Efficient Goal-Directed Exploration

Yury Smirnov Sven Koenig

ManuelaM. Veloso

Reid G. Simmons

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891
{smir, skoenig, mmyv, reids} @cs.cmu.edu

Abstract

If a state space is not completely known in advance, then
search algorithms have to explore it sufficiently to locate a
goal state and a path leading to it, performing therefore what
we call goal-directed exploration. Two paradigms of this
process are pure exploration and heuristic-driven exploita-
tion: the former approaches explore the state space using
only knowledge of the physically visited portion of the do-
main, whereas the latter approachestotally rely on heuristic
knowledge to guide the search towards goal states. Both
approaches have disadvantages: the first one does not uti-
lize available knowledge to cut down the search effort, and
the second one relies too much on the knowledge, even if
it is misleading. We have therefore developed a framework
for goal-directed exploration, called VECA, that combines
the advantagesof both approaches by automatically switch-
ing from exploitation to exploration on parts of the state
spacewhere exploitation does not perform well. VECA pro-
vides better performance guaranteesthan previously studied
heuristic-driven exploitation algorithms, and experimental
evidence suggeststhat this guarantee does not deteriorate its
average-case performance.

Introduction

Classica Al search agorithms are concerned with find-
ing action sequences that reach goal states from start states
in completely known state spaces. Often, however, state
spaces are not known in advance, and path finding ago-
rithms need to gather information in the world to locate a
goa stateand apathleadingtoit. Wecall search problemsof
this kind goal-directed exploration problems. Examples
include (A) mobile delivery robots that operate in initialy
unknown buildings, and (B) software agents that have to
find World Wide Web pages of agiven content by following
links from their current page.

Two paradigms of goal-directed exploration are pure
exploration and heuristic-driven exploitation: Pure ex-
ploration approaches explore the state space using only
knowledge of the physically visited portion of the domain.
Heuristic-driven exploitation approaches, on the other
hand, totally rely on heuristic knowledgeto guidethe search
towards goal states. Both approaches have disadvantages:
the first one does not utilize available knowledge to cut
down the search effort, and the second one relies too much
on the knowledge, even if it ismideading.

We therefore introduce an application-independent
framework for goa-directed exploration that can accom-
modate awide variety of heuristic-driven exploitation algo-
rithms and combines the advantages of both approaches:

The Variable Edge Cost Algorithm (VECA) monitors
whether the exploitation agorithm appears to perform
poorly on some part of thestate space, asindicated by theex-
istence of actionsthat have been executed alarge number of
times. If so, VECA restricts the choices of the exploitation
algorithmonthat part of the state space, thusforcingit toex-
plore the state space more. VECA provides a better perfor-
mance guarantee than previoudy studied heuristic-driven
exploitation algorithms, and mideading heuristic knowl-
edge can never completely deteriorate its performance. A
parameter of VECA determines when it startsto restrict the
exploitationa gorithm. Thisalowsonetotrade-off stronger
performance guarantees (in case the heuristic knowledgeis
mi sleading) and more freedom of the expl oitationalgorithm
(in case the quality of the heuristic knowledgeis good). In
its most stringent form, VECA's worst-case performance is
guaranteed to be asgood asthat of the best uninformed goal -
directed exploration algorithm. We present experimenta
evidence that suggests that VECA's performance guarantee
does not greetly deteriorate the average-case performance
of many previoudly studied heuristic-driven expl oitation al -
gorithms if they are used in conjunction with VECA; in
many cases, VECA even improved their performance.

Goal-Directed Exploration Problems

We use the following notation: S denotes the finite set of
states of the state space, Sqart € Sis the start state, and
G C Sisthe non-empty set of goal states. A(s) C A
is the set of actions that can be executed ins € S The
execution of a € A(s) in s has cost ¢(s, a) > 0 and results
in successor state succ(s,a). The goa distance gd(s) of s
is the smallest cost with which agoal state can be reached
from s. We assume that the goal distance of the start state
isfinite. We further assume that the state space isinvertible
(“undirected”), meaning that each action has an inverse
(called the “twin” of the action). The weight of the state
spaceisweight = > s> s C(S @), thesum of thecosts
of all actions.

