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Abstract

Our work is driven by one of the core purposes of artifi-
cial intelligence: to develop real robotic agents that achieve
complex high-level goals in real-time environments. Robotic
behaviors select actions as a function of the state of the
robot and of the world. Designing robust and appropriate
robotic behaviors is a difficult because of noise, uncertainty
and the cost of acquiring the necessary state information.
We addressed this challenge within the concrete domain of
robotic soccer with fully autonomous legged robots provided
by Sony. In this paper, we present one of the outcomes of this
research: the introduction of multi-fidelity behaviors to ex-
plicitly adapt to different levels of state information accuracy.
The paper motivates and introduces our general approach and
then reports on our concrete work with the Sony robots. The
multi-fidelity behaviors we developed allow the robots to suc-
cessfully achieve their goals in a dynamic and adversarial en-
vironment. A robot acts according to a set of behaviors that
aggressively balance the cost of acquiring state information
with the value of that information to the robot’s ability to
achieve its high-level goals. The paper includes empirical
experiments which support our method of balancing the cost
and benefit of the incrementally-accurate state information.

Introduction
Intelligent agents operating in dynamic domains rely heav-
ily on real-time information about the world around them to
direct and control their behaviors. This information may be
raw sensor data, processed sensor data, or sensor data that
the agent has to spend effort to acquire.

In most realistic domains, raw sensor data is not refined
enough to allow for high-level deliberation or control. The
agent must spend effort to process the data it receives from
its sensors to support the internal state representation nec-
essary for higher-level control. In addition, sometimes the
sensor data the agent needs to select behaviors is not imme-
diately available. The agent must spend time to acquire the
raw data in addition to the time spent processing it.

Thus, in many complex and dynamic domains, the qual-
ity of the agent’s information about the world around it is
dependent on the amount of resources the agent is able to
devote to acquiring that information. In order for an agent to
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act sensibly in such a domain, it must be able to balance
its need for information with the benefit this information
provides. It must be able to take advantage of all avail-
able information and still act sensibly when less is available.
Our multi-fidelity behaviors approach provides a framework
which allows an agent’s performance to respond aggres-
sively to changes in the quality of available information.

The remainder of this paper is organized as follows. We
first explain and discuss our multi-fidelity behaviors ap-
proach. Then we describe our application of this approach
to our RoboCup-99 Sony legged robot team and discuss the
strategy we use to balance the costs and benefits of informa-
tion for the robots.

Multi-Fidelity Behaviors
Dealing with dynamic variations of the cost and availabil-
ity of resources is a difficult problem that comes up in sev-
eral areas of computer science. It has been proposed that
there is a need in wireless networking for fast algorithms
that compute an approximation to the ideal solution. Al-
gorithms that can control the accuracy of their approxima-
tions are called multi-fidelity algorithms (Satyanarayanan &
Narayanan 1999), which inspired our use of the same term
for our robotic agent behavior approach.

Such algorithms are also needed to control real-time agent
behavior. Our multi-fidelity behaviors approach is a gen-
eral framework that allows the performance of the system to
swiftly upgrade and gracefully downgrade its performance
as resource availability varies without disrupting its own ac-
tivity with potentially frequent behavior changes. We first
define general-purpose modes of behavior (Mataric 1992;
Brooks 1986). For example, a foraging robot might have
three modes of behavior:

1. Search: the robot searches for the desired objects;

2. Acquire: the robot retrieves found objects;

3. Store: the robot returns the foraged objects to some stor-
age location.

We implement modes of behavior at several “fidelity” lev-
els, which correspond to different levels of resource avail-
ability. For example, one possible implementation of the
store mode of the foraging robot we mentioned above might
require that its GPS receiver is working properly. Another



implementation would only require that the agent’s compass
is working. And another might allow the agent to use the
stars to navigate. By implementing the same mode, or task,
at different fidelity levels, we allow the system to upgrade or
downgrade its performance as resource availability changes
without changing its behavior drastically. In our example,
the robot would never stop trying to store the foraged ob-
jects; the efficiency of its method would simply change.

In addition to switching between implementations of in-
dividual modes, an agent must also switch between modes.
To do this, continuously monitors information about its
state, as do Nilsson’s teleo-reactive agent programs (Nilsson
1994). In addition to increasing the performance of individ-
ual modes, our approach also allows mode-to-mode transi-
tions to depend on the quality of state information. How-
ever, care must be taken to avoid a situation that could lead
to oscillation between modes as information quality changes
with time. The intention of our approach is to allow efficient
response to changes in available state information while not
allowing the robot to oscillate between states.

