
Efficient Goal-Directed Exploration
Yury Smirnov Sven Koenig Manuela M. Veloso Reid G. Simmons

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891�
smir, skoenig, mmv, reids � @cs.cmu.edu

Abstract

If a state space is not completely known in advance, then
search algorithms have to explore it sufficiently to locate a
goal state and a path leading to it, performing therefore what
we call goal-directed exploration. Two paradigms of this
process are pure exploration and heuristic-driven exploita-
tion: the former approaches explore the state space using
only knowledge of the physically visited portion of the do-
main, whereas the latter approaches totally rely on heuristic
knowledge to guide the search towards goal states. Both
approaches have disadvantages: the first one does not uti-
lize available knowledge to cut down the search effort, and
the second one relies too much on the knowledge, even if
it is misleading. We have therefore developed a framework
for goal-directed exploration, called VECA, that combines
the advantages of both approaches by automatically switch-
ing from exploitation to exploration on parts of the state
space where exploitation does not perform well. VECA pro-
vides better performance guarantees than previously studied
heuristic-driven exploitation algorithms, and experimental
evidence suggests that this guarantee does not deteriorate its
average-case performance.

Introduction
Classical AI search algorithms are concerned with find-
ing action sequences that reach goal states from start states
in completely known state spaces. Often, however, state
spaces are not known in advance, and path finding algo-
rithms need to gather information in the world to locate a
goal state and a path leading to it. We call search problems of
this kind goal-directed exploration problems. Examples
include (A) mobile delivery robots that operate in initially
unknown buildings, and (B) software agents that have to
find World Wide Web pages of a given content by following
links from their current page.

Two paradigms of goal-directed exploration are pure
exploration and heuristic-driven exploitation: Pure ex-
ploration approaches explore the state space using only
knowledge of the physically visited portion of the domain.
Heuristic-driven exploitation approaches, on the other
hand, totally rely on heuristic knowledge to guide the search
towards goal states. Both approaches have disadvantages:
the first one does not utilize available knowledge to cut
down the search effort, and the second one relies too much
on the knowledge, even if it is misleading.

We therefore introduce an application-independent
framework for goal-directed exploration that can accom-
modate a wide variety of heuristic-driven exploitation algo-
rithms and combines the advantages of both approaches:

The Variable Edge Cost Algorithm (VECA) monitors
whether the exploitation algorithm appears to perform
poorly on some part of the state space, as indicated by the ex-
istence of actions that have been executed a large number of
times. If so, VECA restricts the choices of the exploitation
algorithm on that part of the state space, thus forcing it to ex-
plore the state space more. VECA provides a better perfor-
mance guarantee than previously studied heuristic-driven
exploitation algorithms, and misleading heuristic knowl-
edge can never completely deteriorate its performance. A
parameter of VECA determines when it starts to restrict the
exploitationalgorithm. This allows one to trade-off stronger
performance guarantees (in case the heuristic knowledge is
misleading) and more freedom of the exploitation algorithm
(in case the quality of the heuristic knowledge is good). In
its most stringent form, VECA’s worst-case performance is
guaranteed to be as good as that of the best uninformed goal-
directed exploration algorithm. We present experimental
evidence that suggests that VECA’s performance guarantee
does not greatly deteriorate the average-case performance
of many previously studied heuristic-driven exploitation al-
gorithms if they are used in conjunction with VECA; in
many cases, VECA even improved their performance.

Goal-Directed Exploration Problems
We use the following notation: S denotes the finite set of
states of the state space, sstart � S is the start state, and
G � S is the non-empty set of goal states. A(s) � A
is the set of actions that can be executed in s � S. The
execution of a � A(s) in s has cost c(s � a) � 0 and results
in successor state succ(s � a). The goal distance gd(s) of s
is the smallest cost with which a goal state can be reached
from s. We assume that the goal distance of the start state
is finite. We further assume that the state space is invertible
(“undirected”), meaning that each action has an inverse
(called the “twin” of the action). The weight of the state
space is weight = � s � S � a � A(s) c(s � a), the sum of the costs
of all actions.