If a € A(s) isunexploredin s, then ¢(s, &) and succ(s, a)
are unknown. To explore the action, the algorithm has to
execute itins. We assume that thisreveals only ¢(s, a) and
succ(s, a), but no additional information. Initially, heuristic
knowledge about the effects of actionsisavailablein form
of estimates of the goal distances. Classical Al search algo-
rithms attach heuristic valuesto states. Thiswould force us
to evaluate an unexplored action a € A(s) in s according to
the heuristic value of s, since both c(s, a) and succ(s, a) are
not yet known. Wethereforeattach heuristicvaluesh(s, a) to

actionsinstead; they are estimates of c(s, a) +gd(succ(s, a)),
the smallest cost of getting from sto agoal state when first
executing a. If all h(s,a) are zero, then the algorithm is
uninformed.

The goal-directed expl oration problem can now be stated
asfollows:

TheGoal-Directed Exploration Problem: Getan
agent from sqort toastatein Gif all actionsareinitially
unexplored in al states, but heuristic estimates h(s, a)
aregiven.

We measure the performance of goal-directed exploration
algorithmsby the costs of their pathsfrom the start stateto a
goa state. This performance measure isredlistic, since the
cost of executing actions often dominates the deliberation
cost of goal-directed exploration agorithms.

Previous Approaches

In this section, we describe two approaches to goal-
directed exploration: one pure exploration agorithm and
one heuristic-based exploitation al gorithm.*

A Pure Exploration Approach

Pure exploration approaches explore dl actions. They have
no notion of goal states and consequently do not use any
prior knowledge to guide the search towards them. They
can be used for goal -directed expl oration, because they visit
all states during their exploration, including the goal states.
The following algorithm, whose exact origin is unclear, is
an example. (Deng & Papadimitriou 1990) and (Korach,
Kutten, & Moran 1990) stated it explicitly as a search a-
gorithm, but it has been used earlier as part of proofs about
Eulerian tours, for example in (Hierholzer 1873).

BETA (“Buildinga Eulerian Tour” Algorithm):
Take unexplored actions whenever possible (ties can
be broken arbitrarily). If al actionsin the current state
have been explored, execute the initia sequence of
actions again, thistime stopping at all states that have
unexplored actionsand apply thealgorithmrecursively
from each such state.

BETA executes every action a most twice (Deng & Pa
padimitriou 1990). Thisimpliesthe following theorem:

Theorem 1 BETA solves any goal-directed exploration
problemwith a cost of @(1) x weight (to be precise: witha
cost of at most 2 x weight).

BETA does not make use of any prior knowledgeto guide
the search towards a goal state, although such knowledge
can cut down the search effort and isoften readily available.
However, BETA provides a gold standard for the perfor-
mance evaluation of goal-directed exploration algorithms,

lother approaches have, for example, been discussed in
theoretical computer science (Betke, Rivest, & Singh 1995;
Blum, Raghavan, & Schieber 1991; Deng, Kameda, & Papadim-
itriou 1991), robotics (Rao et al. 1986; L umelsky, Mukhopadhyay,
& Sun 1990; Rao, Stoltzfus, & lyengar 1991), and artificial intel-
ligence (Thrun 1992; Sutton 1990; Moore & Atkeson 1993a).

since no uninformed goa-directed exploration algorithm
can do better in the worst case (Koenig & Smirnov 1996).

A Heuristic-Driven Exploitation Approach

Heuristic-driven exploitation approaches rely on heuristic
knowledge to guide the search towards a goal state. The
following agorithm is an example. It uses the A* ago-
rithm to find a path to an unexplored action in the currently
known part of the state space, moves the agent to that ac-
tion, makes it execute the action, and repesats the process.
This represents the idea behind agorithms such as Incre-
mental Best-First Search (Pemberton & Korf 1992) and
the Dynamic A* algorithm (Stentz 1995). The Learning
Real-Time A* dgorithm (Korf 1990), Prioritized Sweeping
(Moore & Atkeson 1993b), and the navigation method de-
scribedin(Benson & Prieditis1992) are fast approxi mations
of these algorithms.