RoboCup-99 Legged Robot League
We applied our multi-fidelity behaviors approach to the
robotic soccer domain (Kitano et al. 1997) in the Sony
legged robot league of RoboCup-99.1 All teams in the
RoboCup-99 legged robot league used the same hardware
platform: the Sony quadruped legged robots (Fujita, Zre-
hen, & Kitano 1999), shown in Figure 1.2 The robots are
fully autonomous and have onboard cameras. Our image
processing, localization and control algorithms run on the
onboard processor. The robots are not remotely controlled
in any way, and, as of now, no communication is possible
between the robots. The only information available for de-
cision making comes from the robot’s onboard camera and
from sensors which report on the state of the robot’s body.

Figure 1: The Sony quadruped robot dog with a ball.

The soccer game consists of two ten-minute halves, each
begun with a kickoff. In the kickoff, the ball begins in the
center of the field, and each team may position its robots on
its own side of the field. After each goal, play resumes with

1Our extensive videos of this event provide invaluable illustra-
tive support to the work presented in this paper.

2The Sony AIBO robots were commercially sold in March of
1999. But the robots used for the RoboCup-99 competition are not
the same as those commercially available. The robots we used are
equipped with slightly different hardware, and, unlike the commer-
cial product, are programmable.

another kickoff. Each team consists of three robots. Like
most of the other 1998 and 1999 teams (Veloso, Pagello, &
Kitano 2000), we divided our team into two attackers and
one goaltender. In this paper, we will focus on the attackers.

The field is 280 cm in length and 180 cm in width. The
goals are centered on either end of the field, and are each 60
cm wide and 30 cm tall. Six unique landmarks are placed
around the edges of the field (one at each corner, and one
on each side of the halfway line) to help the robots localize
themselves on the field.

The robotic soccer domain is a very appropriate one in
which to study our approach. Raw data from the robot’s
camera must be processed to extract the information used to
control the robot’s behavior. First, the data are sent to the
vision module, which reports which objects are seen, with
what confidence, and at what direction and distance (Bruce,
Balch, & Veloso ). This information is then sent to the local-
ization module, which reports an estimate of the robot’s an-
gle,

�
, and of its � and � location on the field, along with the

standard deviations � ��� ��� and ��� (Lenser & Veloso 2000).
To estimate the robot’s position, the localization system

applies Monte Carlo sampling and sensor-based resetting
to data about the position of field landmarks relative to the
robot. The data provided by the localization system is not
accurate when the robot has not recently seen landmarks.
Therefore, to get accurate localization information, the robot
must look for landmarks.

Because the robot is legged and cannot walk completely
smoothly, the camera experiences pitch and roll while it
walks. This causes the images it collects to change sig-
nificantly from one frame to the next. This causes the vi-
sion system’s identification of objects and the estimate of
their distances and angles to degrade. The localization sys-
tem depends heavily on accurate information about the land-
marks, so our approach, like many previous robotic systems,
requires that the robot stop moving while looking for land-
marks. The process of stopping and scanning for landmarks
usually takes the robot between 15 and 20 seconds.

Because of this, it is very costly for the robot to acquire
information about its location on the field. Although it is ob-
vious that this information is very useful to a soccer-playing
robot, soccer, like other dynamic domains, is time-critical,
so every moment spent looking around is lost time. Oppo-
nents can also use the robot’s inattention to their advantage.

Implementation
To implement our multi-fidelity behaviors approach with the
legged robots, we identified the basic modes of behavior and
wrote low-fidelity implementations of each of them. We
wrote higher-fidelity implementations of some, but not all of
the behaviors because some do not benefit from localization
information and others are so urgent that we cannot allow
them to collect localization information.

We defined four basic modes of behavior for the attackers:

1. Recover: the robot tries to recover a recently lost ball;

2. Search: the robot searches the field for a lost ball;

3. Approach: the robot approaches the ball;
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Figure 2: Transitions between the general-purpose modes of behavior and their multi-fidelity implementations. Notice that different be-
haviors have implementations of different fidelity levels, as appropriate. The transitions are triggered by preset timeouts and processed data
sensor, namely visual – see ball, next to ball – and localization information – � ��� ��� � ��� .

4. Score: the robot pushes the ball towards the goal.

The robot switches between these modes using information
about its state. If the robot does not see the ball and did re-
cently, it tries to recover the ball. If this is unsuccessful,
it searches for the ball. If the robot sees the ball, it ap-
proaches. If it is close to the ball, it pushes the ball towards
the goal. Figure 2 shows an illustration of our algorithm.
Two modes (approach and score) are implemented using our
multi-fidelity behaviors approach.

