
Using Perception Informationfor Robot Planning and ExecutionKaren Zita Haigh Manuela M. Velosokhaigh@cs.cmu.edu veloso@cs.cmu.eduhttp://www.cs.cmu.edu/~khaigh http://www.cs.cmu.edu/~mmvComputer Science DepartmentCarnegie Mellon UniversityPittsburgh, PA 15213
In Proceedings of 96 AAAI Workshop: Intelligent Adaptive Agents

AbstractWe present Rogue, an integrated planning and executing robotic agent. Rogue is designed to bea roving o�ce gopher, doing tasks such as picking up & delivering mail and returning & picking uplibrary books, in a setup where users can post tasks for the robot to do. We have been workingtowards the goal of building Rogue as a completely autonomous agent which can learn from itsexperiences improving its own behaviour. In this paper, we focus on describing Rogue's capabilitiesin executing and processing perception information, including: (1) the generation and execution ofa plan which requires observation to make informed planning decisions, and (2) the monitoring ofexecution for informed replanning. Rogue is implemented and functional on a real indoor robot.IntroductionWe have been working towards the goal of building an autonomous robot that is capable ofplanning and executing high-level tasks in a dynamic environment. To achieve this end, we havebeen building an integrated framework,Rogue, which combines prodigy, a planning and learningsystem (Veloso et al. 1995), with Xavier, an autonomous indoor robot (O'Sullivan & Haigh 1994).We aim to create a complete autonomous agent capable of planning, executing and learning in adynamic real world environment.One of the goals of the Xavier project is to have the robot move autonomously in an o�cebuilding reliably performing o�ce tasks such as picking up and delivering mail and computerprintouts, returning and picking up library books, and recycling cans (Simmons 1994a).Our on-going contribution to this ultimate goal is at the high-level reasoning of the process,allowing the robot to e�ciently handle multiple interacting goals, and to learn from its experience.Rogue receives tasks from users, asks prodigy to generate a plan for the goals, commands Xavierto execute the plan, monitors the plan's execution, and replans for any perceived failures.Other researchers investigate the problem of interleaving planning and execution (including (Agre& Chapman 1987; Firby 1994; Hammond, Converse, & Martin 1990; McDermott 1978)). We buildupon this work and pursue our investigation from three particular angles:� that of real execution in an autonomous robot;� that of challenging the robot with multiple asynchronous user-de�ned interacting tasks; and� that of using experience as a source of learning to improve the overall performance of the au-tonomous agent.



The learning algorithm of the system is the focus of our current work and will be the topic offuture papers. Our work focusses on the interleaving of planning and execution by a real robotwithin a framework with the following sources of incomplete information:� the tasks requested by the users are not completely speci�ed,� the set of all the goals to be achieved is not known a priori,� the domain knowledge is incompletely or incorrectly speci�ed, and� the execution steps sent to the robot may not be achieved as predicted.Currently, Rogue's main features are (1) the ability to receive and reason about multiple asyn-chronous goals, suspending and interrupting actions when necessary (described in a previous pa-per (Haigh & Veloso 1996)), (2) the ability to deliberately sense the world to update its domainmodel, and (3) the ability to sense, reason about, and correct simple execution failures.In this paper, we focus on presenting how Rogue uses observation to make informed planningdecisions when the domain knowledge is incomplete, and also how the system monitors executionto adapt to a changing environment, in particular when actions fail or have unexpected e�ects.The paper is organized as follows: In Section 2 we introduce the Rogue architecture, ourdeveloped integrated system. We illustrate how Rogue uses observation of the environment tocreate correct plans in Section 3. We describe how Rogue adapts to a dynamic world in Section 4,discussing failed actions as well as unexpected outcomes. We present a brief review of related workin Section 5. Finally we provide a summary of Rogue's current capabilities in Section 6 alongwith a description of our future work to incorporate learning methods into the system.General ArchitectureRogue1 is the system built on top of prodigy4.0 to communicate with and to control thehigh-level task planning in Xavier2. The system allows users to post tasks for which the plannergenerates a plan, delivers it to the robot, and then monitors its execution. Rogue is intended tobe a roving o�ce gofer unit, and will deal with tasks such as delivering mail, picking up printoutsand returning library books.Xavier is a mobile robot being developed at CMU (O'Sullivan & Haigh 1994) (see Figure 1(a)).It is built on an RWI B24 base and includes bump sensors, a laser range �nder, sonars and acolor camera. Control, perception and navigation planning are carried out on two on-board Intel80486-based machines. Xavier can communicate with humans via an on-board lap-top computeror via a natural language interface.The software controlling Xavier includes both reactive and deliberative behaviours, integratedusing the Task Control Architecture (TCA) (Simmons 1994b; Simmons, Lin, & Fedor 1990).TCA provides facilities for scheduling and synchronizing tasks, resource allocation, environmentmonitoring and exception handling. The reactive behaviours enable the robot to handle real-timelocal navigation, obstacle avoidance, and emergency situations (such as detecting a bump). Thedeliberative behaviours include vision interpretation, maintenance of occupancy grids & topologicalmaps, and path planning & global navigation (an A� algorithm).1In keeping with the Xavier theme, Rogue is named after the \X-men" comic-book character who absorbs powersand experience from those around her. The connotation of a wandering beggar or vagrant is also appropriate.2We will use the term Xavier when referring to features speci�c to the robot, prodigy to refer to featuresspeci�c to the planner, and Rogue to refer to features only seen in the combination.