If a � A(s) is unexplored in s, then c(s � a) and succ(s � a)
are unknown. To explore the action, the algorithm has to
execute it in s. We assume that this reveals only c(s � a) and
succ(s � a), but no additional information. Initially, heuristic
knowledge about the effects of actions is available in form
of estimates of the goal distances. Classical AI search algo-
rithms attach heuristic values to states. This would force us
to evaluate an unexplored action a � A(s) in s according to
the heuristic value of s, since both c(s � a) and succ(s � a) are
not yet known. We therefore attach heuristic values h(s � a) to

actions instead; they are estimates of c(s � a)+gd(succ(s � a)),
the smallest cost of getting from s to a goal state when first
executing a. If all h(s � a) are zero, then the algorithm is
uninformed.

The goal-directed exploration problem can now be stated
as follows:

The Goal-Directed Exploration Problem: Get an
agent from sstart to a state in G if all actions are initially
unexplored in all states, but heuristic estimates h(s � a)
are given.

We measure the performance of goal-directed exploration
algorithms by the costs of their paths from the start state to a
goal state. This performance measure is realistic, since the
cost of executing actions often dominates the deliberation
cost of goal-directed exploration algorithms.

Previous Approaches
In this section, we describe two approaches to goal-
directed exploration: one pure exploration algorithm and
one heuristic-based exploitation algorithm.1

A Pure Exploration Approach
Pure exploration approaches explore all actions. They have
no notion of goal states and consequently do not use any
prior knowledge to guide the search towards them. They
can be used for goal-directed exploration, because they visit
all states during their exploration, including the goal states.
The following algorithm, whose exact origin is unclear, is
an example. (Deng & Papadimitriou 1990) and (Korach,
Kutten, & Moran 1990) stated it explicitly as a search al-
gorithm, but it has been used earlier as part of proofs about
Eulerian tours, for example in (Hierholzer 1873).

BETA (“Building a Eulerian Tour” Algorithm):
Take unexplored actions whenever possible (ties can
be broken arbitrarily). If all actions in the current state
have been explored, execute the initial sequence of
actions again, this time stopping at all states that have
unexplored actions and apply the algorithm recursively
from each such state.

BETA executes every action at most twice (Deng & Pa-
padimitriou 1990). This implies the following theorem:

Theorem 1 BETA solves any goal-directed exploration
problem with a cost of

�
(1) � weight (to be precise: with a

cost of at most 2 � weight).

BETA does not make use of any prior knowledge to guide
the search towards a goal state, although such knowledge
can cut down the search effort and is often readily available.
However, BETA provides a gold standard for the perfor-
mance evaluation of goal-directed exploration algorithms,

1Other approaches have, for example, been discussed in
theoretical computer science (Betke, Rivest, & Singh 1995;
Blum, Raghavan, & Schieber 1991; Deng, Kameda, & Papadim-
itriou 1991), robotics (Rao et al. 1986; Lumelsky, Mukhopadhyay,
& Sun 1990; Rao, Stoltzfus, & Iyengar 1991), and artificial intel-
ligence (Thrun 1992; Sutton 1990; Moore & Atkeson 1993a).

since no uninformed goal-directed exploration algorithm
can do better in the worst case (Koenig & Smirnov 1996).

A Heuristic-Driven Exploitation Approach

Heuristic-driven exploitation approaches rely on heuristic
knowledge to guide the search towards a goal state. The
following algorithm is an example. It uses the A* algo-
rithm to find a path to an unexplored action in the currently
known part of the state space, moves the agent to that ac-
tion, makes it execute the action, and repeats the process.
This represents the idea behind algorithms such as Incre-
mental Best-First Search (Pemberton & Korf 1992) and
the Dynamic A* algorithm (Stentz 1995). The Learning
Real-Time A* algorithm (Korf 1990), Prioritized Sweeping
(Moore & Atkeson 1993b), and the navigation method de-
scribed in (Benson & Prieditis 1992) are fast approximations
of these algorithms.