Low-Fidelity Behavior
Frequently during games, the standard deviations of the
robot’s localization information are so high that the infor-
mation should not be used (see the section, “Balancing the
Costs of Information”). As explained previously, it is costly
for the robot to stop and look every time its localization in-
formation is inaccurate. Therefore, we must make sure the
robot can choose actions that will help it achieve its goals
even when its localization information is not good enough
to use. We will describe the algorithms the robot uses to
perform these behaviors with no localization information.
� Recover: The robot often loses sight of the ball while it is

trying to manipulate it. Its first strategy is to look around
only with its head, but if that is not successful, the robot
must move around the field to find the ball.
With no localization information, the robot cannot use a
model of the world to try to return to the point at which the
ball was last seen. But because, in most cases, the robot
has walked past the ball or pushed it to the side, a very
efficient way to recover the ball is to walk backwards. If
it still does not see the ball, it reverts to the strategy used
by last year’s team from Carnegie Mellon: it turns in the

direction in which the ball was last seen (Veloso & Uther
1999). After this, the robot considers the ball lost and
begins a random search for it.

� Search: When the robot does not know where the ball
is, it must wander the field to search for it. Without any
localization information, the robot cannot do a systematic
“oriented” search of the field. Instead, we wrote a random
search algorithm that does not rely on localization infor-
mation at all. Until the robot sees the ball, it alternates
between walking forward a random distance and turning
a random angle.

� Approach: Although it would be most efficient for the
robot to chart an approach to the ball that would allow it
to finish “behind” the ball, facing the opponents’ goal, this
is not possible without localization information. For that
reason, when the robot has no localization information, it
approaches the ball by running straight towards it.

� Score: Once the robot has possession of the ball, its strat-
egy is simply to push the ball into the goal. This is dif-
ficult without localization information because the robot
does not know in which direction to push the ball or how
far away the goal is. But our behavior allows the robot to
score goals without any information from the localization
module. The robot walks sideways around the ball until it
sees the goal ahead. It then walks forwards into the ball,
pushing it towards the goal.

Higher-Fidelity Performance Enhancements

We built higher-fidelity implementations of two of the
robot’s behavior modes that take advantage of good local-
ization information. Many performance enhancements are



possible with perfect localization, but those we developed
are robust and reliable even with noisy information.
� Approach: If good localization information is available,

the robot is able to use its approach to the ball to get into
position behind it. If � � ������� , then the robot is able to
“skew” its approach to the ball, so that when it reaches the
ball, it is closer to its goal position behind the ball.

� Score: Based on knowledge of the robot’s position, this
implementation decides which direction to circle around
the ball, or whether to circle at all. If the robot has
� � ������� and ��� � ��� � 60 cm, then the robot can choose
the shortest direction to circle around the ball. The robot
can also determine that it is facing the right direction and,
even if it does not see the goal, choose not to circle the
ball anymore, but to push the ball forwards, towards the
goal. This enables the robot to score goals consistently
even when it cannot see the goal at all.
With ��� � ��� � 30 cm, the robot is able to realize whether
this would mean circling into a wall. If the robot is trying
to get to the other side of the ball, it will choose to circle
in the opposite direction. Otherwise, it will choose not to
circle at all, but rather to push the ball forward down the
edge of the field.

These enhancements allow the robot to score more con-
sistently than it does with the low-fidelity algorithm. The
main reason is that, by making the robot’s action more effi-
cient, they reduce the amount of time the robot spends mov-
ing around the ball. Because the robot’s motion is inaccurate
and unpredictable, it often taps the ball away while trying
to maneuver around it, forcing the robot to stop and search
for the ball. Any reduction in the amount of time the robot
spends moving near the ball reduces the chances that the ball
will be nudged away.

Unenhanced Behaviors
Although we used localization information to improve the
performance of two of the robot’s modes, we did not im-
prove the other two. There are two reasons for this.
Some behaviors do not benefit from localization informa-
tion. Other behaviors are so urgent that even if they would
benefit from localization information, stopping to acquire it
would be too expensive.

Behaviors with No Need for Localization We do not al-
low the robot to acquire or use localization information at all
when it is searching for the ball, whether it has lost the ball
recently or is conducting a search of the field for it.

Information about the robot’s position on the field does
not help it in either of these cases. When the ball has re-
cently been lost, the only important information is that it
is probably near the robot. Our unenhanced search already
takes advantage of this fact. Even when the ball is com-
pletely lost, it is no more likely to be in one area of the field
than another, so localization information does not help the
robot to determine where to look first.