Prodigy is a domain-independent problem solver that serves as a testbed for machine learningresearch (Carbonell, Knoblock, & Minton 1990; Veloso et al. 1995). Prodigy4.0 is a nonlinearplanner that uses means-ends analysis and backward chaining to reason about multiple goals andmultiple alternative operators to achieve the goals. The planning reasoning cycle involves severaldecision points, including which goal to select from the set of pending goals, and which applicableaction to execute. Dynamic goal selection from the set of pending goals enables the planner tointerleave plans, exploiting common subgoals and addressing issues of resource contention.Prodigy and Xavier are linked together using TCA as shown in Figure 1(b).
Request

Task Status

Feedback

TCA

Base

(sonar,laser)
Speech Vision

SAY

[Reid Simmons]

Navigate

User InteractionPlan Steps

Monitor

Execution

(asynchronous)

User Request
PRODIGYROGUE

Xavier

Plan Step

User Request

User Request

(Task Control Architecture)

Success/Fail(a) (b)Figure 1: (a) Xavier the Robot; (b) Rogue ArchitectureProdigy maintains an internal model of the world in which it simulates the e�ects of selectedapplicable operators. Applying an operator gives the planner additional information (such as con-sumption of resources) that might not be accurately predictable from the domain model. Prodigyalso supports real-world execution of its applicable operators when it is desirable to know the ac-tual outcome of an action (Stone & Veloso 1995); for example, when actions have probabilisticoutcomes, or the domain model is incomplete and it is necessary to acquire additional knowledge.Some examples of the use of this feature include shortening combined planning and execution time,acquiring necessary domain knowledge in order to continue planning (e.g. sensing the world), andexecuting an action in order to know its outcome and handle any failures. Rogue uses the execu-tion feature of prodigy to send commands to the robot, monitoring the outcome of the actions,and updating prodigy's domain knowledge as necessary.Model Updates Through ObservationIn this section we present Rogue's behaviour in more detail. We describe in particular theinteraction between the planner and the robot, showing how symbolic action descriptions areturned into robot commands, as well as how deliberate observation is used by the system to makeintelligent planning decisions.