AC-A* (Agent-Centered A* Algorithm): Con-
sider all action sequences from the current state to an
unexplored action. Select an action sequence with
minimal cost from these sequences, where the cost of
an action sequence is defined to be the sum of the cost
of getting from the current state to s plus h(s � a) (ties
can be broken arbitrarily). Execute the action sequence
and the unexplored action, and repeat the process until
a goal state is reached.

AC-A* is very versatile: It can be used to search com-
pletely known, partially known, or completely unknown
state spaces and is able to make use of knowledge that it
acquires during the search. For example, if one informs it
about the effects of some actions, it automatically utilizes
this information during the remainder of its search.

The actions of AC-A* are optimal under the assumption
that it has to explore only one more action. However, its be-
havior is not globally optimal: The worst-case performance
of uninformed AC-A*, for example, increases faster than
the weight of the state space and is thus worse than that of
BETA (Koenig & Smirnov 1996):

Theorem 2 The worst-case complexity of uninformed AC-
A* is � (log � S �

log log � S �) � weight.

Thus, the ability of AC-A* to use heuristic knowledge
comes at the cost of a performance loss in the worst case if
such knowledge is not available. Another disadvantage of
AC-A* is that misleading heuristic values, even if they are
consistent and thus admissible, can degrade its performance
so much that it becomes worse than that of uninformed AC-
A* and that of BETA (Smirnov et al. 1996). This does
not imply, of course, that one should never use AC-A*.
If AC-A* is totally informed, for example, it finds a goal
state with cost gd(sstart) and thus cannot be outperformed
by BETA or any other goal-directed exploration algorithm.
The problem with AC-A* is that it takes the heuristic values
at face value, even if its experience with them suggests that
they should not be trusted.

Input:
a goal-directed exploration problem,

the value of VECA’s parameter k (a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

Basic-VECA uses three variables for each action a in state s: count(s � a) keeps track of how
often the action has been executed, reserve(s � a) is its reserved VECA cost, and cost(s � a) is its
actual VECA cost.

1. Set count(s � a) := cost(s � a) := 0 for all s
�

S and a
�

A(s). Set i := 0 and s := sstart .

2. If s
�

G, then stop successfully.

3. Consider all cycle-less action sequences starting at s and ending with an unexplored ac-
tion. Select an action sequence with minimal VECA cost from these sequences, using the
heuristic-driven exploitation algorithm to break ties.

4. Consider all actions in the action sequence, one after another. For each action a in the
sequence, do:

(a) Execute a in s. Let a
� �

A(s
�
) be the twin of a in s.

(b) Set count(s � a) := count(s � a) + 1.

(c) If count(s � a) + count(s
� � a �) = 1, then set i := i + 1 and afterwards reserve(s � a) :=

reserve(s
� � a �) := 2 � i .

(d) If count(s � a) + count(s
� � a �) � k and cost(s � a) = 0, then set cost(s � a) :=

cost(s
� � a �) := reserve(s � a).

(e) If count(s � a) + count(s
� � a �) � k, then set cost(s � a) := � .

(f) Set s := succ(s � a).

5. Go to step 2.

Alternatively, step 3 can be replaced by:

3’ Consider all cycle-less action sequences starting at s and ending with an action whose VECA
cost is zero. Select an action sequence with minimal VECA cost from these sequences,
using the heuristic-driven exploitation algorithm to break ties.