AC-A* (Agent-Centered A* Algorithm): Con-
sider all action sequences from the current state to an
unexplored action. Select an action sequence with
minimal cost from these sequences, where the cost of
an action sequence is defined to be the sum of the cost
of getting from the current state to s plus h(s, a) (ties
can bebrokenarbitrarily). Execute the action sequence
and the unexplored action, and repeat the process until
agoal state is reached.

AC-A* isvery versatile: 1t can be used to search com-
pletely known, partially known, or completely unknown
state spaces and is able to make use of knowledge that it
acquires during the search. For example, if one informsit
about the effects of some actions, it automatically utilizes
thisinformation during the remainder of its search.

The actions of AC-A* are optimal under the assumption
that it hasto exploreonly one more action. However, itsbe-
havior isnot globally optimal: The worst-case performance
of uninformed AC-A*, for example, increases faster than
the weight of the state space and is thus worse than that of
BETA (Koenig & Smirnov 1996):

Theorem 2 The worst-case complexity of uninformed AC-
. lof .
A* is Q(Ioglgolgs||s|) x weight.

Thus, the ability of AC-A* to use heuristic knowledge
comes at the cost of a performance lossin theworst case if
such knowledgeis not available. Another disadvantage of
AC-A* isthat misleading heuristic values, even if they are
consistent and thus admissible, can degradeits performance
so much that it becomes worse than that of uninformed AC-
A* and that of BETA (Smirnov et al. 1996). This does
not imply, of course, that one should never use AC-A*.
If AC-A* istotally informed, for example, it finds a goal
state with cost gd(S«art) and thus cannot be outperformed
by BETA or any other goal-directed exploration algorithm.
The problemwith AC-A* isthat it takes the heuristic values
at face value, even if its experience with them suggests that
they should not be trusted.

Figure 2: A Simple Example State Space

the pair for the first time). Whenever the pair is executed
again, Basic-VECA assigns the executed action (but not its
twin) an infinite VECA cost, which effectively removes it.
The VECA costs are used as follows: Basic-VECA always
chooses a sequence of actions with minimal VECA cost
that leads from its current state to an unexplored action or,
alternatively, to an action with zero VECA cost. The ex-
ploitationalgorithmisusedtobreak ties. Initialy, al VECA
costs are zero and there are lots of ties to break. The more
actions Basic-VECA assigns non-zero VECA costs to, the
fewer ties there are and the less freedom the exploitation
algorithm has.

To gain an intuitive understanding of the behavior of
Basic-VECA, consider asimple case, namely atree-shaped
state space, and assume that Basic-VECA uses step 3. Fig-
ure 2 shows a pair of twin edges, a and &', that connect
two components of the tree, X and Y. The exploitation al-
gorithm can execute a fredly until it and itstwin &’ together
have been executed a total of k times. Then, Basic-VECA
assigns both actions the same positive VECA cost. At this
point in time, the agent islocated in X (the component that
contains the start state), since k is even and the agent alter-
nates between both components. If Y does not contain any
more unexplored actions, neither a nor &’ will be executed
again. Otherwisethereisapointintimewhen Basic-VECA
executes a again to reach one of those unexplored actions.
When this happens, Basic-VECA prevents the exploitation
algorithm from leaving Y until all actionsinY have been
explored (thisrestriction of the freedom of the exploitation
algorithm constitutes a switch from exploitation to more
exploration): Because Y can only be entered by executing
a, this action was executed before any action in Y. Conse-
quently, its reserved VECA cogt, which is aso its current
VECA cogt, islarger than the reserved VECA cost of any
actioninY. Thereserved VECA costs are exponentially de-
creasing: 27' > Ej>i 27! for dl finitei,j > 0. Thus, any
action sequence that does not leave Y has a smaller VECA
cost than any action sequence that does, and Basic-VECA
cannot leave Y until all of Y’s actions have been explored.
When Basic-VECA hasfindly left Y, the VECA costs of a
and & are infinite, but there is no need to enter or exit Y
again.