The key to this communication model is based on a pre-de�ned language and model translationbetween prodigy and Xavier. prodigy relies on a state description of the world to plan. Rogueis capable of converting Xavier's actual perception information into prodigy's state representa-tion, andRogue's monitoring algorithm determines which information is relevant for planning andreplanning. SimilarlyRogue is capable of translating plan steps into Xavier's actions commands.Therefore, the fact that Rogue needs to link a symbolic planner with a robotic executor entailsthe following modular capabilities:� prodigy's plan steps are mapped into Xavier's commands;� prodigy's state representation is a model of the execution environment;� Xavier's perception information is abstracted into prodigy's state information;� prodigy is capable of generating partial plans for execution in a continuous way;� prodigy re-evaluates the goals to be achieved continuously based on its state information.We illustrate the incorporation of perception information from execution into planning throughan example corresponding to event 1 from the upcoming AAAI 1996 robot competition. Theenvironment consists of three conference rooms and several o�ces. In this particular event, thedirector wishes to schedule a meeting in a conference room. The robot needs to �nd an emptyconference room and then inform all the meeting attendees. This task is presented as a singlerequest to Rogue. It requires the system to incorporate observation knowledge into its planningin order to accurately and e�ciently complete the task.When Rogue receives the task request, it spawns a prodigy run, giving prodigy relevanttask information such as who are the attendees and which rooms are potential conference rooms.Prodigy incorporates as part of its state knowledge, a topological map of the environment withthe location of the rooms. It does not have complete information of the exact location of the doors.Prodigy starts creating a plan by alternating considering the goals and their subgoals and thedi�erent ways of achieving them. When prodigy �nds that there are several possible conferencerooms, it applies control knowledge to select the closest room to its current location, as the �rstone to check for availability. When prodigy reaches its �rst opportunity to simulate the e�ectsof the operator, Rogue interrupts and sends the action to Xavier for real-world execution. Eachof the symbolic actions described in the domain model is mapped to a command sequence suitablefor Xavier. The command sequences may be executed directly by the Rogue module (e.g. anaction like finger), or sent via the TCA interface to the Xavier module designed to handle thecommand. For example, the action <GOTO-ROOM ROOM>) is mapped to the commands (1) �nd thecoordinates of the room, and (2) navigate to those coordinates.Figure 2 shows a partial trace of a run. When prodigy applies the <GOTO-ROOM> operator inits internal world model (see node n14),Rogue sends the command to Xavier for execution. Eachline marked \SENDING COMMAND" indicates a direct command sent through the TCA interface toone of Xavier's modules.The TCA command navigateToG(goal) (used after node n14) creates a path from the current lo-cation to the requested location, and then uses probabilistic reasoning to navigate to the requestedgoal. The module performs reasonably well given incomplete or incorrect metric information aboutthe environment and in the presence of noisy e�ectors and sensors.This example shows the use of two more TCA commands, namely C observe and C say (afternodes n14 and n18). The �rst command is a direct perception action. The observation routinecan vary depending on the kind of information needed. It can range from an actual interpretation



n2 (done)n4 <*finish*>n5 (mtg-scheduled)Firing prefer bindings LOOK-AT-CLOSEST-CONF-ROOM-FIRST #<5309> over #<5311>n7 <schedule-meeting 5309> [1]n8 (conference-room 5309)n10 <select-conference-room 5309>n11 (at-room 5309)n13 <goto-room 5309>n14 <GOTO-ROOM 5309>SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")ANNOUNCING: Going to room 5309SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))...waiting...Action NAVIGATE-TO-GOAL finished (SUCCESS).n15 (room-empty 5309)n17 <observe-conference-room 5309>n18 <OBSERVE-CONFERENCE-ROOM 5309>SENDING COMMAND (tcaExecuteCommand "C_observe" "5309")DOING OBSERVE: Room 5309 conf-room...waiting...Action OBSERVE finished (OCCUPIED).SENDING COMMAND (tcaExecuteCommand "C_say" "This room is occupied")ANNOUNCING: This room is occupied6 n6 schedule-meeting7 n15 <schedule-meeting r-5311>Figure 2: Trace of Rogue interaction.of some of Xavier's sensors or its visual images, to speci�c input by a user. The command C saysends the string to the speech board.In this example, once the navigate module has successfully completed, Rogue tells Xavier'svision module to observe the room. In this example, the conference room is occupied, and Rogueupdates prodigy's domain model. In this case, the observation sets the state information thatthe room is occupied. Because there are no operators in the domain model that can be used toempty a room, replanning in this case forces prodigy to use another conference room for themeeting (i.e. prodigy backtracks to node 7 and selects a di�erent conference room (node 15)).The run proceeds until Rogue �nds a conference room that is empty or until it exhausts allthe available conference rooms. After a conference room is found, Rogue proceeds to announcethe attendees of the location of their meeting. The announcement is made by navigation to eachindividual room. The �nal plan executed by Xavier is shown in Figure 3. Xavier stops at all theconference rooms until it correctly identi�es an empty one, and then tells all the attendees whenand where the meeting will be (within 3.5 minutes in 5311). This behaviour was developed in