Figure 1: The Basic-VECA Framework

Our Approach: The VECA Framework
We have developed a framework for goal-directed explo-
ration, called the Variable Edge Cost Algorithm (VECA),
that can accommodate a wide variety of heuristic-driven ex-
ploitation algorithms (including AC-A*). VECA relies on
the exploitation algorithm and thus on the heuristic values
until they prove to be misleading. To this end, it monitors
the behavior of the exploitation algorithm and uses a pa-
rameter k to determine when the freedom of the exploitation
algorithm should get restricted. If an action and its twin to-
gether have been executed k times or more, VECA restricts
the choices of the exploitation algorithm on that part of the
state space, thus forcing it to explore the state space more.
As a result, VECA switches gradually from exploitation to
exploration and relies less and less on misleading heuristic
values.

We describe VECA in two stages. We first discuss a
simple version of VECA, called Basic-VECA, that assumes
that executing an action also identifies its twin. Later, we
drop this assumption. Basic-VECA is described in Figure 1.
It maintains a cost for each action that is different from the
cost c(s � a). These VECA costs guide the search. Initially,
all of them are zero. Whenever Basic-VECA executes a
pair of twin actions for the first time (i.e. it executes one of
the two actions for the first time and has not yet executed
the other one), it reserves a VECA cost for them, that will
later become their VECA cost. The first pair of twin ac-
tions gets a cost of 1/2 reserved, the second pair a cost of
1/4, the third pair a cost of 1/8, and so on. Basic-VECA
assigns the reserved cost to both twin actions when it exe-
cutes the pair for the kth time (or, if k = 0, when it executes

component Ycomponent X

sstart s action a

action a’

s’

Figure 2: A Simple Example State Space

the pair for the first time). Whenever the pair is executed
again, Basic-VECA assigns the executed action (but not its
twin) an infinite VECA cost, which effectively removes it.
The VECA costs are used as follows: Basic-VECA always
chooses a sequence of actions with minimal VECA cost
that leads from its current state to an unexplored action or,
alternatively, to an action with zero VECA cost. The ex-
ploitationalgorithm is used to break ties. Initially, all VECA
costs are zero and there are lots of ties to break. The more
actions Basic-VECA assigns non-zero VECA costs to, the
fewer ties there are and the less freedom the exploitation
algorithm has.

To gain an intuitive understanding of the behavior of
Basic-VECA, consider a simple case, namely a tree-shaped
state space, and assume that Basic-VECA uses step 3. Fig-
ure 2 shows a pair of twin edges, a and a

�
, that connect

two components of the tree, X and Y. The exploitation al-
gorithm can execute a freely until it and its twin a

�
together

have been executed a total of k times. Then, Basic-VECA
assigns both actions the same positive VECA cost. At this
point in time, the agent is located in X (the component that
contains the start state), since k is even and the agent alter-
nates between both components. If Y does not contain any
more unexplored actions, neither a nor a

�
will be executed

again. Otherwise there is a point in time when Basic-VECA
executes a again to reach one of those unexplored actions.
When this happens, Basic-VECA prevents the exploitation
algorithm from leaving Y until all actions in Y have been
explored (this restriction of the freedom of the exploitation
algorithm constitutes a switch from exploitation to more
exploration): Because Y can only be entered by executing
a, this action was executed before any action in Y. Conse-
quently, its reserved VECA cost, which is also its current
VECA cost, is larger than the reserved VECA cost of any
action in Y. The reserved VECA costs are exponentially de-
creasing: 2 	 i
��

j
 i 2 	 j for all finite i � j � 0. Thus, any
action sequence that does not leave Y has a smaller VECA
cost than any action sequence that does, and Basic-VECA
cannot leave Y until all of Y’s actions have been explored.
When Basic-VECA has finally left Y, the VECA costs of a
and a

�
are infinite, but there is no need to enter or exit Y

again.
In general, Basic-VECA executes every pair of twin ac-

tions a total of at most k + 2 times before it finds a goal state
(Smirnov et al. 1996). This implies the following theorem:

Theorem 3 Under the assumption that executing an action
also identifies its twin, Basic-VECA, with even parameter
k � 0, solves any goal-directed exploration problem with a

Input:
a goal-directed exploration problem,

the value of VECA’s parameter k (a non-negative, even integer),
and a heuristic-driven exploitation algorithm (to be used in step 3).