In general, Basic-VECA executes every pair of twin ac-
tionsatotal of at most k+ 2 timesbeforeit findsagoa state
(Smirnov et al. 1996). Thisimpliesthe following theorem:

Theorem 3 Under the assumption that executing an action
also identifiesits twin, Basic-VECA, with even parameter
k > 0, solves any goal-directed exploration problemwith a

Input:
agoal-directed exploration problem,
the value of VECA's parameter k (a non-negative, even integer),
and aheuristic-driven exploitation algorithm (to be used in step 3).

VECA uses four variables for each action a in state s: count(s, a) keeps track of how often the

action has been executed, reserve(s, a) isitsreserved VECA cost, cost(s, a) isitsactual VECA

cost, and euler (s, @) remembers whether it has already been executed as part of step 4(e).

1. Setcount(s, a) := cost(s, @) := euler(s,a) := Oforals € Sanda € A(s). Seti := 0and
S = Setart-

2. If s € G, then stop successfully.

3. Consider al cycle-less action sequences starting at s and ending with an unexplored ac-

tion. Select an action sequence with minimal VECA cost from these sequences, using the
heuristic-driven exploitation algorithm to break ties.

4. Consider all actions in the action sequence, one after another. For each action a in the
sequence, do:
(@) Executeains.
(b) Set count(s, a) := count(s, a) + 1.
(c) If count(s, @ = 1 and the twin of ain s is not yet known, then seti := i + 1 and
afterwards reserve(s, a) := 2.
(d) If count(s, @) = 1 and the twin of ainsisknown, then let a e A(s’) be the twin of a
ins. If count(s', a’) =0, thenseti := i + 1 and afterwards reserve(s, a) := 2, else
set reserve(s, a) = raserve(s', a’)A
(e) If count(s, @) > kandthetwinof ainsisnot yet known, then do:
i. Sets' = succ(s, a).
ii. Select an actiona’’ ins'’ with euler(s”, a”) = 0. If there is no such action, then
go to step 4(f) (comment: it holds that s = succ(s, a)).
iii. Executea’’ ins'’.
iv. Seteuler(s’,a'’) =1
v. Sets' = succ(s’’,).
vi. Go to step 4(e)ii.
(f) If thetwinof ain sisknown, then let a e A(s’) be the twin of ain sand do:
i. If count(s, @) + count(s', a’) > kand cost(s,a) = 0, then set cosi(s,a) :=
cost(s’, a') 1= reserve(s, a).
ii. If count(s, a) + count(s’, a’) > k, then set cost(s, @) := co.
(g) Sets:= succ(s, a).
5. Gotostep 2.
Alternatively, step 3 can be replaced by:

3 Consider all cycle-lessaction sequences starting at sand ending with an action whose VECA
cost is zero. Select an action sequence with minimal VECA cost from these sequences,
using the heuristic-driven exploitation algorithm to break ties.

Figure3: The VECA Framework

cost of @(1) x weight (to be precise: with a cost of at most
(k/2+1) x weight).

A larger k alows the exploitation algorithm to maintain
itsorigina behavior longer, whereasasmaller kforcesit ear-
lier to explorethestate space more. Thesmaller thevaueof
k, the better the performance guarantee of Basic-VECA. If
k =0, for example, Basic-VECA severely restrictsthe free-
dom of the expl oitation algorithm and behaves like chrono-
logical backtracking. In thiscase, it executes every action
at most once (for atotal cost of weight), no matter how mis-
leading its heuristic knowledgeis or how bad the choi ces of
theexpl oitationalgorithmare. No uninformedgoal -directed
exploration agorithm can do better in the worst case even
if executing an action also identifies its twin. However,
if the heuristic values are not mideading, a small value of
k can force the exploitation algorithm to explore the state
space unnecessarily. Thus, a stronger performance guaran-
tee might come at the expense of a decrease in average-case
performance. The experiments in the section on “Experi-
mental Results’ address thisissue.