One way of searching for a lost ball is to build an “ori-
ented” search, in which the robot uses localization informa-
tion to systematically search each area of the field. This re-

lies on very accurate localization information which takes
a lot of time. For comparison, we built an oriented search
which uses localization information to walk a circuit of the
field. Even on an empty field, in which obstacles do not
block the robot’s view of landmarks, the random search al-
lows the robot to canvass the field more quickly than the
oriented circuit search because the robot never has to stop to
look for landmarks.

Urgent Action There are two situations in which we allow
the robot to use what localization information it does have,
but do not allow it to stop to get more. In these cases, swift
action is essential, so there is no time for the robot to stop
and look for landmarks.
� Approach: Although we have enhanced the approach

mode with a skew feature to allow the robot to position
itself behind the ball more efficiently, we do not allow the
robot to stop during its approach to scan for landmarks.
This strategy has negatives, clearly. If the robot does not
know where it is on the field, it will not know what to do
with the ball when it gets to it. Nevertheless, it is better
for a robot to look around when it is in possession of the
ball than when it is farther from the ball. When the robot
is standing near the ball, it is blocking one side of the ball
from visibility and attacks, and is able to respond more
quickly to an attack because it is already close by.

� Kickoff: We do not allow the robots to localize during the
initial kickoff of the game, because a large advantage is
gained by succeeding to push the ball into the opponents’
side of the field. When the ball moves to one side of the
field, it is very difficult for the robots to move it to the
other side of the field.
Instead of relying on localization information, we take ad-
vantage of the information we already have: the robots be-
gin the kickoff behind the ball, facing the opposite goal.
When the game begins, the robots charge forward into
the ball and try to run with the ball for almost half the
length of the field (or almost all the way to the opponents’
goal). Stopping to localize would give the opponent a
good chance to win the kickoff.

Balancing the Costs of Information
We have already described how we adapt to varying levels
of localization information. We will now discuss how we
balance the cost and benefits of good localization.

In every domain, system designers must strike a differ-
ent balance between the costs of acquiring resources and
the benefits of using them. Even in the Sony robotic soc-
cer domain, different teams came to different conclusions
about how much time should be spent acquiring localiza-
tion information. This year’s team from LRP University in
France (Bouchefra et al. 1999), for example, chose to lo-
calize the robot very infrequently, if at all. However, the
benefits of accurate localization are significant.

We use a two-constraint system to balance the cost and
benefits of good localization information. One constraint en-
sures that the robot spend a sufficient amount of time acting.
The other ensures that if the robot’s localization information



quality falls below a preset threshold, the robot will not use
it and will stop to look for landmarks as soon as the time
constraint allows it to.

We ran two experiments to determine the best values for
these two constraints. We tested how long it would take
one robot on an open field to score a goal. If the robot
took longer than fifteen minutes, we stopped the trial and
recorded its time as fifteen minutes.

We positioned the robot at a fixed point, (700, 450) in our
coordinate system. This corresponds to 3/4 of the way down
the field from the yellow goal, and 1/4 of the way from the
right side wall (if facing the yellow goal). We oriented the
robot at � � ����� in our coordinate system, or � � � to the left
of facing straight towards the yellow goal. We placed the
ball directly in front of it, at the midpoint of the width of the
field. We timed how many minutes it took the robot to push
the ball into the yellow goal.

Figures 3 and 4 show the results of the two experiments
we ran. Each trial is represented by a small tick. The mean
of each set of trials is indicated as a bold tick. The grey bar
around the mean is one standard deviation.

The experiments have, as we expected, a very high vari-
ance, which reflects the challenge of the control task inher-
ent in the robots. The results from the robot’s sensors have
non-neglible variance and the motion of the robot is unre-
liable. Also, the statistical localization inevitably gives dif-
ferent results even with exactly the same inputs. We believe
that most of the variance is due to the high rate of error in
the robot’s motion. This unreliability is magnified when the
ball is involved. Interestingly, when the robot tries to push
the ball forward, it often ends up pushing it at an angle or
out to the side, or even walking past the ball. When it walks
around the ball, it often accidentally taps it, sending the ball
off in an unpredictable direction, as described previously.

Constraint 1—Enforcing Action

Our first constraint requires the robot to spend a certain
amount of time acting before it stops to look for landmarks.
This is crucial for two reasons. The first we mentioned be-
fore: soccer is time-critical, so the robot should only localize
as much as is necessary. But we must worry about more than
the percentage of time the robot spends localizing versus act-
ing. We must also ensure that the robot does not interrupt
its action too frequently. Each time the robot stops to look
for landmarks, there is some chance that it will have trouble
finding the ball when it finishes localizing and looks for it
again. This happens because the robot accidentally nudges
the ball away, because it fails to stop moving before looking
away from the ball or because another robot steals the ball
from it. Stopping more frequently increases the chance that
this will happen and the robot will have to begin searching
for the ball, a time-consuming procedure.

