similarity: A unifying ap-
proach for integrating domain knowledge into case-based reasoning. In M.M. Richter,
S. Wess, K.D. Althoff, and F. Maurer, editors, Topics in Case-Based Reasoning, vol-
ume 837 of Lecture Notes on Artificial Intelligence, pages 182-196. Springer, 1994.

R. Bergmann and W. Wilke. Building and refining abstract planning cases by change
of representation language. Journal of Artificial Intelligence Research, 3:53-118,
1995.

Jaime Carbonell. Derivational analogy : A theory of reconstructive problem solving
and expertise acquisition. Machine Learning, 2, 1986.

Padraig Cunningham, Donal Finn, and Sean Slattery. Knowledge engineering re-
quirements in derivational analogy. In Stefan Wess, Klaus-Dieter Althoff, and
Michael M. Richter, editors, Topics in Case-Based Reasoning, volume 1, pages 234—
245, 1994.

J.G. Carbonell, C.A. Knoblock, and S. Minton. Prodigy: An integrated architecture
for planning and learning. In K. VanLehn, editor, Architectures for Intelligence,
pages 241-278. Lawrence Erlbaum Associates, Publishers, 1991.

Andreas Gunter and Roman Cunis. PLAKON - ergebnisse einer entwicklung. KI,
(1):51-56, 1993.

Kristian Hammond. Chef: a model of case-based planning. In Procceedings of Amer-
ican Asociation of Artificial Intelligence, AAAI-86, 1986.

S. Kambhampati and J.A. Hendler. A validation-structure-based theory of plan
modification and reuse. Artificial Intelligence, 55:193-258, 1992.

J. Koehler. Flexible plan reuse in a formal framework. In Current Trends in Al
Planning, pages 171-184. I0S Press, Amsterdam, Washington, Tokio, 1994.

H. Munoz-Avila and J. Hiillen. Retrieving relevant cases by using goal dependen-
cies. In Case-Based Reasoning Research and Development, Proceedings of the 1st
International Conference (ICCBR-95), number 1010 in Lecture Notes in Artificial
Intelligence. Springer Verlag, 1995.

H. Munoz-Avila, J. Paulokat, and S. Wess. Retrieving relevant cases by using goal
dependencies. In M. Keane, J.P. Halton, and M. Manago, editors, Advances in
Case-Based Reasoning. Selected Papers of the 2nd European Workshop (EWCBR-
94), number 984 in Lecture Notes in Artificial Intelligence, 1995.

REFERENCES 15

[MR91]

[Pet91]

[PA93]

[SK94]

[Vel94]

[Wal77]

[Web94]

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of
AAAI-91, pages 634-639, 1991.

Ch. Petrie. Planning and Replanning with Reason Maintenance. PhD thesis, Uni-
versity of Texas at Austin, CS Dept., 1991. (MCC TR EID-385-91).

Kai Pfitzner. Fallbasierte Konfigurieren technischer Systeme. PhD thesis, Universitat
Hamburg, 1993.

B. Smyth and M.T. Keane. Retrieving adaptable cases. In Stefan Wess, Klaus-Dieter
Althoff, and Michael M. Richter, editors, Topics in Case-Based Reasoning, 1994.

M. Veloso. Planning and learning by analogical reasoning. Number 886 in Lecture
Notes in Artificial Intelligence. Springer Verlag, 1994.

R. Waldinger. Achieving several goals simultaneously. In Machine Intelligence, vol-
ume 8. Ellis Horwood Limited, 1977.

F. Weberskirch. Realisierung eines nichtlinearen Planungssystems zur Unterstutzung
der Arbeitsplanerstellung bei der computerintegrierten Fertigung (CIM). Diplomar-
beit, Universitat Kaiserslautern, 1994.