Xavier's simulator and then applied successfully on the real robot (and will be demonstrated atthe robot competition).<goto-room 5309><observe-meeting-room 5309><goto-room 5311><observe-meeting-room 5311><select-meeting-room 5311><goto-room 5307><inform-person-of-meeting director 3.5 5311><goto-room 5303><inform-person-of-meeting professor-G 3.5 5311><goto-room 5301><inform-person-of-meeting professor-S 3.5 5311>Figure 3: Executed planObserving the real world allows the system to adapt to its environment and to make intelligentand relevant planning decisions. Observation allows the planner to update and correct its domainmodel when it notice changes in the environment. For example, it can notice limited resources(e.g. battery), notice external events (e.g. doors opening/closing), or prune alternative outcomesof an operator. In these ways, observation can create opportunities for the planner and it can alsoreduce the planning e�ort by pruning possibilities. Real-world observation creates a more robustplanner that is sensitive to its environment.Model Updates Through Execution FailureThe capabilities described in the preceding section are su�cient to create and execute a simple planin a world where all dynamism is predictable. The real world, however, needs a more 
exible systemthat can monitor its own execution and compensate for problems and failures. Any action that isexecuted by any agent is not guaranteed to succeed in the real world. There are several approachesto reason about the real world uncertainty. In one extreme, planners can completely ignore thatthe world is uncertain. They follow a deterministic model and generate a single executable plan.When execution failures occur, replanning is invoked. This is the current running mode of Rogue.Conditional planning in the other extreme, aims at considering in the domain model all the possiblecontingencies of the world and plan ahead for each individual one. Because it is impossible toenumerate all the world's possible events, complete conditional planning is infeasible. Probabilisticplanning falls in the middle of these two frameworks (Blythe 1994). At planning time, it accountsfor the most probable contingencies and relies on replanning if unpredictable or rare events maytake place and disrupt the plan execution. Probabilistic planners may increase the probabilityof a plan succeeding, but the domain model underlying the plan is bound to be incompletely orincorrectly speci�ed. Not only is the world more complex than a model, but it is also constantlychanging in ways that cannot be predicted. Therefore every agent executing in the real worldmust have the ability to monitor the execution of its actions, detect when the actions fail, andcompensate for these problems.Gil (Gil 1992), Wang (Wang 1995) and desJardins (desJardins 1994) learn or improve actionmodels. We take the approach instead of modifying the state description to re
ect the outcome