VECA uses four variables for each action a in state s: count(s � a) keeps track of how often the
action has been executed, reserve(s � a) is its reserved VECA cost, cost(s � a) is its actual VECA
cost, and euler(s � a) remembers whether it has already been executed as part of step 4(e).

1. Set count(s � a) := cost(s � a) := euler(s � a) := 0 for all s
�

S and a
�

A(s). Set i := 0 and
s := sstart .

2. If s
�

G, then stop successfully.

3. Consider all cycle-less action sequences starting at s and ending with an unexplored ac-
tion. Select an action sequence with minimal VECA cost from these sequences, using the
heuristic-driven exploitation algorithm to break ties.

4. Consider all actions in the action sequence, one after another. For each action a in the
sequence, do:

(a) Execute a in s.

(b) Set count(s � a) := count(s � a) + 1.

(c) If count(s � a) = 1 and the twin of a in s is not yet known, then set i := i + 1 and

afterwards reserve(s � a) := 2 � i .

(d) If count(s � a) = 1 and the twin of a in s is known, then let a
� �

A(s
�
) be the twin of a

in s. If count(s
� � a �) = 0, then set i := i + 1 and afterwards reserve(s � a) := 2 � i , else

set reserve(s � a) := reserve(s
� � a �).

(e) If count(s � a) � k and the twin of a in s is not yet known, then do:

i. Set s
� �

:= succ(s � a).

ii. Select an action a
� �

in s
� �

with euler(s
� � � a � �) = 0. If there is no such action, then

go to step 4(f) (comment: it holds that s
� �

= succ(s � a)).

iii. Execute a
� �

in s
� �

.
iv. Set euler(s

� � � a � �) := 1.

v. Set s
� �

:= succ(s
� � � a � �).

vi. Go to step 4(e)ii.

(f) If the twin of a in s is known, then let a
� �

A(s
�
) be the twin of a in s and do:

i. If count(s � a) + count(s
� � a �) � k and cost(s � a) = 0, then set cost(s � a) :=

cost(s
� � a �) := reserve(s � a).

ii. If count(s � a) + count(s
� � a �) � k, then set cost(s � a) := � .

(g) Set s := succ(s � a).

5. Go to step 2.

Alternatively, step 3 can be replaced by:

3’ Consider all cycle-less action sequences starting at s and ending with an action whose VECA
cost is zero. Select an action sequence with minimal VECA cost from these sequences,
using the heuristic-driven exploitation algorithm to break ties.

Figure 3: The VECA Framework

cost of
�

(1) � weight (to be precise: with a cost of at most
(k � 2 + 1) � weight).

A larger k allows the exploitation algorithm to maintain
its original behavior longer, whereas a smaller k forces it ear-
lier to explore the state space more. The smaller the value of
k, the better the performance guarantee of Basic-VECA. If
k = 0, for example, Basic-VECA severely restricts the free-
dom of the exploitation algorithm and behaves like chrono-
logical backtracking. In this case, it executes every action
at most once (for a total cost of weight), no matter how mis-
leading its heuristic knowledge is or how bad the choices of
the exploitationalgorithm are. No uninformed goal-directed
exploration algorithm can do better in the worst case even
if executing an action also identifies its twin. However,
if the heuristic values are not misleading, a small value of
k can force the exploitation algorithm to explore the state
space unnecessarily. Thus, a stronger performance guaran-
tee might come at the expense of a decrease in average-case
performance. The experiments in the section on “Experi-
mental Results” address this issue.