VECA isvery similar to Basic-VECA, see Figure 3. In
contrast to Basic-VECA, however, it does not assume that
executing an action identifies its twin. This complicates
the algorithm somewhat: First, the twin of an action might
not be known when VECA reserves a VECA cost for the
pair. This requires an additional amount of bookkeeping.
Second, the twin of an action might not be known when
VECA wants to assign it the VECA cost. In this case,
VECA is forced to identify the twin: step 4(e) explores
all actionsin the state that contains the twin (including the
twin) and returns to that state. This procedure is executed
only rarely for larger k, sinceit isamost never the case that
the twin of an action that has aready been executed k times
is not yet known. Because of this step, though, VECA can
potentially execute any action one more time than Basic-
VECA, which implies the following theorem (Smirnov et
al. 1996):

Theorem 4 VECA, with even parameter k > 0, solves any
goal-directed exploration problem with a cost of ©(1) x
weight (to be precise: with a cost of at most (k/2 + 2) x
weight).

For k = 0, VECA executes every action at most twice.
Thus, its worst-case performance is at most 2 x weight
and equal s the worst-case performance of BETA. No unin-
formed goal-directed exploration algorithm can do better in
the worst case if executing an action does not identify its
twin.

Implementation

Sincethe VECA costs are exponentially decreasing and the
precision of numberson acomputer islimited, Basic-VECA
and VECA cannot beimplemented exactly as described. In-
stead, we represent action sequences as liststhat contain the
current VECA costs of their actions in descending order.
All action sequences of minima VECA cost then have the
smallest lexicographicorder. Since thisrelationship contin-
uesto holdif wereplacethe VECA costs of the actionswith
their exponent (for example, we use —3 if the VECA cost
of an action is 1/8 = 23%), we can now use small integers
instead of exponentially decreasing real values, and steps 3
and 3' can be implemented efficiently using a simple modi-
fication of Dijkstra’s algorithm in conjunction with priority
lists.

Experimental Results

We augment our theoretical worst-case analysis with an
experimental average-case anaysis, because the worst-
case complexity of an agorithm often does not predict its
average-case performance well. The task that we studied
wasfinding goalsin mazes. The mazes were constructed by
first generating an acyclic maze of size 64 x 64 and then ran-
domly removing 32 walls. The action costs corresponded to
thetravel distances; the shortest distance between two junc-
tions counted as one unit. We randomly created ten mazes
with start location (62,62), god location (0,0), diameters
between 900 and 1000 units, and goal distances of the start
state between 650 and 750 units. For every goal-directed
exploration algorithm, we performed ten trias in each of

8000

AC-A* for Manhattan Distance [1] —
AC-A* with VECA for k=4 and Manhattan Distance [2] -----

7000

6000

5000

4000 -

Average Performance

3000 -

2000

1000 -

. . .
0 20 40 60 80 100
Quality of Heuristic Values (100 t)

Figure 4: AC-A* with and without VECA

the ten mazes (with tiesbroken randomly). We repeated the
experimentsfor different values of VECA's parameter k and
for heuristicvalues h(s, a) of different quality. The heuristic
values were generated by combining the goal distance gd(s)
of a state s with its Manhattan distance mh(s), the sum of
the x and y distance from s to the goal state. A parameter
t € [0, 1] determined how misleading the heuristic values
were; asmaller timplied alower quality:

h(s,a) = c(s,a) + t x gd(succ(s,a)) + (1 — t) x mh(succ(s, @))-

Here, wereport theresultsfor two heuristic-drivenexploita

tionagorithms, namely AC-A* and Learning Real-Time A*
(LRTA*) with look-ahead one (Korf 1990). We integrated
thesealgorithmsintotheVVECA framework asfollows: AC-
A* was used with step 3 of VECA and broke ties among
action sequences according to their total cost (see the defi-
nition of AC-A*). LRTA* was used with step 3' of VECA
and broke ties according to the heuristic value of the last
action in the sequence. These ways of integrating AC-A*
and LRTA* with VECA are natural extensions of the stand-
alone behavior of these agorithms. If the heuristic values
are misleading, AC-A* ismore efficient than LRTA* (this
is to be expected, since AC-A* deliberates more between
action executions). Asaresult, VECA was ableto improve
the average-case performance of LRTA* more than it could
improve the performance of AC-A*.