of the action, thereby forcing Rogue to �nd an alternate means to achieve the goal. Ideally,an approach combining the two methods would be most appropriate for a complete autonomousagent.Rogue currently monitors the outcome of the navigateToG command. navigateToG may failunder several conditions, including detecting a bump, detecting corridor or door blockage, anddetecting lack of forward progress. The module is able to compensate for certain problems, suchas obstacles and missing landmarks, and will report success in these situations.Since the navigate module may get confused and report a success even in a failure situation,Rogue always veri�es the location with a secondary test (vision or human interaction). If Roguedetects that in fact the robot is not at the correct goal location, prodigy's domain knowledge isupdated to re
ect the actual position, rather than the expected position.This update has the direct e�ect of indicating to prodigy that the execution of an action failed,and it will backtrack to �nd a di�erent action which can achieve the goal. prodigy exhibits thisreplanning behaviour as an inherent part of its design: the actual outcome of an action must bethe same as the expected outcome. When this expectation is invalidated, prodigy will attemptto �nd another solution.More concretely, prodigy's algorithm is a state-spaced means-ends planner, which means thatwhen it selects a plan action, it simulates the e�ects of the action in the domain model. prodigycannot simulate the e�ect of an action until its preconditions are true; when they are false,prodigy subgoals and looks for a sequence of actions that will achieve them.In Figure 4, for example, according to its domain model, the robot cannot deliver a particularitem unless it (a) has the item in question, and (b) is in the correct location.(operator DELIVER-ITEM(preconds(and (has-item <item>)(deliver-loc <location> <item>)(robot-in-room <location>)))(effects((del (has-item <item>))(add (item-delivered <item>)))))Figure 4: Item Delivery Operator.SinceRogue actually forces the real-world execution of the action, and then updates the domainmodel with the actual outcome of the action, prodigy can detect when an action failed or hadan unexpected outcome. If the action failed, then the goal of the action is not deleted from theset of pending goals, and prodigy is forced to �nd an alternate means of achieving it.In a similar manner, prodigy is able to detect when an action is no longer necessary. If anaction unexpectedly achieves some other necessary part of the plan, then that goal is deleted fromthe set of pending goals, and prodigy will no longer plan for it, and in particular will not selectany actions that will redundantly achieve it.Finally, when an action accidentally disachieves the e�ect of a previous action (and the changeis detectable), Rogue adds the change to prodigy's pending goals, forcing prodigy to replan.Take for example, a co�ee delivery scenario. The system picks up the co�ee, adding the literal(has-item coffee) to its knowledge base and deleting the goal (pickup-item coffee roomA).



If Rogue is now interrupted with a more important task, it suspends the co�ee delivery anddoes the other task. While doing the new task, the co�ee gets cold, making the literal (has-itemcoffee) untrue. When prodigy returns to the original task, it examines the next foreseeableaction: (deliver-item coffee roomB), discovers that a precondition is missing (it doesn't havethe co�ee) and will subgoal on re-achieving it.In this manner, Rogue is able to detect simple execution failures and compensate for them.Our research plan includes �nding methods of more informed replanning for a wider variety ofmore complex execution failures. The interleaving of planning and execution reduces the needfor replanning during the execution phase and increases the likelihood of overall plan success. Itallows the system to adapt to a changing environment where failures can occur.Related WorkFollowing is a brief description of some of the robot architectures most similar to Rogue, pointingout some of the major di�erences.pareto (Pryor 1994), can plan to acquire information and recognize opportunities in the en-vironment (as can Rogue), but relies on powerful, perfect sensing in a simulated world. It isalso not clear how pareto handles action failure. Plans for pareto are created up-front by acontingency planner which needs to reason about all possible failures, whereas Rogue exploits in-terleaved planning and execution and uses the actual outcome of an action to decide which branchof the plan to expand, not only reducing the total planning e�ort, but also the modelling e�ortsince not all failures need to be predicted.Gervasio's completable planning paradigm (Gervasio & DeJong 1996) also creates a completeplan up-front, but instead of creating contingency plans, invokes replanning upon failure. Rogueon the other hand interleaves planning with execution reducing both the initial planning and anyreplanning e�orts: a complete plan does not need to be constructed before execution can begin.Therefore the planner does not waste e�ort creating long plans that may be infeasible in a dynamicenvironment. In addition, Rogue is implemented on a real robot rather than a simulated one.Theo (Mitchell et al. 1990) is a system implemented on an indoor mobile robot which appliesexplanation-based learning to create stimulus-response rules. It does not support action interrup-tion or uncertainty in the domain, nor does it maintain a state history or modify the action model,nor can it handle sensor noise.RoboSoar (Laird et al. 1991; Tambe, Schwamb, & Rosenbloom 1995) was a system originallybuilt on a PUMA robot arm for blocksworld problems and has since been developed into a sim-ulated �ghter pilot. The system relies on perfect sensors and a human to tell it what features ofthe environment are relevant for replanning.ATLANTIS (Gat 1992) and rap (Firby 1994), like TCA, are architectures that enable a libraryof behaviours and reactions to be controlled by a deliberative system. The have been used as theunderlying control mechanism on a variety of robots, from indoor mobile robots (Gat 1992) to tospace station repair robots (Bonasso & Kortenkamp 1996) to unmanned spacecraft (Gat 1996).We believe that Rogue is the only such system that can support asynchronous goals, but sinceeach of these architectures is inherently extensible, the behaviours demonstrated by Rogue underTCA could be easily transferred to one of the other architectures.