VECA is very similar to Basic-VECA, see Figure 3. In
contrast to Basic-VECA, however, it does not assume that
executing an action identifies its twin. This complicates
the algorithm somewhat: First, the twin of an action might
not be known when VECA reserves a VECA cost for the
pair. This requires an additional amount of bookkeeping.
Second, the twin of an action might not be known when
VECA wants to assign it the VECA cost. In this case,
VECA is forced to identify the twin: step 4(e) explores
all actions in the state that contains the twin (including the
twin) and returns to that state. This procedure is executed
only rarely for larger k, since it is almost never the case that
the twin of an action that has already been executed k times
is not yet known. Because of this step, though, VECA can
potentially execute any action one more time than Basic-
VECA, which implies the following theorem (Smirnov et
al. 1996):

Theorem 4 VECA, with even parameter k � 0, solves any
goal-directed exploration problem with a cost of

�
(1) �

weight (to be precise: with a cost of at most (k � 2 + 2) �
weight).

For k = 0, VECA executes every action at most twice.
Thus, its worst-case performance is at most 2 � weight
and equals the worst-case performance of BETA. No unin-
formed goal-directed exploration algorithm can do better in
the worst case if executing an action does not identify its
twin.

Implementation
Since the VECA costs are exponentially decreasing and the
precision of numbers on a computer is limited, Basic-VECA
and VECA cannot be implemented exactly as described. In-
stead, we represent action sequences as lists that contain the
current VECA costs of their actions in descending order.
All action sequences of minimal VECA cost then have the
smallest lexicographic order. Since this relationship contin-
ues to hold if we replace the VECA costs of the actions with
their exponent (for example, we use � 3 if the VECA cost
of an action is 1 � 8 = 2 	 3), we can now use small integers
instead of exponentially decreasing real values, and steps 3
and 3’ can be implemented efficiently using a simple modi-
fication of Dijkstra’s algorithm in conjunction with priority
lists.

Experimental Results
We augment our theoretical worst-case analysis with an
experimental average-case analysis, because the worst-
case complexity of an algorithm often does not predict its
average-case performance well. The task that we studied
was finding goals in mazes. The mazes were constructed by
first generating an acyclic maze of size 64 � 64 and then ran-
domly removing 32 walls. The action costs corresponded to
the travel distances; the shortest distance between two junc-
tions counted as one unit. We randomly created ten mazes
with start location (62,62), goal location (0,0), diameters
between 900 and 1000 units, and goal distances of the start
state between 650 and 750 units. For every goal-directed
exploration algorithm, we performed ten trials in each of

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100

A
ve

ra
ge

 P
er

fo
rm

an
ce

Quality of Heuristic Values (100 t)

[1]

[2]

AC-A* for Manhattan Distance [1]
AC-A* with VECA for k=4 and Manhattan Distance [2]

Figure 4: AC-A* with and without VECA

the ten mazes (with ties broken randomly). We repeated the
experiments for different values of VECA’s parameter k and
for heuristic values h(s � a) of different quality. The heuristic
values were generated by combining the goal distance gd(s)
of a state s with its Manhattan distance mh(s), the sum of
the x and y distance from s to the goal state. A parameter
t

�
[0 � 1] determined how misleading the heuristic values

were; a smaller t implied a lower quality:

h(s � a) = c(s � a) + t � gd(succ(s � a)) + (1 � t) � mh(succ(s � a)) �

Here, we report the results for two heuristic-drivenexploita-
tion algorithms, namely AC-A* and Learning Real-Time A*
(LRTA*) with look-ahead one (Korf 1990). We integrated
these algorithms into the VECA framework as follows: AC-
A* was used with step 3 of VECA and broke ties among
action sequences according to their total cost (see the defi-
nition of AC-A*). LRTA* was used with step 3’ of VECA
and broke ties according to the heuristic value of the last
action in the sequence. These ways of integrating AC-A*
and LRTA* with VECA are natural extensions of the stand-
alone behavior of these algorithms. If the heuristic values
are misleading, AC-A* is more efficient than LRTA* (this
is to be expected, since AC-A* deliberates more between
action executions). As a result, VECA was able to improve
the average-case performance of LRTA* more than it could
improve the performance of AC-A*.