Figure 4 shows the average-case performance of AC-A*
with and without VECA (including 95 percent confidence
intervals). The x axis shows 100 x t, our measure for the
quality of the heuristic values, and the y axis shows the
average travel distance from the start to the goal, averaged
over al 100trias. All graphstend to decrease for increasing
t, implyingthat the performance of the a gorithmsincreased
with the quality of the heuristic values (as expected). AC-
A* without VECA was already efficient and executed each
action only a small number of times. Thus, VECA did
not change the behavior of AC-A* when k was large. For
example, for k = 10, the behavior of AC-A* with VECA
(not shown in the figure) was the same as the behavior of
AC-A* without VECA. The graphs for k = 4 suggest that
AC-A* with VECA outperforms AC-A* without VECA if
the heuristic values are of bad quality and that it remains
competitive even for heuristic values of higher quality.

70000

LRTA* for Manhattan Distance [1] —
LRTA* with VECA for k=20 and Manhattan Distance [2] -----
LRTA* with VECA for k=10 and Manhattan Distance [3] ~--
60000 |- LRTA* with VECA for k=4 and Manhattan Distance [4] -~

50000 [
40000

11

30000 -

Average Performance

20000 -

10000 [

40 60 80 100
Quality of Heuristic Values (100 t)

Figure5: LRTA* with and without VECA

Figure 5 shows the average-case performance of LRTA*
with and without VECA. As before, the performance of
the algorithms increased with the quality of the heuristic
values. The graphs show that, most of the time, LRTA*
with VECA outperformed or tied with LRTA* without
VECA. For mideading heuristic values (small t), LRTA*
with VECA worked the better, the smaller the value of
VECA's parameter k was. However, for only moderately
misleading heuristic values (t between 0.3 and 0.5), alarger
valueof kachieved better resultsand LRTA* without VECA
even outperformed LRTA* withVECA if kwassmall. This
was the case, because the heuristic val ues guided the search
better and a small value of k forced LRTA* to explore the
state space too much.

We obtai ned similar resultsfor both experimentswhen we
generated the heuristic valuesdifferently, for example asthe
combination of thegoal distance and the Euclidean distance
or thegod distance and thelarger coordinate difference be-
tween a state and the goal. We also performed experiments
with other heuristic-driven expl oitation algorithms, such as
biased random walks or an algorithm that expandsthe states
in the same order as the A* agorithm. Since both of these
algorithms are inefficient to begin with, VECA was able
to achieve large performance improvements for misleading
heuristic values.

Extensions

In this paper, we have assumed that a goal-directed explo-
ration a gorithmlearnsonly theeffect of theexecuted action,
but not the effects of any other actions. However, Basic-
VECA and VECA can be used unchanged in environments
in which action executions provide more information (such
as, for example, complete information about the effects of
all actionsin thevicinity of the agent) and Theorems 3 and
4 continueto hold.

Conclusion

We introduced an application-independent framework for
goal-directed exploration, called VECA, that addresses a
variety of search problemsin the same framework and pro-
vides good performance guarantees. VECA can accom-

modate a wide variety of exploitation strategies that use
heuristic knowledge to guide the search towards a goa
state. It monitors whether the heuristic-driven exploita-
tion agorithm appears to perform poorly on some part of
the state space. If <o, it forces the exploitation algorithm
to explore the state space more. This combines the advan-
tages of pure exploration approaches and heuristic-driven
exploitation approaches: VECA is able to utilize heuris-
tic knowledge, but providesabetter performance guarantee
than previously studied heuristic-driven exploitation a go-
rithms (such as the AC-A* agorithm): VECA'sworst-case
performanceisawayslinear in theweight of the state space.
Thus, whilemisleading heuristic valuesdo not helpit tofind
agoad statefaster, they cannot completely deteriorateitsper-
formance either. A parameter of VECA determines when
it starts to restrict the choices of the heuristic-driven ex-
ploitation algorithm. This alows one to trade-off stronger
performance guarantees (in case the heuristic knowledgeis
mi sl eading) and more freedom of the expl oitational gorithm
(in case the quality of the heuristic knowledgeis good). In
its most stringent form, VECA's worst-case performance
is guaranteed to be as good as that of BETA, the best un-
informed goa -directed exploration algorithm. Our experi-
ments suggest that VECA's performance guarantee does not
greatly deteriorate the average-case performance of many
previously studied heuristic-driven exploitation algorithms
if they are used in conjunction with VECA; in many cases,
VECA even improved their performance. In future work,
we will study the influence of domain properties on the
performance of goal-directed exploration agorithmsin the
VECA framework.