SummaryIn this paper we have presented one aspect of Rogue, an integrated planning and executionrobot architecture. In particular, we have presented the methods by which Rogue incorporatesexecution information into its internal domain model to facilitate more intelligent and adaptiveplanning. The complete planning & execution cycle for a given task can be summarized as follows:1. Rogue requests a plan from prodigy.2. prodigy passes executable steps to Rogue.3. Rogue translates and sends the planning steps to Xavier.4. Rogue monitors execution and through observation identi�es goal status; failure means thatprodigy's domain model is modi�ed and prodigy may backtrack or replan for decisionsRogue represents a successful integration of a classical AI planner with a real mobile robot.Currently Rogue's features include the ability to:� receive asynchronous goal requests from multiple users� prioritize goals and focus planning on high priority goals until they are achieved, and then laterresume work on lower priority goals;� recognize similar goals and opportunistically achieve them;� interleave planning & execution to acquire data and monitor execution; and� deal with simple plan failures, such as arriving at an incorrect location.An autonomous agent with all of these features has clear advantages over more limited agents.Although there are a small number of other integrated architectures which support some of thesefeatures, none appear to support them all.This work is the basis for machine learning research with the goal of creating a complete agentthat can reliably perform tasks that it is given. We intend to implement more autonomous detec-tion of action failures and learning techniques to correct those failures. In particular, we wouldlike to learn contingency plans for di�erent situations and when to apply which correction be-haviour. We also intend to implement learning behaviour to notice patterns in the environment;for example, how long a particular action takes to execute, when to avoid particular locations (e.g.crowded hallways), and when sensors tend to fail. We would like, for example, to be able to say\At noon I avoid the lounge", or \My sonars always miss this door: : :next time I'll use vision", oreven something as apparently simple as \I can't do that task given what else I have to do."Prodigy has been successfully used as a test-bed for machine learning research many times(e.g. (P�erez 1995; Wang 1995; Veloso 1994)), and this is the primary reason why we selected it asthe deliberative portion of Rogue. Xavier's TCA architecture supports incremental behavioursand therefore will be a natural mechanism for supporting these learning behaviours.ReferencesAgre, P. E., and Chapman, D. 1987. Pengi: An implementation of a theory of activity. In Proceedings of AAAI-87,268{272. San Mateo, CA: Morgan Kaufmann.Blythe, J. 1994. Planning with external events. In de Mantaras, R. L., and Poole, D., eds., Proceedings of theTenth Conference on Uncertainty in Arti�cial Intelligence, 94{101. Seattle, WA: Morgan Kaufmann.Bonasso, R. P., and Kortenkamp, D. 1996. Using a layered control architecture to alleviate planning withincomplete information. In Proceedings of the AAAI Spring Symposium \Planning with Incomplete Informationfor Robot Problems", 1{4. Stanford, CA: AAAI Press.