Our scheme uses a counter to require the robot to act for
a specified amount of time before looking for landmarks.
The amount of time the robot must act before looking could
depend on the confidence the robot has in its current local-
ization information or on its current goals. In our scheme,
however, it is invariant.

We require that the robot act for the time it takes the image
module to proccess 350 frames of data, or about 40 seconds.
Recall that stopping to look for landmarks takes the robot
between 15 and 20 seconds, not counting the time it takes it
to recover the ball afterwards. So we demand that it spend
about ��� � of its time acting.

We chose to count time in image frames processed by the
vision module because a full system call is more time con-
suming than using this information. The number of frames
per second is constant (8), and since each processed frame
invokes an update in the control module, the cost of updating
counters for each processed frame is negligible.

We conducted several tests to discover how long we
should force the robot to act before looking for landmarks.
Figure 3 shows the results of ten trials of each of three dif-
ferent time intervals that we considered viable.

50 100 150 200 250 300 350
Frames

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Minutes

Figure 3: Time taken to score a goal versus how long we require
the robot to act before looking for landmarks.

The standard deviations of the trials are, as shown, very
high. Nevertheless, there is a clear penalty for localizing
too frequently, as shown in the results for the 100-frame (or
about 13 second interval). This is because so much stopping
to look disrupts the robot’s activity. It loses sight of the ball
more frequently, and must stop to look for it. Also, scanning
for landmarks so often simply takes a lot of time.

Although our results show that 350- and 200-frame in-
tervals (about 40 seconds and 25 seconds, respectively) are
roughly equivalent, we chose to use a 350-frame interval. In
an actual game, the penalty for stopping more often is much
higher than when there is only one robot on the field; when a
robot stops to look for landmarks, other robots have a chance
to take the ball away.

Constraint 2—Sufficient Localization
The second constraint is how accurate we demand the lo-
calization information to be. We measure accuracy with the
standard deviations returned by the localization module. If
the information is accurate enough, the robot should not stop
to look for landmarks when the timing constraint allows it to.
But if the localization information is not accurate enough,
the robot should not use it.

It is not immediately obvious how good our localization
information must be before it is usable. Clearly, if our de-



mands are too high, the robot will rarely be able to use the
information it has gathered. And if they are too low, it will
use information that is so inaccurate as to be useless at best
and damaging at worst.
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Figure 4: Time taken to score a goal in two setups for transi-
tioning among the multi-fidelity score behavior. Setups A and B
correspond to different standard deviation bounds of the localiza-
tion values for the robot’s orientation,

�
, and its � , � location on

the field.

Figure 4 shows the results of ten trials each of two differ-
ent sets of standard deviation bounds, labelled A and B. In
setup A we set � � � � ��� and ��� � ��� � 30 cm; in setup B,
we set � � � ����� and ��� � ��� � 60 cm.

If we demand the localization values be too accurate be-
fore allowing the robot to use them, it is often unable to use
them and must revert to our low-fidelity strategy, detailed
previously. If it is still able to use them sometimes, this just
slows it down, as seen in Figure 4, setup A. Other exper-
iments we have run have shown us that if the robot must
rely too heavily on the low-fidelity strategy, it is much more
likely to tip the ball in the wrong direction and accidentally
make an own goal. But, if we demand too little accuracy
from the localization values, the robot will rely on them
even when they are faulty. We ran other experiments which
showed that this too causes the robot to score own goals.

We chose to use the standard deviation values used in
setup B from Figure 4 ( � � � ����� , ��� � ��� � 60 cm), be-
cause, in our experiments, there was a clear advantage to
these settings. These standard deviation bounds mean that
the 95% confidence interval for the � and � location of the
robot is

�
120 cm, or almost the entire field. These experi-

ments show that, although it is crucial to have a rough esti-
mate of angle, it is not important for the robot to know where
it is on the field.

Conclusion
In this paper, we have described our multi-fidelity behav-
iors approach to designing behaviors for resource-poor real-
time environments. We briefly described the approach in
general terms. We then elaborated on our implementa-
tion of this approach in the RoboCup-99 Sony legged robot

league, describing our breakdown of the robot’s behavior
into modes corresponding to multi-fidelity behaviors. Fi-
nally, we presented our two-constraint technique for balanc-
ing the cost and benefits of localization information with the
Sony robots, along with the results of experiments we ran
to determine the best values for those constraints. We are
applying the multi-fidelity behaviors approach to several of
our other robotic systems.
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