Acknowledgements

This research is sponsored in part by the Wright Labo-
ratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, the Advanced Research Projects Agency
under grant number F33615-93-1-1330 and the Nationa
Science Foundation under grant number |RI-9502548. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the officia policies, either expressed or implied, of the
sponsoring organizations or the U.S. government.

References

Benson, G., and Prieditis, A. 1992. Learning continuous-
space navigation heuristicsin real time. In Proceedings of
the Conference on Smulationof Adaptive Behavior (SAB):
From Animalsto Animats.

Betke, M.; Rivest, R.; and Singh, M. 1995. Piecemesl
learning of an unknown environment. Machine Learning
18(2/3).

Blum, A.; Raghavan, P; and Schieber, B. 1991. Naviga-
tioninunfamiliar terrain. In Proceedings of the Symposium
on Theory of Computing (STOC), 494-504.

Deng, X., and Papadimitriou, C. 1990. Exploring an
unknown graph. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), 355-361.

Deng, X.; Kameda, T.; and Papadimitriou, C. 1991. How
to learn an unknown environment. In Proceedings of the
Symposiumon Foundations of Computer Science (FOCS).

Hierholzer, C. 1873. Uber die Moglichkeit, einen Lin-
ienzug ohne Wiederholung und ohne Unterbrechung zu
umfahren. Mathematische Annalen 6:30-32.

Koenig, S., and Smirnov, Y. 1996. Graph learning with a
nearest neighbor approach. In Proceedings of the Confer-
ence on Computational Learning Theory (COLT).

Korach, E.; Kutten, S.; and Moran, S. 1990. A modu-
lar technique for the design of efficient distributed |eader
finding algorithms. ACM Transactions on Programming
Languages and Systems 12(1):84-101.

Korf, R. 1990. Red-time heuristic search. Artificial
Intelligence 42(2-3):189-211.

Lumelsky, V.; Mukhopadhyay, S.; and Sun, K. 1990.
Dynamic path planningin sensor-based terrain acquisition.
| EEE Transactionson Robotics and Automation 6(4):462—
472.

Moore, A., and Atkeson, C. 1993a. The parti-game al-
gorithm for variable resolution reinforcement learning in
multidimensional state spaces. In Advances in Neural In-
formation Processing Systems 6 (NIPS).

Moore, A., and Atkeson, C. 1993b. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103-130.

Pemberton, J., and Korf, R. 1992. Incrementa path plan-
ning on graphs with cycles. In Proceedings of the Al
Planning Systems Conference (AIPS), 179-188.

Rao, N.; lyengar, S.; Jorgensen, C.; and Weishin, C. 1986.
Robot navigation in an unexplored terrain. Journal of
Robotic Systems 3(4):389-407.

Rao, N.; Stoltzfus, N.; and lyengar, S. 1991. A “retrac-
tion” method for learned navigation in unknown terrains
for acircular robot. |EEE Transactions on Robotics and
Automation 7(5):699-707.

Smirnov, Y.; Koenig, S.; Veloso, M. M.; and Simmons,
R. G. 1996. God-directed exploration in the VECA
framework. Technical report, School of Computer Sci-
ence, Carnegie Méellon University.

Stentz, A. 1995. The focussed D* agorithm for real-
time replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1652—-1659.

Sutton, R. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the International Con-
ference on Machine Learning (ICML), 216-224.

Thrun, S. 1992. Efficient exploration in reinforcement
learning. Technica Report CMU-CS-92-102, School of
Computer Science, Carnegie Mellon University.