Figure 4 shows the average-case performance of AC-A*
with and without VECA (including 95 percent confidence
intervals). The x axis shows 100 � t, our measure for the
quality of the heuristic values, and the y axis shows the
average travel distance from the start to the goal, averaged
over all 100 trials. All graphs tend to decrease for increasing
t, implying that the performance of the algorithms increased
with the quality of the heuristic values (as expected). AC-
A* without VECA was already efficient and executed each
action only a small number of times. Thus, VECA did
not change the behavior of AC-A* when k was large. For
example, for k = 10, the behavior of AC-A* with VECA
(not shown in the figure) was the same as the behavior of
AC-A* without VECA. The graphs for k = 4 suggest that
AC-A* with VECA outperforms AC-A* without VECA if
the heuristic values are of bad quality and that it remains
competitive even for heuristic values of higher quality.

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100

A
ve

ra
ge

 P
er

fo
rm

an
ce

Quality of Heuristic Values (100 t)

[1]

[2]

[3]

[4]

LRTA* for Manhattan Distance [1]
LRTA* with VECA for k=20 and Manhattan Distance [2]
LRTA* with VECA for k=10 and Manhattan Distance [3]
LRTA* with VECA for k=4 and Manhattan Distance [4]

Figure 5: LRTA* with and without VECA

Figure 5 shows the average-case performance of LRTA*
with and without VECA. As before, the performance of
the algorithms increased with the quality of the heuristic
values. The graphs show that, most of the time, LRTA*
with VECA outperformed or tied with LRTA* without
VECA. For misleading heuristic values (small t), LRTA*
with VECA worked the better, the smaller the value of
VECA’s parameter k was. However, for only moderately
misleading heuristic values (t between 0.3 and 0.5), a larger
value of k achieved better results and LRTA* without VECA
even outperformed LRTA* with VECA if k was small. This
was the case, because the heuristic values guided the search
better and a small value of k forced LRTA* to explore the
state space too much.

We obtained similar results for both experiments when we
generated the heuristic values differently, for example as the
combination of the goal distance and the Euclidean distance
or the goal distance and the larger coordinate difference be-
tween a state and the goal. We also performed experiments
with other heuristic-driven exploitation algorithms, such as
biased random walks or an algorithm that expands the states
in the same order as the A* algorithm. Since both of these
algorithms are inefficient to begin with, VECA was able
to achieve large performance improvements for misleading
heuristic values.

Extensions
In this paper, we have assumed that a goal-directed explo-
ration algorithm learns only the effect of the executed action,
but not the effects of any other actions. However, Basic-
VECA and VECA can be used unchanged in environments
in which action executions provide more information (such
as, for example, complete information about the effects of
all actions in the vicinity of the agent) and Theorems 3 and
4 continue to hold.

Conclusion
We introduced an application-independent framework for
goal-directed exploration, called VECA, that addresses a
variety of search problems in the same framework and pro-
vides good performance guarantees. VECA can accom-

modate a wide variety of exploitation strategies that use
heuristic knowledge to guide the search towards a goal
state. It monitors whether the heuristic-driven exploita-
tion algorithm appears to perform poorly on some part of
the state space. If so, it forces the exploitation algorithm
to explore the state space more. This combines the advan-
tages of pure exploration approaches and heuristic-driven
exploitation approaches: VECA is able to utilize heuris-
tic knowledge, but provides a better performance guarantee
than previously studied heuristic-driven exploitation algo-
rithms (such as the AC-A* algorithm): VECA’s worst-case
performance is always linear in the weight of the state space.
Thus, while misleading heuristic values do not help it to find
a goal state faster, they cannot completely deteriorate its per-
formance either. A parameter of VECA determines when
it starts to restrict the choices of the heuristic-driven ex-
ploitation algorithm. This allows one to trade-off stronger
performance guarantees (in case the heuristic knowledge is
misleading) and more freedom of the exploitation algorithm
(in case the quality of the heuristic knowledge is good). In
its most stringent form, VECA’s worst-case performance
is guaranteed to be as good as that of BETA, the best un-
informed goal-directed exploration algorithm. Our experi-
ments suggest that VECA’s performance guarantee does not
greatly deteriorate the average-case performance of many
previously studied heuristic-driven exploitation algorithms
if they are used in conjunction with VECA; in many cases,
VECA even improved their performance. In future work,
we will study the influence of domain properties on the
performance of goal-directed exploration algorithms in the
VECA framework.