Carbonell, J. G.; Knoblock, C. A.; and Minton, S. 1990. Prodigy: An integrated architecture for planning andlearning. In VanLehn, K., ed., Architectures for Intelligence. Hillsdale, NJ: Erlbaum. Also Available as TechnicalReport CMU-CS-89-189.desJardins, M. 1994. Knowledge development methods for planning systems. In AAAI-94 Fall Symposium Series:Planning and Learning: On to Real Applications.Firby, R. J. 1994. Task networks for controlling continuous processes. In Proceedings of AIPS-94, 49{54.Gat, E. 1992. Integrating planning and reacting in a heterogeneous asynchronous architecture for controllingreal-world mobile robots. In Proceedings of AAAI-92, 809{815.Gat, E. 1996. News from the trenches: An overview of unmanned spacecraft for AI researchers. In Proceedings ofthe AAAI Spring Symposium \Planning with Incomplete Information for Robot Problems", 5{12. Stanford, CA:AAAI Press.Gervasio, M. T., and DeJong, G. F. 1996. Completable planning: A curative learning approach to the imperfectdomain theory. In Proceedings of the AAAI Spring Symposium \Planning with Incomplete Information for RobotProblems", 13{16. AAAI Press.Gil, Y. 1992. Acquiring domain knowledge for planning by experimentation. Ph.D. Dissertation, School of ComputerScience, Carnegie Mellon University, Pittsburgh, PA. Also available as Technical Report CMU-CS-92-175.Haigh, K. Z., and Veloso, M. 1996. Interleaving planning and robot execution for asynchronous user requests. InProceedings of the AAAI Spring Symposium \Planning with Incomplete Information", 35{44. AAAI Press.Hammond, K.; Converse, T.; and Martin, C. 1990. Integrating planning and acting in a case-based framework.In Proceedings of AAAI-90, 292{297. San Mateo, CA: Morgan Kaufmann.Laird, J. E.; Yager, E. S.; Hucka, M.; and Tuck, C. M. 1991. Robo-Soar: An integration of external interaction,planning, and learning using Soar. Robotics and Autonomous Systems 8(1-2):113{29.McDermott, D. 1978. Planning and acting. Cognitive Science 2.Mitchell, T. M.; Allen, J.; Chalasani, P.; Cheng, J.; Etzioni, O.; Ringuette, M.; and Schlimmer, J. 1990. Theo: Aframework for self-improving systems. In VanLehn, K., ed., Architectures for Intelligence. Hilllsdale, NJ: Erlbaum.O'Sullivan, J., and Haigh, K. Z. 1994. Xavier. Carnegie Mellon University, Pittsburgh, PA. Manual, Version 0.2,unpublished internal report.P�erez, M. A. 1995. Learning Search Control Knowledge to Improve Plan Quality. Ph.D. Dissertation, School ofComputer Science, Carnegie Mellon University, Pittsburgh, PA. Available as Technical Report CMU-CS-95-175.Pryor, L. M. 1994. Opportunities and Planning in an Unpredictable World. Ph.D. Dissertation, NorthwesternUniversity, Evanston, Illinois. Also available as Technical Report number 53.Simmons, R.; Lin, L.-J.; and Fedor, C. 1990. Autonomous task control for mobile robots. In Proceedings of theIEEE Symposium on Reactive Control.Simmons, R. 1994a. Becoming increasingly reliable. In Proceedings of AIPS-94, 152{157.Simmons, R. 1994b. Structured control for autonomous robots. IEEE Transactions on Robotics and Automation10(1).Stone, P., and Veloso, M. 1995. User-guided interleaving of planning and execution. In Proceedings of the EuropeanWorkshop on Planning.Tambe, M.; Schwamb, K.; and Rosenbloom, P. S. 1995. Building intelligent pilots for simulated rotary wingaircraft. In Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral Representation.Veloso, M. M.; Carbonell, J.; P�erez, M. A.; Borrajo, D.; Fink, E.; and Blythe, J. 1995. Integrating planning andlearning: The prodigy architecture. Journal of Experimental and Theoretical Arti�cial Intelligence 7(1).Veloso, M. M. 1994. Planning and Learning by Analogical Reasoning. Springer Verlag. (Monograph of Ph.D.thesis, Carnegie Mellon University, 1992).Wang, X. 1995. Learning by observation and practice: An incremental approach for planning operator acquisition.In Proceedings of ML-95.