Acknowledgements
This research is sponsored in part by the Wright Labo-
ratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, the Advanced Research Projects Agency
under grant number F33615-93-1-1330 and the National
Science Foundation under grant number IRI-9502548. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
sponsoring organizations or the U.S. government.

References
Benson, G., and Prieditis, A. 1992. Learning continuous-
space navigation heuristics in real time. In Proceedings of
the Conference on Simulationof Adaptive Behavior (SAB):
From Animals to Animats.

Betke, M.; Rivest, R.; and Singh, M. 1995. Piecemeal
learning of an unknown environment. Machine Learning
18(2/3).
Blum, A.; Raghavan, P.; and Schieber, B. 1991. Naviga-
tion in unfamiliar terrain. In Proceedings of the Symposium
on Theory of Computing (STOC), 494–504.

Deng, X., and Papadimitriou, C. 1990. Exploring an
unknown graph. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), 355–361.

Deng, X.; Kameda, T.; and Papadimitriou, C. 1991. How
to learn an unknown environment. In Proceedings of the
Symposium on Foundations of Computer Science (FOCS).
Hierholzer, C. 1873. Über die Möglichkeit, einen Lin-
ienzug ohne Wiederholung und ohne Unterbrechung zu
umfahren. Mathematische Annalen 6:30–32.
Koenig, S., and Smirnov, Y. 1996. Graph learning with a
nearest neighbor approach. In Proceedings of the Confer-
ence on Computational Learning Theory (COLT).
Korach, E.; Kutten, S.; and Moran, S. 1990. A modu-
lar technique for the design of efficient distributed leader
finding algorithms. ACM Transactions on Programming
Languages and Systems 12(1):84–101.
Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.
Lumelsky, V.; Mukhopadhyay, S.; and Sun, K. 1990.
Dynamic path planning in sensor-based terrain acquisition.
IEEE Transactions on Robotics and Automation 6(4):462–
472.
Moore, A., and Atkeson, C. 1993a. The parti-game al-
gorithm for variable resolution reinforcement learning in
multidimensional state spaces. In Advances in Neural In-
formation Processing Systems 6 (NIPS).
Moore, A., and Atkeson, C. 1993b. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103–130.
Pemberton, J., and Korf, R. 1992. Incremental path plan-
ning on graphs with cycles. In Proceedings of the AI
Planning Systems Conference (AIPS), 179–188.
Rao, N.; Iyengar, S.; Jorgensen, C.; and Weisbin, C. 1986.
Robot navigation in an unexplored terrain. Journal of
Robotic Systems 3(4):389–407.
Rao, N.; Stoltzfus, N.; and Iyengar, S. 1991. A “retrac-
tion” method for learned navigation in unknown terrains
for a circular robot. IEEE Transactions on Robotics and
Automation 7(5):699–707.
Smirnov, Y.; Koenig, S.; Veloso, M. M.; and Simmons,
R. G. 1996. Goal-directed exploration in the VECA
framework. Technical report, School of Computer Sci-
ence, Carnegie Mellon University.
Stentz, A. 1995. The focussed D* algorithm for real-
time replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1652–1659.
Sutton, R. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the International Con-
ference on Machine Learning (ICML), 216–224.
Thrun, S. 1992. Efficient exploration in reinforcement
learning. Technical Report CMU-CS-92-102, School of
Computer Science, Carnegie Mellon University.

